Climate change and extreme weather







U.S. Annual Tornadoes

*2008: preliminary count, may include duplicates; Corrected through February
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Climate change and extreme

weather events

Changes in extremes matter most for society
and the environment

¢ With a warming climate:
¢ More high temperatures, heat waves
¢ Wild fires and other consequences
é Fewer cold extremes.

é More extremes in hydrological cycle:
é Drought, heavy rains, floods
é Intense storms




A century of weather-related disasters
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There has been 4 times as many
weather-related disasters in the last
30 years than in the previous 75 years.

Includes extreme temperatures,
droughts, floods, waves and surges,
landslides and wind storms
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Ask the right question!

» Is it global warming?

* Is it natural variability?
These are not the right questions: do not have answers.

We can estimate how rare an event was based solely on
observations (requires good long data and assumptions
of stationary climate)

We may be able to state that the odds are remote
that the event could have occurred without
warming (or without natural variability).

Always a combination of both.
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Issues for extremes

¢ Data are "messy”

é Often data are not available with right sampling
é Spatial scales vary: tornadoes to droughts

é Extremes are inherently rare

é Terminology: High impact but not really
extreme?

é Model definitions are often different

¢ Model grid box value may not be comparable to
mean of grid box from observations



Estimating extremes in data and models

P1: probability of event under current conditions

PO: probability of event with external driver removed
(requires model)

FAR: Fraction of Attributable Risk = 1-PO/P1

Use coupled models to estimate attributable effect

Use statistical methods to estimate FAR (e.g. Stott et al 2004)
Use GCMs to estimate FAR (e.g. Pall et al 2007)

Extend to other regions and variables (e.g. Hoerling et al 2007)

Assumes model depicts real world.



Heat waves and wild fires

Impacts on human
health and
mortality,
economic impacts,
ecosystem and




Decadal trend (days) 1951-2003

Cold nights

Observed
frends (days)
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Warm nights are increasing; cold nights decreasing

Cold nights Warm nights

202 stations
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Frequency of occurrence of cold or warm temperatures for 202 global
stations with at least 80% complete data between 1901 and 2003 for 3

time periods:
1901 to 1950 (black), 1951 to 1978 (blue) and 1979 to 2003 (orange).




Drought is increasing most places

Mainly decrease in rain
over land in ftropics and
subtropics, but enhanced
by increased atmospheric

demand with warming
oQeverity Lnaex

(PDSI) for 1900
to 2002.

The time series
(below) accounts
for most of the
trend in PDSI.

AR4 TPCC



Inerzaszs in rainfall and cloud countrzr warming

Absence of
warming by day
coincides with
wetter and
cloudier
conditions




The European heat-wave of summer 2003
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Heat waves are increasing: an example

1850 1900 1950

Central Europe JJA temperature (anomalies from 1961-90)
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Summer 2003 Trend plus variability?
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Estimated likelihood

Humans have affected temperatures
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Summer temperatures in Switzerland from 1864 to 2003. During the extremely hot
summer of 2003, average temperatures exceeded 22°C, as indicated by the red bar
(a vertical line is shown for each year in the 137-year record).

The odds of the 2003 value, given the rest of the record is about 1 in 10 million.
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Modeling southern European JJA temperatures

e B S S L e S S Ea
_ Future projection Ht_';
ﬁ'_— 1 lﬁtlr[li
YURBIL -
LA 3 | I-tfr i "l-
2 i 2
E - 1 A
: - Instrumental il :
E observations AT |
A1y b "
& & |
o AII drwers included , | e
1800 f.I)G 2050 2100

Stott et al 2004



Changing risk of European heat waves

Return periods for European heat-waves
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Stott et al 2004 becomes commonplace by 2020s



Flooding and extremes of precipitation

Photo Dave Mitchell, Courtesy Myles Allen
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Role of character of precipitation:

Daily Precipitation at 2 stations
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Can not come from local ¢

Can not come from E,

Has to come from fran
circulation into storm.

form-scale

>

On| average, rain producing systems
(e.qg., exdnatropicall cyclones: thunderstorms)
reach| out: and/ grab moisture from distance about
3/ 1o 5] times radius| of precipitating area.




Air holds more water vapor at higher
temperatures

A basic physical law tells us that the water
holding capacity of the atmosphere goes up at
about 7% per degree Celsius increase in
temperature. (4174 oz °F)

Observations show that this is happening at
the surface and in lower atmosphere: 0.55°C
since 1970 over global oceans and 4% more

water vapor.

This means more moisture
available for storms and an

enhanced greenhouse effect. il



How should precipitation P change
as the climate changes?

With increased GHGs: increased surface heating
evaporation Efl and Pl

With increased aerosols, EU and PY
Net global effect is small and complex

Warming and Tl means water vapor 1l as observed
Because precipitation comes from storms gathering up
available moisture, rain and snow intensity 1| :
widely observed
But this must reduce lifetime and frequency of storms
Longer dry spells
Trenberth et al 2003



How should precipitation P change
as the climate changes?

¢ "The rich get'richer and the poor get poorer”.  More
water vapor plus moisture transports from divergence
regions (subtropics) to convergence zones. Result:
wet areas get wetter, dry areas drier (Neelin, Chou)

¢ "Upped ante” precip decreases on edges of
convergence zones as it takes more instability fo
trigger convection: more intense rains and upward
motion but broader downward motion. (Neelin, Chou)

é "More bang for the buck®. The moisture and energy
transport is a physical constraint, and with increased
moisture, the winds can be less to achieve the same
transport. Hence the divergent circulation weakens.

(Soden, Held et al)
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Heavy precipitation days are increasing even in places
where precipitation is decreasing.
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PDSI: severe or extreme drought

The warmer
conditions
suggest that
drought would
have been
much worse if
IT were not
for the much
wetter
conditions.

Percent Area

1980

50 1960 1970

Difference in Percent Area

And it would

Change in area of PDSI in drought using detrended temperature have been

and precipitation: much warmer
Red is no trend in precipitation: |

Blue is no trend in temperature. Too!
Easterling et al 2007



Increases in extremes in U.S.
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North Atlantic hurricanes have increased with SSTs

North Atlantic 1944 to 2007

N. Atlantic
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Marked increase
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a) SSMI JASO Trend
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JASO
Atlantic

1 b) Atlantic PWand SST: 10-20°N iy ngher' SSTs Clnd

Higher water vapor
after 1994

Means more:

1980 1990 2000

Ocean evaporation
Rainfall,

Tropical storms, and
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Number of hurricanes, storms/year

] a) Hurricanes and Tropical storms 0-30°N

1 Precipitation
1 Surface Flux

JASO
6

1 b) Atlantic PWand SST: 10-20°N

1980 1990

{ ©) Hurricanes and Tropical Storms JASO

Hurricanes
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Atlantic

Sfc Fluxes
123%/K (total)
90%/K (precip)

Precip water
SST
77%/K

Numbers:
TS



Changes across 1994/95

JASO: 1995-2006 vs 1970-1994

1970-1994 1995-2006 Diff % Units
SSTs 27.5 28.0 0.5 °C @o-20n)
Wv 33.5 34.9 1.4 11Kk m
TS 3.4 5.2 1 45 0.
Hurr 4.5 7.5 3. 55
Total 7.9 12.7 4. 43
Sfc Flux 0.41 1.05 0 1041 ]
0.04 0.10 PW
Precip 1.36 3.63 2 I:l-v(\?Zl J

0.13 0.34



Downscaling of hurricanes

e Emanuel 2008 BAMS
e Knutson et al 2008 Nature Geoscience

Use climate models projections of the

environmental state
_ SST

— Vertical temperature structure (stability)
— Wind shear

Hoskins says: "If the large scale is rubbish, then the
detalil is rubbish, too."
--New Scientist, 7 May 2008



Downscaling of hurricanes

Knutson et al 2008 Nature
Geoscience
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Some model studies of extremes

- Frosts: Meehl et al 2004
- Heat waves: Meehl and Tebaldi 2004

+ 2003 European heat wave: Stott et al 2004
* Precipitation, dry days: Tebaldi et al 2007

* Many indices Frich et al. 2002

defined 10 standard extremes indices derived from
observed data, then from 9 CMIP3 models for AR4

* Precip: Meehl et al 2005



Extremes indices for temperature

Total number of frost days, defined as the annual total
number of days with absolute minimum temperature below 0°C

* Intra-annual extreme temperature range, defined as the
difference between the highest temperature of the year and the
lowest

‘6rowing season length, defined as the length of the period
between the first spell of five consecutive days with mean
temperature above 5°C and the last such spell of the year

* Heat wave duration index, defined as the maximum period of at
least 5 consecutive days with maximum temperature higher by at
least 5°C than the climatological norm for the same calendar day

* Warm nights, defined as the percentage of times in the year
when minimum temperature is above the 90th percentile of the
climatological distribution for that calendar day

Frich et al 2002 Clim. Res.



Extremes indices for precipitation

é Number of days with precipitation greater than 10mm
¢ Maximum number of consecutive dry days
¢ Maximum 5-day precipitation total

¢ Simple daily intensity index, defined as the annual total
precipitation divided by the number of wet days

é Fraction of total precipitation due to events exceeding
the 95th percentile of the climatological distribution
for wet day amounts

Frich et al 2002 Clim. Res.
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Combined effects of increased precipitation
intensity and more dry days contribute to mean
precipitation changes

a) Precipitation
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Table SPM.2. Recent trends, assessment of human influence on the trend and projections for extreme weather events for which there
is an observed late-20th century trend. {Tables 3.7, 3.8, 9.4; Sections 3.8, 5.5, 9.7, 11.2-11.9}

Phenomenon® and
direction of trend

Likelihood that trend
occurred in late 20th

century (typically

Likelihood of a
human contribution
to observed trend®

IPCC AR4

Likelihood of future trends
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21st century using

post 1960) SRES scenarios
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