

Adam Phillips and Clara Deser John Fasullo, Isla Simpson, Dave Schneider Climate Analysis Section, NCAR

CGD Seminar 17 November 2020

Adam Phillips and Clara Deser John Fasullo, Isla Simpson, Dave Schneider Climate Analysis Section, NCAR

CGD Seminar 17 November 2020

An automated analysis tool and data repository for exploring forced and internal components of climate variability and change.

d analysis tool and tory for exploring ternal components iability and change.

 How well does my model simulate: ENSO? AMV? PDV? AMOC? NAO? Variability in general?

- How well does my model simulate: ENSO? AMV? PDV? AMOC? NAO? Variability in general?
- How does my model compare with other models (and are there true structural differences)?

- How well does my model simulate: ENSO? AMV? PDV? AMOC? NAO? Variability in general?
- How does my model compare with other models (and are there true structural differences)?
- Does climate change affect internal variability?

- How well does my model simulate: ENSO? AMV? PDV? AMOC? NAO? Variability in general?
- How does my model compare with other models (and are there true structural differences)?
- Does climate change affect internal variability?
- What are the relative contributions of internal variability and forced climate change to long-term trends?

- How well does my model simulate: ENSO? AMV? PDV? AMOC? NAO? Variability in general?
- How does my model compare with other models (and are there true structural differences)?
- Does climate change affect internal variability?
- What are the relative contributions of internal variability and forced climate change to long-term trends?
 - > Initial-condition Large Ensembles

Initial-condition Large Ensembles

Initial-condition Large Ensembles

What are they? Why are they useful?How large do they need to be?How are they best designed?Emerging applications and future directions?

US CLIVAR Working Group on *Large Ensembles* (Flavio Lehner)

https://www.cesm.ucar.edu/projects/community-projects/MMLEA/

Like the original CVDP

- Computes modes of variability, trends, and climate indices.
- All output saved to a data repository for later use.
- User specifies the data sets (models & observations).

New for the CVDP-LE

- Computes ensemble mean and ensemble spread.
- Quantitative comparison to observations (rank metrics).
- Comprehensive User's Guide.

Tutorial and teaching resource

User's Guide (35 pages)

- Background on internal climate variability
- Utility of Large Ensembles
- Diagnostics and metrics (fully referenced)
- Treatment of observational uncertainty
- Two views: Ensemble Summary vs. Individual Members
- Interpretation of plots and metrics
- Best practices and tips for applying the package

Phillips, A. S., C. Deser, J Fasullo, D. P. Schneider and I. R. Simpson, 2020: Assessing Climate Variability and Change in Model Large Ensembles: A User's Guide to the "Climate Variability Diagnostics Package for Large Ensembles", doi:10.5065/h7c7-f961

User's Guide (35 pages)

D' Ol'mete Anelia's

- Background on internal climate variability
- Utility of Large Ensembles
- Diagnostics and metrics (fully referenced)
- Treatment of observational uncertainty
- Two views: Ensemble Summary vs. Individual Members
- Interpretation of plots and metrics
- Best practices and tips for applying the package

Tutorial and teaching resource

ge

NC UC	AR Cli	D's Climate mate V /	Analysis S /ariabil for Large En	ity Diag Disembles	gnostic	s Packa	age			
User's Guide Metrics: Graphics Namelists: Input Created: Fri Nov CVDP-LE Versior Ensemble Summ	User's Guide Metrics: Graphics Ensemble Tables Individual Tables Namelists: Input Derived Created: Fri Nov 6 22:29:28 MST 2020 CVDP-LE Version 0.0.9 Ensemble Summary Individual Members Climatological Averages									
Climatolog	ical Averaç	Jes								
SST	DJF	JFM	MAM	JJA	JAS	SON	ANN			
TAS	DJF	JFM	MAM	JJA	JAS	SON	ANN			
PSL	DJF	JFM	MAM	JJA	JAS	SON	ANN			
PR	DJF	JFM	MAM	JJA	JAS	SON	ANN			
SIC NH	DJF	JFM	MAM	JJA	JAS	SON	ANN			
SIC SH	DJF	JFM	MAM	JJA	JAS	SON	ANN			

Variables

NC UC	AR Cli	mate V	Analysis S Ariabili for Large En	ity Diag	gnostics	s Packa	age
User's Guide Metrics: Graphics Namelists: Input Created: Mon No CVDP-LE Version Fusemble Summ	s Ensemble Table Derived v 9 14:29:53 MST 0 0 9 ary Individual Me	s Individual Table [2020 bers	:5	Ν	MMLEA 1	950-20	18
Climatolog	ical Avera	ges					
357	DUT	JFM	MAM	JJA	JAS	SON	ANN
TAS	DJF	JFM	MAM	JJA	JAS	SON	ANN
PSL	DJF	JFM	МАМ	JJA	JAS	SON	ANN
PR	DJF	JFM	MAM	JJA	JAS	SON	ANN
SIC NH	DJF	JFM	MAM	JJA	JAS	SON	ANN
SIC SH	D.JF	JFM	MAM	JJA	JAS	SON	ANN
Standard [Deviations						
CCT	DIE	JFM	МАМ	JJA	JAS	SON	ANN
TAS	DJF	JFM	МАМ	JJA	JAS	SON	ANN
PSL	DJF	JFM	МАМ	JJA	JAS	SON	ANN
PR	DJF	JFM	МАМ	JJA	JAS	SON	ANN
SIC NH	DJF	JFM	МАМ	JJA	JAS	SON	ANN
SIC SH	DJF	JFM	МАМ	JJA	JAS	SON	ANN
Global Tre	nd Maps						
Т22	DIF	JFM	МАМ	JJA	JAS	SON	ANN
TAS	DJF	JFM	МАМ	JJA	JAS	SON	ANN
PSL	DJF	JFM	МАМ	JJA	JAS	SON	ANN
PR	DJF	JFM	МАМ	JJA	JAS	SON	ANN
SIC NH	DJF	JFM	MAM	JJA	JAS	SON	ANN
SIC SH	DJF	JFM	МАМ	JJA	JAS	SON	ANN

NCAR UCAR CGD's Climate Analysis Section Climate Variability Diagnostics Package for Large Ensembles

User's Guide Metrics: Graphics Namelists: Input I Created: Mon Nov CVDP-LE Version	I Ensemble Tables Derived v 9 14:29:53 MST 0.0.9	l Individual T 2020	ables	MMLEA 195	50-2018	
	ical Averac	les	Coupled N	hodes of variability		
SST	DJF	JFN	ENSO	Spatial Composites	El Niño - La Niña SST/TAS/PSL	El Niño - La Niña PR
TAS	DJF	JFN				
PSL	DJF	JFN			El Niño SST/TAS/PSL JJA ⁰ SON ⁰ DJF ¹ MAM ¹	El Niño PR JJA ⁰ SON ⁰ DJF ¹ MAM ¹
PR	DJF	JFN			La Niña SST/TAS/PSL	La Niña PR
SIC NH	DJF	JFN			JJA ⁰ SON ⁰ DJF ¹ MAM ¹	JJA ⁰ SON ⁰ DJF ¹ MAM ¹
SIC SH	DJF	JFN			El Niño Hovmöller	La Niña Hovmöller
Standard D	Deviations			Niño3.4	Timeseries	Monthly Std. Dev.
SST	DJF	JFN			Power Spectra	Wavelet
TAS	DJF	JFN			Autocorrelation	Running Standard Deviation
PSL	DJF	JFN	AMV	Regr: SST TAS PR	Timeseries	Power Spectra
PR	DJF	JFN		Regrine SST TAS PR	Timeseries	
SIC NH	DJF	JFN		Kegi Er. 331 TASTK	Timesenes	
SIC SH	DJF	JFN	AMV'	Regr: SST TAS PR	Timeseries	Power Spectra
Global Trer	nd Maps			Regr LP: SST TAS PR	Timeseries	
SST	DJF	JFN	PDV	Regr: SST TAS PR	Timeseries	Power Spectra
TAS	DJF	JFN	PDV'	Regr: SST TAS PR	Timeseries	Power Spectra
PSL	DJF	JFN	AMOC	Means	Standard Deviations	Patterns
PR	DJF	JFN		Timeseries	SST/TA	S Regressions
SIC NH	DJF	JFN		Spectra	AMV/AMO0	C Lag Correlations
SIC SH	DJF	JFN				•

User's Guide Metrics: Graphics I Ensemble Tables I Individual Tables

Ni Ci	amelists: Input reated: Mon No	I Derived ov 9 14:29:53 MST	Г 2020			
Er	VDP-LE Versior nsemble Summ	n 0.0.9 ary Individual Mer	mbers	Coupled	Mod	es of V
Cl	imatolog	ical Avera	ges	ENSO	$\boldsymbol{<}$	Atm
	SST	DJF	JFN			
	TAS	DJF	JFN			3
	PSL	DJF	JFN			
	PR	DJF	JFN			N
	SIC NH	DJF	JFN			
	SIC SH	DJF	JFN			N

Standard Deviations

SST	DJF	JFN
TAS	DJF	JFN
PSL	DJF	JFN
PR	DJF	JFN
SIC NH	DJF	JFN
SIC SH	DJF	JFN
Global Trer	nd Maps	
Global Trer	nd Maps	JFN
Global Trer	nd Maps DJF DJF	JFN
Global Trer SST TAS PSL	DJF DJF DJF	JFN JFN JFN
Global Trer SST TAS PSL PR	nd Maps DJF DJF DJF DJF	JFN JFN JFN JFN
Global Trer SST TAS PSL PR SIC NH	nd Maps DJF DJF DJF DJF DJF	JFN JFN JFN JFN JFN

		MMLE	A 1950-2018							
Coupled	Mode	s of Variat								
ENSO		Atmosphe	eric Modes of Va	ariability						
		SO	Patterns	DJF	JFM	MAM	ALL	JAS	SON	ANN
			Timeseries	DJF	JFM	MAM	JJA	JAS	SON	ANN
		NAM	Patterns	DJF	JFM	MAM	JJA	JAS	SON	ANN
			Timeseries	DJF	JFM	MAM	JJA	JAS	SON	ANN
		NAO	Patterns	DJF	JFM	MAM	JJA	JAS	SON	ANN
			Timeseries	DJF	JFM	MAM	ALL	JAS	SON	ANN
		SAM	Patterns	DJF	JFM	MAM	JJA	JAS	SON	ANN
			Timeseries	DJF	JFM	MAM	ALL	JAS	SON	ANN
AMV		PNA	Patterns	DJF	JFM	MAM	JJA	JAS	SON	ANN
			Timeseries	DJF	JFM	MAM	ALL	JAS	SON	ANN
AMV'		NPO	Patterns	DJF	JFM	МАМ	ALL	JAS	SON	ANN
			Timeseries	DJF	JFM	MAM	ALL	JAS	SON	ANN
PDV		PSA1	Patterns	DJF	JFM	MAM	ALL	JAS	SON	ANN
AMOC			Timeseries	DJF	JFM	MAM	ALL	JAS	SON	ANN
AMOC		PSA2	Patterns	DJF	JFM	МАМ	JJA	JAS	SON	ANN
			Timeseries	DJF	JFM	МАМ	JJA	JAS	SON	ANN

JFN

JFI

JFI

JFI

User's Guide

Metrics: Graphics | Ensemble Tables | Individual Tables

Namelists: Input | Derived Created: Mon Nov 9 14:29:53 MST 2020

CVDP-LE Version 0.0.9 Ensemble Summary | Individual Members

Climatological Averages								
SST	DJF	JFN						
TAS	DJF	JFN						
PSL	DJF	JFN						
PR	DJF	JFN						
SIC NH	DJF	JFN						
SIC SH	DJF	JFN						

Standard Deviations

TAS

PSL

PR

SIC NH

SIC SH

SST	DJF	JFN
TAS	DJF	JFN
PSL	DJF	JFN
PR	DJF	JFN
SIC NH	DJF	JFN
SIC SH	DJF	JFN
Global Tre	nd Maps	
SST	DJF	JFN

DJF

DJF

DJF

DJF

DJF

	MML	EA 1950-2018	3									
Coupled Mo	des of Varia	bility										
ENSO	Atmospheric Modes of Variability											
	SO	Patterns	DJF	JFM	MAM	JJA	JAS	SON	ANN			
		Timesenes	DJF	JFM	MAM	JJA	JAS	SON	ANN			
	NAM	Global Timeseries										
		551 L	JJF	JFM	MAM	JJA	JAS	SO	N ANN			
	NAO	TAS	DJF	JFM	MAM	JJA	JAS	SO	N ANN			
		PR E	DJF	JFM	MAM	JJA	JAS	SO	N ANN			
	SAM	PR C (land-only)	DJF	JFM	MAM	ALL	JAS	SO	N ANN			
AMV	PNA	Regional Times	eries									
		Atlantic SST Meridional Mode	Atlanti	tic Niño SST North Atlantic SST Tropical Nort SS			Tropical North SST	Atlantic	Tropical South Atlantic SST			
AMV'	NPO	niño1+2 SST		niño3	niño3 SST niño3.4 SST			SST niño4 SST				
		North Pacific PSL	Index (NPI)		North Pacific SST	Meridional Mo	de S	South Pacific S	ST Meridional Mode			
PDV	PSA1	Indian Ocean S	SST Dipole		Tropical India	n Ocean SST		Souther	n Ocean SST			
PDV'		Timeseries	DJE	JEM	МАМ	ALLA	JAS	SON	ANN			
AMOC	PSA2	Patterns	DIE	JEM	MAM	LIA	IAS	SON	ANN			
	1 OAL	Timeseries	DIE	IEM	MAM			SON				
		Timeseries	DJF	JEIM	1417-7141	JJA	JAS	3014				

ENSO

AMV

AMV'

PDV

PDV'

AMOC

User's Guide

Metrics: Graphics | Ensemble Tables | Individual Tables

Namelists: Input | Derived Created: Mon Nov 9 14:29:53 MST 2020 MMLEA 1950-2018

CVDP-LE Version 0.0.9 Ensemble Summary | Individual Members **Climatological Averages** SST DJF TAS DJF JF DJF PSL DJF PR JF SIC NH DJF JF

DJF

JF

JFI

JFI

JFI

JFI

JF

Standard Deviations

SIC SH

SST

TAS

PSL

PR

SIC NH

SIC SH

SST	DJF	JFN
TAS	DJF	JFN
PSL	DJF	JFN
PR	DJF	JFN
SIC NH	DJF	JFN
SIC SH	DJF	JFN
Global Tre	nd Maps	

DJF

DJF

DJF

DJF

DJF

DJF

Coupled Modes of Variability

mosp	nenc modes	or varia	ability										
SO	Patterns		DJF J	FM MAM	JJA	JAS	SON	ANN					
	Timeseries		DJF J	FM MAM	JJA	JAS	SON	ANN					
NAM	Global Time	Global Timeseries											
	SST	DJF	JFM	MAM	JJA	JAS	SON	I ANN					
NAO	TAS	DJF	JFM	MAM	JJA	JAS	SON	I ANN					
	PR	DJF	JFM	MAM	JJA	JAS	SON	I ANN					
SAM	PR (land-only)	DJF	JFM	МАМ	ALL	JAS	SON	I ANN					
DNA	Regional Tir	neseries	6										
PNA	Atlantic SST Meri Mode	dional	Atlantic Niño S	ST North	Atlantic SST	Tropical North SST	Atlantic	Fropical South Atlantic SST					
NPO	niño1-	ss Sea	lce Exter	it Timeserie	s								
	North Paci	fic NH	DJI	JIM MA	ALL 1	JAS		SON	ANN				
PSA1	Indian O	cea	Feb	Mar Sep	Oct	Monthly	М	onthly Anomalies	Climatology				
	Timeseries	SH	DJF	JFM MAI	ALL N	JAS		SON	ANN				
PSA2	Patterns		Feb	Mar Sep	Oct	Monthly	M	onthly Anomalies	Climatology				
	Timeseries		DJF J	FM MAM	JJA	JAS	SON	ANN					

NCAR UCAR UCAR Climate Variability Diagnostics Package for Large Ensembles

Adam

- Overview of the development process
- Technical guidance
- Webpage and data repository

Clara

- Interpretation of plots and metrics
- Application to the CMIP5 and CMIP6 archives

CVDP-LE Development Path

- Feb 2019-present, started w/CVDP codebase
- Overriding development requirement: Ease of use
- Implemented feature requests (subset):
 - Allow user to specify unlimited number of observations/simulations
 - Allow different time periods for each input dataset
 - Allow missing model data
 - Compute pattern correlations
 - Allow different units, grids and variable names
 - Compute the % of time observations falls within model spread
 - Allow no observations
 - Allow different number of ensemble members
 - Form differences, no matter the grid
 - Display number of valid members per ensemble
 - Provide clear error messages
 - Package should avoid erroring out
 - Titles/statistics should rarely overlap one another
 - Modularize as much as it makes sense to do so

- Comment the code extensively
- Provide documentation and written directions on adding a metric
- Output graphics should be publication quality
- Add consistent titles and statistics to each plot
- Calculate ensemble metrics, and show via graphics
- Output all calculations (including ensemble means) to netCDF files

Metrics

- 28,000 lines of code, 26 scripts, ~30 new functions, ~1000 plots produced
- New website, new User's Guide, new readme file
- 250 run MMLEA 1950-2018 comparison took 12 hours w/parallelization 384 run CMIP6 Historical 1900-2014 comparison took 18 hours 38 member CESM Control Comparison (100yr each) took 9 hours

Coded in NCL

Why on earth was NCL used; wasn't NCL developed in the 90's?

Highlighted Coding Improvements/Additions

- Model file identification coding script completely rewritten.
- Ensemble graphics/metrics + biases from observations are calculated.
- Data only mode.
- Code is highly modularized; calculations separated from graphics. Modularity makes it easier to strip code out for outside applications.
- Package will read in previously created metrics to save time.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
- Similar to the CVDP, 3 text files need to be set up for CVDP-LE to run: driver.ncl script (sets options) namelist (set paths of simulations) namelist_obs (sets specific observations to be used)
- Software requirements: NCL, python and Image Magick.
- Analyzes monthly CESM/CMIP timeseries files.

driver.ncl

;=====================================					
namelists_only	= "False"	; Set to True to only create the variable namelists. Useful ; upon running the package for the first time to verify that the correct ; files are being selected by the package. (See files in namelist_byvar/ directory) ; Set to False to run the entire package.			
obs create_graphics	= "True" = "True"	; True = analyze and plot observations (specified in namelist_obs), False = do not. ; True = create graphics from calculation results, False = only perform calculations and create netCDF files.			
colormap	= 0	; 0 = default colormaps, 1 = colormaps better for color blindness			
output_type	= "png"	; png = create png files, ps = create ps files as well as png files (for web viewing).			
png_scale webpage title	= 3.0 = "MMLEA 1950-2099"	; Set the output .png size. Value between .1->5. Any value > 1 (< 1) increases (decreases) png size. ; When output_type = "png" a value of 1 will result in a png sized 1500 (H) x 1500 (W) before automatic cropping of white space ; When output_type = "ps" a value of 1 will result in a png density setting of 144 before automatic cropping of white space : Set webpage title			
tar_output	= "False"	; True = tar up all output in outdir and remove individual files, False = do not ; Note: ALL files in outdir will be tarred up and then removed from the outdir directory.			
;Advanced Optio zp = "ncl_script	ns s/" ; directory path ; Examples: "ncl_ ; Regardless of t ; If pointing to	of CVDP NCL scripts. (must end in a "/") scripts/" if all code is local, or on CGD or CISL systems: "~asphilli/CESM-diagnostics/CVDP-LE/Release/v1.0.0/ncl_scripts/" his setting the following files should be in one directory: namelist, driver.ncl, and namelist_obs. code in ~asphilli make sure the driver script version #s match between this script and the script in ~asphilli.			

namelist

ACCESS-ESM1-5 r1i1p1f1 /project/data/cmip6/historical/{Amon,SImon,Omon}/*/ACCESS-ESM1-5/r1i1p1f1/gn/ 1900 2014 1-ACCESS-ESM1-5
ACCESS-ESM1-5 r2i1p1f1 /project/data/cmip6/historical/{Amon,SImon,Omon}/*/ACCESS-ESM1-5/r2i1p1f1/gn/ 1900 2014 1-ACCESS-ESM1-5
ACCESS-ESM1-5 r3i1p1f1 /project/data/cmip6/historical/{Amon,SImon,Omon}/*/ACCESS-ESM1-5/r3i1p1f1/gn/ 1900 2014 1-ACCESS-ESM1-5
ACCESS-ESM1-5 r4i1p1f1 /project/data/cmip6/historical/{Amon,SImon,Omon}/*/ACCESS-ESM1-5/r4i1p1f1/gn/ 1900 2014 1-ACCESS-ESM1-5
ACCESS-ESM1-5 r5i1p1f1 /project/data/cmip6/historical/{Amon,SImon,Omon}/*/ACCESS-ESM1-5/r5i1p1f1/gn/ 1900 2014 1-ACCESS-ESM1-5
ACCESS-ESM1-5 r6i1p1f1 /project/data/cmip6/historical/{Amon,SImon,Omon}/*/ACCESS-ESM1-5/r6i1p1f1/gn/ 1900 2014 1-ACCESS-ESM1-5
ACCESS-ESM1-5 r7i1p1f1 /project/data/cmip6/historical/{Amon,SImon,Omon}/*/ACCESS-ESM1-5/r7i1p1f1/gn/ 1900 2014 1-ACCESS-ESM1-5
ACCESS-ESM1-5 r8i1p1f1 /project/data/cmip6/historical/{Amon,SImon,Omon}/*/ACCESS-ESM1-5/r8i1p1f1/gn/ 1900 2014 1-ACCESS-ESM1-5
ACCESS-ESM1-5 r9i1p1f1 /project/data/cmip6/historical/{Amon,SImon,Omon}/*/ACCESS-ESM1-5/r9i1p1f1/gn/ 1900 2014 1-ACCESS-ESM1-5
ACCESS-ESM1-5 r10i1p1f1 /project/data/cmip6/historical/{Amon,SImon,Omon}/*/ACCESS-ESM1-5/r10i1p1f1/gn/ 1900 2014 1-ACCESS-ESM1-5
CanESM5 r10i1p1f1 /project/data/cmip6/historical/{Amon,SImon,Omon}/*/CanESM5/r10i1p1f1/gn/ 1900 2014 2-CanESM5
CanESM5 r10i1p2f1 /project/data/cmip6/historical/{Amon,SImon,Omon}/*/CanESM5/r10i1p2f1/gn/ 1900 2014 2-CanESM5
CanESM5 r11i1p1f1 /project/data/cmip6/historical/{Amon,SImon,Omon}/*/CanESM5/r11i1p1f1/gn/ 1900 2014 2-CanESM5
CanESM5 r11i1p2f1 /project/data/cmip6/historical/{Amon,SImon,Omon}/*/CanESM5/r11i1p2f1/gn/ 1900 2014 2-CanESM5
CanESM5 r12i1p1f1 /project/data/cmip6/historical/{Amon,SImon,Omon}/*/CanESM5/r12i1p1f1/gn/ 1900 2014 2-CanESM5
CanESM5 r12i1p2f1 /project/data/cmip6/historical/{Amon,SImon,Omon}/*/CanESM5/r12i1p2f1/gn/ 1900 2014 2-CanESM5
CanESM5 r13i1p1f1 /project/data/cmip6/historical/{Amon,SImon,Omon}/*/CanESM5/r13i1p1f1/gn/ 1900 2014 2-CanESM5
CanESM5 r13i1p2f1 /project/data/cmip6/historical/{Amon,SImon,Omon}/*/CanESM5/r13i1p2f1/gn/ 1900 2014 2-CanESM5
CanESM5 r14i1p1f1 /project/data/cmip6/historical/{Amon,SImon,Omon}/*/CanESM5/r14i1p1f1/gn/ 1900 2014 2-CanESM5
CanESM5 r14i1p2f1 /project/data/cmip6/historical/{Amon,SImon,Omon}/*/CanESM5/r14i1p2f1/gn/ 1900 2014 2-CanESM5

There are no restrictions on the number of models listed. Ensemble sizes can be different, as can the analyzed years.

namelist

CESM2.1 piControl 1201-1300 /	project/mojave/cesm2/b.e21.B1850.f09_g17.CMIP6-piControl.001/{atm,ice,ocn}/month_1/	*/ 12	201 13	00 1-CESM2
CESM2.1 piControl 1301-1400 /	project/mojave/cesm2/b.e21.B1850.f09_g17.CMIP6-piControl.001/{atm,ice,ocn}/month_1/	*/ 13	301 14	00 1-CESM2
CESM2.1 piControl 1401-1500 /	project/mojave/cesm2/b.e21.B1850.f09_g17.CMIP6-piControl.001/{atm,ice,ocn}/month_1/	*/ 14	401 15	00 1-CESM2
CESM2.1 piControl 1501-1600 /	project/mojave/cesm2/b.e21.B1850.f09_g17.CMIP6-piControl.001/{atm,ice,ocn}/month_1/	*/ 15	501 16	00 1-CESM2
CESM2.1 piControl 1601-1700 /	project/mojave/cesm2/b.e21.B1850.f09_g17.CMIP6-piControl.001/{atm,ice,ocn}/month_1/	*/ 16	601 17	00 1-CESM2
CESM2.1 piControl 1701-1800 /	project/mojave/cesm2/b.e21.B1850.f09_g17.CMIP6-piControl.001/{atm,ice,ocn}/month_1/	*/ 17	701 18	00 1-CESM2
CESM2.1 piControl 1801-1900 /	project/mojave/cesm2/b.e21.B1850.f09_g17.CMIP6-piControl.001/{atm,ice,ocn}/month_1/	*/ 18	301 j 19	00 1-CESM2
CESM2.1 piControl 1901-2000 /	project/mojave/cesm2/b.e21.B1850.f09_g17.CMIP6-piControl.001/{atm,ice,ocn}/month_1/	*/ 19	901 j 20	00 1-CESM2
CESM1-LENS piControl 1101-1200	<pre>/project/mojave/cesm1/LENS/{atm,ice,ocn}/month 1/*/b.e11.B1850C5CN.f09 g16.005* </pre>	1101	1200	2-CESM1
CESM1-LENS piControl 1201-1300	/project/mojave/cesm1/LENS/{atm,ice,ocn}/month 1/*/b.e11.B1850C5CN.f09 g16.005*	1201	j 1300 j	2-CESM1
CESM1-LENS piControl 1301-1500	/project/mojave/cesm1/LENS/{atm,ice,ocn}/month 1/*/b.e11.B1850C5CN.f09 g16.005*	1301	j 1400 j	2-CESM1
CESM1-LENS piControl 1401-1500	/project/mojave/cesm1/LENS/{atm,ice,ocn}/month 1/*/b.e11.B1850C5CN.f09 g16.005*	1401	j 1500 j	2-CESM1
CESM1-LENS piControl 1501-1600	/project/mojave/cesm1/LENS/{atm,ice,ocn}/month 1/*/b.e11.B1850C5CN.f09 g16.005*	1501	j 1600 j	2-CESM1
CESM1-LENS piControl 1601-1700	/project/mojave/cesm1/LENS/{atm,ice,ocn}/month_1/*/b.e11.B1850C5CN.f09_g16.005*	1601	j 1700 j	2-CESM1
CESM1-LENS piControl 1701-1800	<pre>/project/mojave/cesm1/LENS/{atm,ice,ocn}/month_1/*/b.e11.B1850C5CN.f09_g16.005* </pre>	1701	1800	2-CESM1

The same simulation can be specified multiple times.

namelist_obs

TS | ERSST v5 | /project/cas/asphilli/DSets/ersstv5.185401-202012.nc | 1920 | 2019 PSL | ERA20C_ERA5 | /project/cas/asphilli/ECMWF_reanalysis_comb/era20c_era5.mon.mean.msl.190001-201912.nc | 1920 | 2019 TREFHT | BEST | /project/cas/asphilli/DSets/best.tas.185001-202003.nc | 1920 | 2019 PRECT | GPCC | /project/mojave/observations/OBS-PR/GPCC/gpcc.pr.10.comb_v2018v6mon.189101-201912.nc | 1920 | 2019 aice_nh | NASA CDR NH | /project/cas/asphilli/NSIDC/seaice_conc_monthly_nh_NOAA_NSIDC_CDR.v03r01.197811-201702.nc | 1979 | 2016 aice_sh | NASA Bootstrap SH | /project/cas/asphilli/NSIDC/seaice_conc_monthly_sh_NASA_Bootstrap.nsidc.v03r01.197811-201702.nc | 1979 | 2016 MOC | CESM1 Forced Ocean Simulation | /project/yampa02/asphilli/CESM1.1_DPlgens/g.e11_LENS.GECOIAF.T62_g16.009.pop.h.MOC.194801-201512.nc | 1950 | 2015

TS | HadISST | /project/mojave/observations/OBS-SST/hadisst.187001-201912.nc | 1920 | 2019 PSL | CERA20C_ERA5 | /project/cas/asphilli/ECMWF_reanalysis_comb/cera20c_era5.mon.mean.msl.190101-201912.nc | 1920 | 2019 TREFHT | GISTEMP | /project/mojave/observations/OBS-TAS/gistemp.tas.188001-202012.nc | 1920 | 2019 PRECT | GPCC | /project/mojave/observations/OBS-PR/GPCC/gpcc.pr.10.comb_v2018v6mon.189101-201912.nc | 1920 | 2019 aice_nh | NASA CDR NH | /project/cas/asphilli/NSIDC/seaice_conc_monthly_nh_NOAA_NSIDC_CDR.v03r01.197811-201702.nc | 1979 | 2016 aice_sh | NASA Bootstrap SH | /project/cas/asphilli/NSIDC/seaice_conc_monthly_sh_NASA_Bootstrap.nsidc.v03r01.197811-201702.nc | 1979 | 2016 MOC | CESM1 Forced Ocean Simulation | /project/yampa02/asphilli/Cesm1/CESM1.1_DPlgens/g.e11_LENS.GEC0IAF.T62_g16.009.pop.h.MOC.194801-201512.nc | 1950 | 2015

TS | ERSST v5 | /project/cas/asphilli/DSets/ersstv5.185401-202012.nc | 1979 | 2019 PSL | ERA20C_ERA5 | /project/cas/asphilli/ECMWF_reanalysis_comb/era20c_era5.mon.mean.msl.190001-201912.nc | 1979 | 2019 TREFHT | BEST | /project/cas/asphilli/DSets/best.tas.185001-202003.nc | 1979 | 2019

- To submit the package: "ncl driver.ncl"
- Can be run on any machine that has NCL, Image Magick and python installed. Regularly run on NCAR-CGD/CISL processing machines.

Even if you do not wish to run the package, you can download comparison results via the website.

倄 / CESM Working Groups / CESM Climate Variability & Change Working Group / Climate Variability Diagnostics Package for Large Ensembles

Climate Variability Diagnostics Package for Large Ensembles (CVDP-LE)

The Climate Variability Diagnostics Package for Large Ensembles (CVDP-LE) developed by NCAR's Climate Analysis Section is an automated analysis tool and data repository for exploring internal and forced contributions to climate variability and change in coupled model "initial-condition" Large Ensembles and observations.

The package computes a wide range of modes of interannual-to-multidecadal variability in the atmosphere, ocean and cryosphere, as well as long-term trends and key indices of global and regional climate. Diagnostics include the ensemble-mean (i.e., forced response) and ensemble-spread (i.e., internal variability) of each model, as well as quantitative metrics comparing the models to observations. All diagnostics and metrics are saved to a data repository for later use and analysis.

The CVDP-LE User's Guide provides general background on initial-condition Large Ensembles, detailed documentation of all diagnostics and metrics in the package, and guidance on interpreting the results. Instructions for downloading and running the CVDP-LE are provided on the Code page and readme file, respectively.

The CVDP-LE can be applied to any suite of observational data, model simulations and time periods specified by the user. A few examples of CVDP-LE applications to the Multi-Model Large Ensemble Archive and the CMIP6 archive are linked below; additional comparisons are in the Data Repository.

- MMLEA 1950-2018
- MMLEA 2019-2099
- CMIP6 Historical 1900-2014

When presenting results from the CVDP-LE in either oral or written form, please cite:

Phillips, A. S., C. Deser, J Fasullo, D. P. Schneider and I. R. Simpson, 2020: Assessing Climate Variability and Change in Model Large Ensembles: A User's Guide to the "Climate Variability Diagnostics Package for Large Ensembles", doi:10.5065/h7c7-f961

Support/Contact Us Known Issues

CVCWG INFORMATION Simulations

Activities Update (March 2020) Upcoming Meetings Past Meetings Published Data Climate Variability Diagnostics Package Climate Data Guide

Multi-Model Large Ensemble Archive

https://www.cesm.ucar.edu/working_groups/CVC/cvdp-le/

Q

SEARCH ...

O HELP ADMINISTRATION -WORKING GROUPS - MODELS - EVENTS -

ABOUT

CVDP-LE

Home

News

Code

User's Guide

Data Repository

Current Version: 1.0.0

PUBLICATIONS

Even if you do not wish to run the package, you can download comparison results via the website.

Every model run has its own netCDF file containing all the calculated metrics.

🖀 / CESM Working Groups / CESM Climate Variability & Change Working Group / CVDP-LE / Data Repository

CVDP-LE | Data Repository

The CVDP-LE Data Repository holds CVDP-LE output (graphics and data files) from numerous CMIP and CESM integrations. To access the output, simply select *Images* or *Data* for the desired model intercomparison listed in the Table below. The data are stored as tar files: within each tar file there are multiple netCDF files corresponding to each component member included in the comparison. Examples of the netCDF file metadata are provided here for Individual Members and Ensemble Means.

The CVCWG freely distributes these results for non-commerical purposes and is not responsible for errors in the data or within the CVDP-LE. Use the distributed data at your own risk. Note that not all output fields may be relevant for a particular set of model simulations. For example, modes of decadal variability are not meaningful if the period of record is too short.

When presenting results either in oral or written form, please acknowledge the NCAR Climate Analysis Section's Climate Variability Diagnostics Package for Large Ensembles. Questions and feedback about the CVDP-LE Data Repository are welcomed and should be posted on the CESM Bulletin Board.

CVDP-LE v1.0.0 was used to create the comparisons shown below.

CESM/CMIP6 Comparisons

MMLEA 1950-2018	Images	Data	CMIP6 Historical 1900-2014	Images	Data
MMLEA 1950 2000	mages	Data	CESM1/CESM2 Control	Images	Data
MMLEA 2019-2099	Images	Data			

CVDP-LE Current Version: 1.0.0
Home
News
Code
User's Guide
Data Repository
Observations
Support/Contact Us
Known Issues
CVCWG INFORMATION Simulations
Activities Update (March 2020)
Upcoming Meetings
Past Meetings
Published Data

PUBLICATIONS

ADMINISTRATION -

ABOUT

O HELP

WORKING GROUPS -

SEARCH ...

MODELS -

Q

EVENTS -

https://www.cesm.ucar.edu/working_groups/CVC/cvdp-le/

Selected Graphics

CMIP6 Historical Comparison, 1900-2014 Individual Members View

IPSL-CM6A-LR r24i1p1f1-ERA20C_ERAI

PSL Standard Deviations Differences (DJF)

Ensemble Summary: Niño3.4 SST Power Spectra (Monthly)

CESM2/CESM1 piControl 100yr Slice Comparison Individual Members View

Ensemble Summary: Niño3.4 SST Power Spectra (Monthly)

CVDP-LE now available for use on NCAR CGD or CISL machines CGD: /home/asphilli/CESM-diagnostics/CVDP-LE/Release/v1.0.0 CISL: /glade/u/home/asphilli/CESM-diagnostics/CVDP-LE/Release/v1.0.0

Code will be available on github by the end of this week. https://github.com/NCAR/CVDP-LE

All graphics, data and metrics saved to a repository.

White areas: Observations lie within 20-80th % of model ensemble spread. Obs < any member Obs > any member

All graphics, data and metrics saved to a repository.

White areas: Observations lie within 20-80th % of model ensemble spread. Obs < any member Obs > any member

All graphics, data and metrics saved to a repository.

White areas: Observations lie within 20-80th % of model ensemble spread. Obs < any member Obs > any member

CCMA (40 members) CMIP5 Multi-Model Large Ensemble Archive

CCMA (40 members)

CMIP5 Multi-Model Large Ensemble Archive

CSIRO (30 members)

GFDL-CM3 (20 members)

GFDL-ESM2M (30 members)

> MPI (70 members)

NCAR CESM1 (40 members)

SMHI_KNMI (16 members)

CMIP5 Multi-Model Large Ensemble Archive

CMIP5 Multi-Model Large Ensemble Archive

CMIP5 Multi-Model Large Ensemble Archive

MPI is the most realistic: largest (60%) areal coverage of observations falling within $10^{\text{th}} - 90^{\text{th}}$ % of model spread.

CMIP5 Multi-Model Large Ensemble Archive

MPI is the most realistic: largest (60%) areal coverage of observations falling within 10th – 90th % of model spread.

But need to check that amplitude of internal variability is realistic (compare σ maps).

CMIP5 Multi-Model Large Ensemble Archive

Global mean Air Temperature

Ensemble Summary: TAS Global Average (ANN)

Observations (BEST) 1950-2018, Linear trend = 0.9C 69yr

CMIP5 Multi-Model Large Ensemble Archive

Model

Observations

Global mean Air Temperature

Ensemble Mean Ensemble Spread 25-75% 10-90%
Global mean Air Temperature

Ensemble Summary: TAS Global Average (ANN)

Distribution of trend values (10^{th/}50^{th/}90th percentiles).

Ensemble Spread

25-75%

10-90%

Percentage of time that Obs falls within 10-90% of model spread.

Ensemble Spread

25-75%

10-90%

Percentage of time that Obs falls within 10-90% of model spread.

Ensemble Spread

25-75%

Global mean Air Temperature

Distribution of trend values (10^{th/}50^{th/}90th percentiles).

Percentage of time that Obs falls within 10-90% of model spread.

Ensemble Spread

25-75%

10-90%

All graphics, data and metrics saved to a repository.

Global mean Air Temperature Ensemble Summary: TAS Global Average (ANN)

Distribution of trend values (10^{th/}50^{th/}90th percentiles).

Lag Autocorrelations (0 - 48 months)

Niño3.4 SST Index (detrended)

Lag Autocorrelations (0 - 48 months)

Niño3.4 SST Index (detrended)

Frequency (cycles mo⁻¹)

Frequency (cycles mo⁻¹)

Frequency (cycles mo⁻¹)

Frequency (cycles mo⁻¹)

Niño3.4 SST Index (detrended)

Diagnostics Overview

Diagnostics Overview

CMIP5 Multi-Model Large Ensemble Archive Winter NAO (Model vs. ERA-20C 1950-2018)

Longer bars: 10th / 50th / 90th percentiles

Longer bars: 10th / 50th / 90th percentiles

CMIP6 Large Ensembles

Winter NAO (Model vs. ERA-20C 1900-2014)

Observational Uncertainty

CERA20C (1901-2014)

ERA-I (1979-2014)

CMIP6 Large Ensembles

Winter NAO (Model vs. ERA-20C 1900-2014)

Longer bars: 10th - 50th - 90th percentiles

Longer bars: 10th - 50th - 90th percentiles

11 Metrics (4 ENSO, AMV, PDV, NAO, PNA, SAM, σ SST, σ Land Precip)

11 Metrics (4 ENSO, AMV, PDV, NAO, PNA, SAM, σ SST, σ Land Precip)

Longer bars: 10th - 50th - 90th percentiles

Longer bars: 10th - 50th - 90th percentiles

Longer bars: 10th - 50th - 90th percentiles

Diagnostics Overview

Pattern Correlations and Spatial RMSE

10th / 50th / 90th percentiles for each model. *Color coded for ease-of-use.*

Pattern Correlation Metrics (Ensembles)

 Sort
 Namelist (default) | Namelist (Alphabetically) | ENSO TAS | ENSO PSL | El Niño Hovmöller

 By:
 La Niña Hovmöller | AMV' Low-Pass | PDV' | NAO | PNA | SAM | SST std dev | PR std dev | Mean Score

		DUF+1	DUFY	ⁿ öller	ⁿ öller	ass					(Ann)	Ann)	CVD	P-LE
Pattern Correlations Sorted by: Mean Score	ENSO TAC	ENSO PS	El Niño H.	La Niña L	AMV. LOW	PDV,	NAO (JEAN)	PNA (DUE)	SAM (DUE)	SST std no	PR std do.	Mean Sco	~U/G	
GFDL-CM3 (90%)	0.64	0.86	0.93	0.89	0.60	0.80	0.93	0.93	0.98	0.64	0.77	0.84		
MPI (90%) -	0.73	0.83	0.83	0.88	0.47	0.81	0.95	0.91	0.98	0.69	0.78	0.83		_
GFDL-CM3 (Avg)	0.59	0.81	0.92	0.86	0.53	0.77	0.91	0.90	0.98	0.56	0.76	0.83		
GFDL-ESM2M (90%)	0.69	0.81	0.90	0.90	0.52	0.82	0.93	0.91	0.97	0.69	0.76	0.82		0.99
NCAR (90%) -	0.64	0.81	0.87	0.81	0.45	0.87	0.92	0.92	0.95	0.74	0.77	0.81		0.95
GFDL-ESM2M (Avg)	0.64	0.75	0.88	0.85	0.34	0.78	0.90	0.84	0.97	0.67	0.75	0.81		0.00
GFDL-CM3 (10%)	0.52	0.73	0.88	0.82	0.37	0.71	0.87	0.84	0.97	0.47	0.75	0.81		0.9
CCCma (90%)	0.58	0.79	0.95	0.85	0.48	0.83	0.90	0.88	0.97	0.73	0.67	0.81		0.85
MPI (Avg)	0.67	0.76	0.78	0.82	0.33	0.75	0.92	0.86	0.97	0.65	0.77	0.80		
CCCma (Avg) –	0.54	0.74	0.93	0.80	0.29	0.82	0.86	0.84	0.96	0.71	0.66	0.80		0.8
NCAR (Avg)	0.58	0.77	0.84	0.77	0.31	0.85	0.87	0.89	0.93	0.73	0.76	0.79		0.75
GFDL-ESM2M (10%)	0.57	0.67	0.84	0.79	0.14	0.76	0.85	0.65	0.96	0.64	0.75	0.78		0.7
CCCma (10%) –	0.50	0.67	0.90	0.74	0.06	0.78	0.80	0.79	0.95	0.68	0.64	0.78		0.7
NCAR (10%) -	0.52	0.69	0.81	0.72	0.11	0.81	0.83	0.85	0.91	0.71	0.75	0.77		0.65
MPI (10%) –	0.59	0.62	0.67	0.69	0.17	0.68	0.88	0.77	0.96	0.61	0.76	0.77		0.6
CSIRO (90%) –	0.56	0.72	0.76	0.82	0.54	0.75	0.85	0.86	0.97	0.61	0.77	0.75		0.0
CSIRO (Avg) –	0.48	0.65	0.70	0.76	0.41	0.70	0.80	0.80	0.96	0.58	0.76	0.73		0.55
SMHI_KNMI (90%) –	0.48	0.55	0.23	0.55	0.48	0.60	0.96	0.90	0.98	0.58	0.72	0.70		0.5
CSIRO (10%) –	0.39	0.54	0.55	0.67	0.24	0.63	0.68	0.70	0.94	0.56	0.75	0.70		
SMHI_KNMI (Avg) –	0.36	0.38	0.12	0.47	0.35	0.55	0.93	0.82	0.98	0.55	0.71	0.67		
SMHI_KNMI (10%) -	0.19	0.13	0.01	0.31	0.15	0.46	0.90	0.61	0.97	0.51	0.70	0.64		
Observations Used Individual Metrics (ascii table Insemble Metrics (ascii table	<u>e)</u> <u>e)</u>													
				_						_	_			

Pattern Correlations and Spatial RMSE

10th / 50th / 90th percentiles for each model. *Color coded for ease-of-use.*

Sortable (here *Mean Score* is used).

Pattern Correlation Metrics (Ensembles)

 Sort
 Namelist (default) | Namelist (Alphabetically) | ENSO TAS | ENSO PSL | El Niño Hovmöller

 By:
 La Niña Hovmöller | AMV' Low-Pass | PDV' | NAO | PNA | SAM | SST std dev | PR std dev | Mean Score

		DUF+1	DUFT	ⁿ öller	ⁿ öller	ISS					(Ann)	lun)	CVDP-LI	Ξ
Pattern Correlations Sorted by: Mean Score	ENSO TAC	ENSO Por	El Niño Ho	La Niña L.	AMV LOW	PDV.	NAO (JENA)	PNA (DJE)	SAM (DUE)	SST std no	PR std de.	Mean Sco	e.o.e	
GFDL-CM3 (90%)	0.64	0.86	0.93	0.89	0.60	0.80	0.93	0.93	0.98	0.64	0.77	0.84		
MPI (90%) -	0.73	0.83	0.83	0.88	0.00	0.81	0.95	0.91	0.98	0.69	0.78	0.83		
GFDL-CM3 (Ava)	0.59	0.81	0.92	0.86	0.53	0.77	0.91	0.90	0.98	0.56	0.76	0.83		
GFDL-ESM2M (90%)	0.69	0.81	0.90	0.90	0.52	0.82	0.93	0.91	0.97	0.69	0.76	0.82	0.99)
NCAR (90%) -	0.64	0.81	0.87	0.81	0.45	0.87	0.92	0.92	0.95	0.74	0.77	0.81	0.05	
GFDL-ESM2M (Avg)	0.64	0.75	0.88	0.85	0.34	0.78	0.90	0.84	0.97	0.67	0.75	0.81	0.95	'
GFDL-CM3 (10%)	0.52	0.73	0.88	0.82	0.37	0.71	0.87	0.84	0.97	0.47	0.75	0.81	0.9	
CCCma (90%) -	0.58	0.79	0.95	0.85	0.48	0.83	0.90	0.88	0.97	0.73	0.67	0.81	0.85	
MPI (Avg)	0.67	0.76	0.78	0.82	0.33	0.75	0.92	0.86	0.97	0.65	0.77	0.80	0.00	
CCCma (Avg)	0.54	0.74	0.93	0.80	0.29	0.82	0.86	0.84	0.96	0.71	0.66	0.80	0.8	
NCAR (Avg)	0.58	0.77	0.84	0.77	0.31	0.85	0.87	0.89	0.93	0.73	0.76	0.79	0.75	5
GFDL-ESM2M (10%)	0.57	0.67	0.84	0.79	0.14	0.76	0.85	0.65	0.96	0.64	0.75	0.78		
CCCma (10%) -	0.50	0.67	0.90	0.74	0.06	0.78	0.80	0.79	0.95	0.68	0.64	0.78	0.7	
NCAR (10%) -	0.52	0.69	0.81	0.72	0.11	0.81	0.83	0.85	0.91	0.71	0.75	0.77	0.65	;
MPI (10%) -	0.59	0.62	0.67	0.69	0.17	0.68	0.88	0.77	0.96	0.61	0.76	0.77		
CSIRO (90%) -	0.56	0.72	0.76	0.82	0.54	0.75	0.85	0.86	0.97	0.61	0.77	0.75	0.6	
CSIRO (Avg)	0.48	0.65	0.70	0.76	0.41	0.70	0.80	0.80	0.96	0.58	0.76	0.73	0.55	;
SMHI_KNMI (90%)	0.48	0.55	0.23	0.55	0.48	0.60	0.96	0.90	0.98	0.58	0.72	0.70	0.5	
CSIRO (10%)	0.39	0.54	0.55	0.67	0.24	0.63	0.68	0.70	0.94	0.56	0.75	0.70	0.5	
SMHI_KNMI (Avg)	0.36	0.38	0.12	0.47	0.35	0.55	0.93	0.82	0.98	0.55	0.71	0.67		
SMHI_KNMI (10%)	0.19	0.13	0.01	0.31	0.15	0.46	0.90	0.61	0.97	0.51	0.70	0.64		
<u>bservations Used</u> dividual Metrics (ascii table nsemble Metrics (ascii table	<u>2).</u> 2).											1		

Pattern Correlations and Spatial RMSE

10th / 50th / 90th percentiles for each model. *Color coded for ease-of-use.*

Sortable (here *Mean Score* is used).

All graphics, data and metrics saved to a repository. Pattern Correlation Metrics (Ensembles)

 Sort
 Namelist (default) | Namelist (Alphabetically) | ENSO TAS | ENSO PSL | El Niño Hovmöller

 By:
 La Niña Hovmöller | AMV' Low-Pass | PDV' | NAO | PNA | SAM | SST std dev | PR std dev | Mean Score

Pattern Correlations	740	na) su	na) no	^{, יטע} יים. ז _ו פ גו	Low	as, as,	(JEAN)	(DUE)	(DUE)	std do.	d dai.	Score	D	
Sorted by: Mean Score	ENSC	ENSC	El Niñ	- La Nij	AMV	,10d	N40	PNd	SAM	SST	PP St	Mean		
GFDL-CM3 (90%) -	0.64	0.86	0.93	0.89	0.60	0.80	0.93	0.93	0.98	0.64	0.77	0.84		
MPI (90%) –	0.73	0.83	0.83	0.88	0.47	0.81	0.95	0.91	0.98	0.69	0.78	0.83	_	
GFDL-CM3 (Avg)	0.59	0.81	0.92	0.86	0.53	0.77	0.91	0.90	0.98	0.56	0.76	0.83		
GFDL-ESM2M (90%) -	0.69	0.81	0.90	0.90	0.52	0.82	0.93	0.91	0.97	0.69	0.76	0.82		0
NCAR (90%) –	0.64	0.81	0.87	0.81	0.45	0.87	0.92	0.92	0.95	0.74	0.77	0.81		0
GFDL-ESM2M (Avg)	0.64	0.75	0.88	0.85	0.34	0.78	0.90	0.84	0.97	0.67	0.75	0.81		
GFDL-CM3 (10%) -	0.52	0.73	0.88	0.82	0.37	0.71	0.87	0.84	0.97	0.47	0.75	0.81		(
CCCma (90%) –	0.58	0.79	0.95	0.85	0.48	0.83	0.90	0.88	0.97	0.73	0.67	0.81		0
MPI (Avg)	0.67	0.76	0.78	0.82	0.33	0.75	0.92	0.86	0.97	0.65	0.77	0.80		Ι.
CCCma (Avg) -	0.54	0.74	0.93	0.80	0.29	0.82	0.86	0.84	0.96	0.71	0.66	0.80		1
NCAR (Avg)	0.58	0.77	0.84	0.77	0.31	0.85	0.87	0.89	0.93	0.73	0.76	0.79		0
GFDL-ESM2M (10%) -	0.57	0.67	0.84	0.79	0.14	0.76	0.85	0.65	0.96	0.64	0.75	0.78		
CCCma (10%) –	0.50	0.67	0.90	0.74	0.06	0.78	0.80	0.79	0.95	0.68	0.64	0.78		1
NCAR (10%) -	0.52	0.69	0.81	0.72	0.11	0.81	0.83	0.85	0.91	0.71	0.75	0.77		0
MPI (10%) –	0.59	0.62	0.67	0.69	0.17	0.68	0.88	0.77	0.96	0.61	0.76	0.77		
CSIRO (90%) -	0.56	0.72	0.76	0.82	0.54	0.75	0.85	0.86	0.97	0.61	0.77	0.75		1
CSIRO (Avg)	0.48	0.65	0.70	0.76	0.41	0.70	0.80	0.80	0.96	0.58	0.76	0.73		0
SMHI_KNMI (90%)	0.48	0.55	0.23	0.55	0.48	0.60	0.96	0.90	0.98	0.58	0.72	0.70		
CSIRO (10%) -	0.39	0.54	0.55	0.67	0.24	0.63	0.68	0.70	0.94	0.56	0.75	0.70		`
SMHI_KNMI (Avg) -	0.36	0.38	0.12	0.47	0.35	0.55	0.93	0.82	0.98	0.55	0.71	0.67		
SMHI_KNMI (10%)	0.19	0.13	0.01	0.31	0.15	0.46	0.90	0.61	0.97	0.51	0.70	0.64		
<u>bservations Used</u> dividual Metrics (ascii table	<u>e)</u>				1							1		

Pattern Correlations and Spatial RMSE

10th / 50th / 90th percentiles for each model. *Color coded for ease-of-use.*

Sortable (here *Mean Score* is used).

All graphics, data and metrics saved to a repository. Pattern Correlation Metrics (Ensembles) Sort Namelist (default) | Namelist (Alphabetically) | ENSO TAS | ENSO PSL | El Niño Hovmöller By: La Niña Hovmöller | AMV' Low-Pass | PDV' | NAO | PNA | SAM | SST std dev | PR std dev | Mean Score © CVDP-LE SST std dev (Ann) El Niño Hovmöller La Niña Hovmöller ENSO TAS (DUF+1 PR std dev (Ann) ENSO PSL (DUF+ AMV' Low-Pass Mean Score NAO (JFM) PNA (DJF) SAM (DUF) Pattern Correlations PDV Sorted by: Mean Score GFDL-CM3 (90%) 0.89 0.60 0.80 0.93 0.93 0.98 0.64 0.64 0.77 0.84 0.86 0.93 0.73 0.83 0.83 0.88 0.47 0.81 0.95 0.91 0.98 0.69 0.78 0.83 MPI (90%) 0.76 0.83 Also available for every 0.99 GFD 0.76 0.82 0.77 0.81 0.95 GFD member of every model. 0.75 0.81 0.9 0.75 0.81 0.67 0.81 0.85 MPI (Avg) 0.97 0.65 0.77 0.80 0.67 0.76 0.78 0.82 0.33 0.75 0.92 0.86 0.8 CCCma (Avg) 0.54 0.74 0.93 0.80 0.29 0.82 0.86 0.84 0.96 0.71 0.66 0.80 NCAR (Avg) 0.93 0.73 0.76 0.79 0.58 0.77 0.84 0.77 0.31 0.85 0.87 0.89 0.75 GFDL-ESM2M (10%) 0.96 0.64 0.57 0.67 0.84 0.79 0.14 0.76 0.85 0.65 0.75 0.78 0.7 CCCma (10%) 0.67 0.90 0.74 0.06 0.78 0.80 0.79 0.95 0.68 0.64 0.78 0.50 NCAR (10%) 0.52 0.69 0.91 0.71 0.75 0.77 0.65 0.81 0.72 0.11 0.81 0.83 0.85 MPI (10%) 0.59 0.62 0.67 0.69 0.17 0.68 0.88 0.77 0.96 0.61 0.76 0.77 0.6 CSIRO (90%) 0.56 0.72 0.76 0.82 0.54 0.75 0.85 0.86 0.97 0.61 0.77 0.75 0.55 CSIRO (Avg) 0.65 0.70 0.76 0.41 0.70 0.80 0.80 0.96 0.58 0.73 0.76 0.48 SMHI_KNMI (90%) 0.48 0.55 0.23 0.55 0.48 0.60 0.96 0.90 0.98 0.58 0.70 0.72 0.5 CSIRO (10%) 0.39 0.54 0.55 0.67 0.24 0.63 0.68 0.70 0.94 0.56 0.75 0.70 SMHI KNMI (Avg) 0.36 0.38 0.12 0.47 0.35 0.55 0.93 0.82 0.98 0.55 0.71 0.67 SMHI KNMI (10%) 0.19 0.13 0.01 0.31 0.15 0.46 0.90 0.61 0.97 0.51 0.70 0.64 **Observations Used** Individual Metrics (ascii table) Ensemble Metrics (ascii table)

CGD's Climate Analysis Section Climate Variability Diagnostics Package for Large Ensembles

https://www.cesm.ucar.edu/working_groups/CVC/cvdp-le/

🐐 / CESM Working Groups / CESM Climate Variability & Change Working Group / Climate Variability Diagnostics Package for Large Ensembles

Climate Variability Diagnostics Package for Large Ensembles (CVDP-LE)

The Climate Variability Diagnostics Package for Large Ensembles (CVDP-LE) developed by NCAR's Climate Analysis Section is an automated analysis tool and data repository for exploring internal and forced contributions to climate variability and change in coupled model "initial-condition" Large Ensembles and observations.

The package computes a wide range of modes of interannual-to-multidecadal variability in the atmosphere, ocean and cryosphere, as well as long-term trends and key indices of global and regional climate. Diagnostics include the ensemble-mean (i.e., forced response) and ensemble-spread (i.e., internal variability) of each model, as well as quantitative metrics comparing the models to observations. All diagnostics and metrics are saved to a data repository for later use and analysis.

The CVDP-LE User's Guide provides general background on initial-condition Large Ensembles, detailed documentation of all diagnostics and metrics in the package, and guidance on interpreting the results. Instructions for downloading and running the CVDP-LE are provided on the Code page and readme file, respectively.

The CVDP-LE can be applied to any suite of observational data, model simulations and time periods specified by the user. A few examples of CVDP-LE applications to the Multi-Model Large Ensemble Archive and the CMIP6 archive are linked below; additional comparisons are in the Data Repository.

- MMLEA 1950-2018
- MMLEA 2019-2099
- CMIP6 Historical 1900-2014

When presenting results from the CVDP-LE in either oral or written form, please cite:

Phillips, A. S., C. Deser, J Fasullo, D. P. Schneider and I. R. Simpson, 2020: Assessing Climate Variability and Change in Model Large Ensembles: A User's Guide to the "Climate Variability Diagnostics Package for Large Ensembles", doi:10.5065/h7c7-f961

We welcome your feedback and suggestions on any aspect of the CVDP-LE.

CVDP collaborators: Adam Phillips (software lead), Clara Deser (science lead), John Fasullo, Isla Simpson, and Dave Schneider, as well as other members of NCAR's Climate Analysis Section.

CVDP-LE Current Version: 1.0.0 Home News Code User's Guide Data Repository Observations Support/Contact Us Known Issues **CVCWG INFORMATION** Simulations Activities Update (March 2020) Upcoming Meetings Past Meetings Published Data Climate Variability Diagnostics Package Climate Data Guide Multi-Model Large Ensemble Archive **CVCWG COMMUNICATION** Email: CVCWG Members

Subscribe to CVCWG List

Some Application Ideas (User's Guide)

- Multiple time periods to see if modes of variability change with time.
- Subsets of ensemble members to assess robustness.
 - Filter the data to investigate dependence on time scale.
 - Use an "ensemble" of shorter segments from a control simulation.

CGD's Climate Analysis Section Climate Variability Diagnostics Package for Large Ensembles

https://www.cesm.ucar.edu/working_groups/CVC/cvdp-le/

🐐 / CESM Working Groups / CESM Climate Variability & Change Working Group / Climate Variability Diagnostics Package for Large Ensembles

Climate Variability Diagnostics Package for Large Ensembles (CVDP-LE)

The Climate Variability Diagnostics Package for Large Ensembles (CVDP-LE) developed by NCAR's Climate Analysis Section is an automated analysis tool and data repository for exploring internal and forced contributions to climate variability and change in coupled model "initial-condition" Large Ensembles and observations.

The package computes a wide range of modes of interannual-to-multidecadal variability in the atmosphere, ocean and cryosphere, as well as long-term trends and key indices of global and regional climate. Diagnostics include the ensemble-mean (i.e., forced response) and ensemble-spread (i.e., internal variability) of each model, as well as quantitative metrics comparing the models to

observations. All diagnostics and metrics are saved to a data rep

The CVDP-LE User's Guide provides general background on initial documentation of all diagnostics and metrics in the package, an Instructions for downloading and running the CVDP-LE are provid respectively.

The CVDP-LE can be applied to any suite of observational data, n specified by the user. A few examples of CVDP-LE applications to Archive and the CMIP6 archive are linked below; additional comp

- MMLEA 1950-2018
- MMLEA 2019-2099
- CMIP6 Historical 1900-2014

When presenting results from the CVDP-LE in either oral or written form, please cite:

Phillips, A. S., C. Deser, J Fasullo, D. P. Schneider and I. R. Simpson, 2020: Assessing Climate Variability and Change in Model Large Ensembles: A User's Guide to the "Climate Variability Diagnostics Package for Large Ensembles", doi:10.5065/h7c7-f961

We welcome your feedback and suggestions on any aspect of the CVDP-LE.

CVDP collaborators: Adam Phillips (software lead), Clara Deser (science lead), John Fasullo, Isla Simpson, and Dave Schneider, as well as other members of NCAR's Climate Analysis Section.

CVDP-LE Current Version: 1.0.0
Home
News
Code
User's Guide
Data Repository
Observations

Enjoy exploring! Suggestions welcome.

Past Meetings

Published Data

Climate Variability Diagnostics Package

Climate Data Guide

Multi-Model Large Ensemble Archive

CVCWG COMMUNICATION

Email: CVCWG Members

Subscribe to CVCWG List

Some Application Ideas (User's Guide)

- Multiple time periods to see if modes of variability change with time.
- Subsets of ensemble members to assess robustness.

Filter the data to investigate dependence on time scale.

Use an "ensemble" of shorter segments from a control simulation.