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ABSTRACT

This study elucidates the physical mechanisms underlying internal and forced components of winter surface air

temperature (SAT) trends over North America during the past 50 years (1963–2012) using a combined obser-

vational and modeling framework. The modeling framework consists of 30 simulations with the Community

Earth SystemModel (CESM) at 18 latitude–longitude resolution, each of which is subject to an identical scenario
of historical radiative forcing but starts from a slightly different atmospheric state. Hence, any spread within the

ensemble results from unpredictable internal variability superimposed upon the forced climate change signal.

Constructed atmospheric circulation analogs are used to estimate the dynamical contribution to forced and

internal components of SAT trends: thermodynamic contributions are obtained as a residual. Internal circulation

trends are estimated to account for approximately one-third of the observed wintertime warming trend over

North America and more than half locally over parts of Canada and the United States. Removing the effects of

internal atmospheric circulation variability narrows the spread of SAT trends within the CESM ensemble and

brings the observed trends closer to the model’s radiatively forced response. In addition, removing internal

dynamics approximately doubles the signal-to-noise ratio of the simulated SAT trends and substantially advances

the ‘‘time of emergence’’ of the forced component of SAT anomalies. The methodological framework proposed

here provides a general template for improving physical understanding and interpretation of observed and

simulated climate trendsworldwide andmay help to reconcile the diversity of SAT trends across themodels from

phase 5 of the Coupled Model Intercomparison Project (CMIP5).

1. Introduction

With emerging public awareness of human-induced

climate change, a major challenge is to understand and

communicate the causes of recent observed climate

trends, particularly at local and regional scales. Such

trends are often interpreted in the context of rising

anthropogenic emissions of greenhouse gases (GHGs)

and sulfate aerosols associated with the burning of

fossil fuels. However, internally generated variability

may also contribute to regional climate changes over

periods of several decades and longer (e.g., Van

Oldenborgh et al. 2009; Hoerling et al. 2010; Kelley et al.

2012; Ting et al. 2011;Meehl et al. 2013;Wallace et al. 2014;

Johnstone andMantua 2014;Abatzoglou et al. 2014; Sriver

et al. 2015; Monier et al. 2015). Distinguishing between

anthropogenic and internal influences on time scales

of less than 50 years and spatial scales smaller than

continental remains an outstanding issue (IPCC

2007, 2013).
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Global coupled climate model (GCM) simulations

provide estimates of the climatic impacts of anthropogenic

(e.g., GHGs and sulfate aerosols) and natural (volcanic

and solar) radiative forcings (IPCC 2013). However,

comparison of observed and simulated trends is compli-

cated by the fact that the chronologies of internal vari-

ability need not match (e.g., Van Oldenborgh et al. 2009;

Deser et al. 2012b; Wallace et al. 2014). Systematic model

biases, incomplete radiative forcing specifications, and

observational uncertainty further complicate direct com-

parison between models and observations (e.g., Räisänen
2007; Hegerl et al. 2007; Van Oldenborgh et al. 2009).

Isolating the effects of anthropogenic climate change

from those of internal multidecadal variability is relatively

straightforward in climate models, provided there are

enough simulations to define the forced response (Deser

et al. 2012a). That is, by averaging across ensemble

members from a particular model, the random sequences

of internally generated variability in the individual re-

alizations can be sufficiently muted to reveal the model’s

response to external forcing. Once the externally forced

response is obtained, it can be subtracted from each run to

find the contribution from internal variability. Most

models however, including those participating in phases 3

and 5 of the Coupled Model Intercomparison Project

(CMIP3 and CMIP5; Taylor et al. 2012), contain too few

realizations to adequately estimate the forced response on

local/regional scales (Deser et al. 2012b). Note that, while

it is common practice to average single runs frommultiple

models to obtain a robust estimate of anthropogenic cli-

mate change [e.g., themultimodelmean (IPCC2013)], this

approach does not allow the forced and unforced com-

ponents of the response to be isolated in any given model.

The use of large ‘‘initial condition’’ GCM ensembles

to identify the relative roles of forced and internal var-

iability in determining future climate trends has led to

important insights regarding uncertainty in climate

change projections at local/regional scales (e.g., Deser

et al. 2012b; Hu and Deser 2013; Fischer et al. 2013;

Deser et al. 2014; Wettstein and Deser 2014; Wallace

et al. 2014; Hawkins et al. 2015; Thompson et al. 2015).

Such ensembles typically include 30–40 members, each

of which is subject to the identical scenario of radiative

forcing but starts from a slightly different atmospheric

state. The degree to which the different ensemble mem-

bers diverge over time is indicative of the importance of

unpredictable, internal climate variability (Deser et al.

2012a). Such ensembles are designed to sample the range

of possible trend outcomes resulting from the superpo-

sition of internal climate variability and anthropogenic

climate change. In addition, the large number of inte-

grations allows for a robust determination of the forced

response at local/regional scales.

Here we apply a new 30-member initial-condition en-

semble covering the period 1920–2100 conducted with

the National Center for Atmospheric Research (NCAR)

Community Earth System Model, version 1 (CESM1;

Kay et al. 2015), to the understanding of observed climate

trends, particularly wintertime surface air temperature

(SAT) over North America during the past 50 years.

Configured at a spatial resolution of 18 latitude/longitude
(approximately 85km at 40°N), this ensemble provides

important context for the interpretation of the one re-

alization in nature: specifically, the relative importance of

internal variability and external radiative forcing at local/

regional scales.

In addition to apportioning trends into forced and in-

ternal contributions, we assess the physical mechanisms

underlying these components: in particular, the roles of

dynamics (atmospheric circulation changes in the ab-

sence of radiatively induced changes in SAT) and ther-

modynamics (changes in SST, sea ice, and land surface

properties in the absence of atmospheric circulation

changes). Previous work has highlighted the importance

of dynamics to observed trends in Northern Hemisphere

winter SAT (e.g., Wallace et al. 1995; Hurrell 1996;

Thompson et al. 2009; Cattiaux et al. 2010; Smoliak et al.

2015).However, none distinguished between internal and

forced dynamical components, a unique contribution of

our study enabled by the inclusion of the CESM1 Large

Ensemble. While the focus of this work is on winter SAT

trends over North America during the past 50 years, our

methodology is generic and can be used to improve

physical understanding and interpretation of observed

and simulated climate variations, including trends of any

length, worldwide.

The remainder of this study is organized as follows.

Section 2 contains a description of the model experi-

ments, observational datasets, and methods for de-

termining dynamical and thermodynamic contributions

to forced and internal SAT trend components. Results

are presented in section 3 and discussed in section 4.

Implications for model evaluation and interpretation of

the CMIP5 archive are also included in section 4. A

summary is provided in section 5.

2. Data and methods

a. The CESM1 Large Ensemble

Wemake use of a new set of simulations conducted with

the Community Earth System Model, version 1 (Commu-

nity Atmosphere Model, version 5) [CESM1(CAM5)], at

18 spatial resolution, referred to here as the CESM1 Large

Ensemble (CESM-LE). The CESM-LE consists of 30

simulations for the period 1920–2100, each subject to the

identical external radiative forcing but beginning from
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slightly different atmospheric initial conditions. Fol-

lowing the CMIP5 design protocol, historical natural

and anthropogenic radiative forcing was applied for

1920–2005 and representative concentration pathway

8.5 (RCP8.5) radiative forcing was used for 2006–2100

(Taylor et al. 2012). The first ensemble member was

initialized with 1 January conditions taken from a

randomly selected year of a 1700-yr preindustrial

(1850) control integration (PiCTL) of the same model.

This first ensemble member was then integrated for-

ward from 1850 to 2080. Ensemble members 2–30 were

all started on 1 January 1920 with initial conditions taken

from the first ensemble member. A small [O(10214) K]

random round-off difference to the initial air temperature

field was added to each ensemble member. This in-

finitesimal perturbation serves to create spread among

the ensemble members as internally generated modes of

climate variability grow over time. A full description of

the CESM-LE is given in Kay et al. (2015).

b. The CMIP5 ensemble

We also make use of the CMIP5. Specifically, we use a

single run from each of the 38 models that submitted

both historical and RCP8.5 simulations to the CMIP5

archive [see Table 9.A.1 in IPCC (2013)]. If multiple

runs exist for a given model, we use the first one.

c. Observational datasets

Wemake use of three monthly mean SAT datasets: 1)

Merged Land–Ocean Surface Temperature analysis

(MLOST), version 3.5, (Vose et al. 2012) on a 58
latitude 3 58 longitude grid; 2) GISS Surface Temper-

ature Analysis (GISTEMP) on a 28 latitude 3 28 longi-
tude grid and smoothed with a 250-km spatial filter

(Hansen et al. 2010); and 3) Climatic Research Unit

Temperature, version 4, (CRUTEM4)on a 58 latitude3 58
longitude grid (Osborn and Jones 2014). Unlike MLOST

and GISTEMP, CRUTEM4 is an uninterpolated, land-

only dataset. We also make use of monthly mean sea level

pressure (SLP) from the Twentieth Century Reanalysis,

version 2, (Compo et al. 2011) on a 28 latitude 3 28 lon-
gitude grid. Similar results are obtained for the different

SAT datasets; for conciseness, we focus mainly on results

obtained with MLOST.

d. Methods

For each dataset and model simulation, we compute

monthly anomalies by subtracting the long-term (1963–

2012) monthly means from the corresponding month of

each year. We then form 3-month winter [December–

February (DJF)] averages from the monthly anomalies.

Finally, we compute linear trends over the 50-yr period

1963–2012 using least squares regression analysis. This

time period was chosen to match the length of record

used in Deser et al. (2014) in their study of projected

North American climate trends over the next 50 years

(note that 2012 was the most recent year available for the

observational datasets at the time this study was carried

out). When computing pattern correlations and RMS

differences betweenmodel simulations and observations,

we regrid the model output to the observational grid.

e. Dynamical adjustment using the constructed
circulation analog approach

The objective of dynamical adjustment is to empirically

determine the component of SATvariability due solely to

atmospheric circulation changes, all other factors being

equal (e.g., no changes in ocean or land surface condi-

tions). Here we use a variation of the constructed circu-

lation analog method (Van den Dool et al. 2003) to find

the dynamical contribution to SAT anomalies in both the

CESM-LE and observations. Circulation analogs were

pioneered by Lorenz (1969), Van den Dool (1994), and

Van den Dool et al. (2003) as a statistical approach to

weather prediction and have been applied more recently

to downscale climate projections from coarse-resolution

models (e.g., Zorita et al. 1995) as well as to infer the

contribution of dynamics to observed European SAT

trends (Cattiaux et al. 2010).A detailed description of our

methodology is provided in the appendix; a summary is

given here.

1) APPLICATION TO THE CESM-LE

For each month and year of each of the 30 CESM-LE

simulations, we find a set of Na closest SLP analogs

within the 1700-yr CESM PiCTL, ranked according to

their Euclidean distance from the target CESM-LE SLP

field. For example, the SLP analogs for January 1920 of

run 1 are found by searching all of the January SLP fields

in the PiCTL. The advantage of using the model’s con-

trol run to obtain the circulation analogs is twofold: one,

there is no effect of forced climate change on either the

analogs or the associated SAT anomalies; two, the

number of samples from which to draw analogs is very

large. We then randomly subsample Ns of the Na ana-

logs and compute their optimal linear combination that

best fits the target CESM-LESLP field. The dynamically

induced SAT anomaly field is then defined as the cor-

responding optimal linear combination of PiCTL SAT

anomalies associated with the Ns SLP analogs. We then

repeat this random sampling procedure Nr times. Fi-

nally, we average the Nr optimal sets of SLP analogs and

associated SAT anomalies to obtain a ‘‘best estimate’’ of

the circulation-induced component of SATanomalies in the

absence of climate change. The repeated subsampling of

optimal linear combinations of analogs ensures robustness
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of the results (see appendix).We use the domain 208–908N,

1808–3508E for the SLP analogs following Wallace et al.

(2012) and Deser et al. (2014), but there is little sensitivity

to the precise region used (e.g., within 6208of longitude
and 6108 of latitude; not shown). The results shown here

are based on the parameter valuesNa5 150,Ns5 100, and

Nr 5 50. However, there is little sensitivity to the precise

choice of these values as long as they lie within the pa-

rameter space that has converged (see the appendix).

Note that by using so many circulation analogs and by

weighting them according to their degree of resemblance

with the targetCESM-LESLPfield, our technique can be

viewed in some sense as a type of linear regression rather

than a strict circulation analog approach. An advantage

of our method compared to that of Wallace et al. (2012)

and Smoliak et al. (2015) is that the analog weights can be

applied to any field in order to estimate the dynamical

contribution, including the SLP field itself. In this way, we

are able to evaluate how much of the SLP anomaly field

in question is reproduced by our optimal linear combi-

nation of circulation analogs. Finally, despite the differ-

ent algorithms, our results are very similar to those of

Wallace et al. (2012) and Smoliak et al. (2015), lending

confidence to both approaches (see Fig. S1 in the sup-

plemental material).

To obtain the forced dynamical contribution, we av-

erage the dynamical contributions for all 30 ensemble

members. To obtain the internal dynamical contribution

for each ensemble member, we subtract the forced dy-

namical contribution from the total dynamical contri-

bution. Thermodynamic contributions are obtained as

residuals (e.g., total minus dynamical) for both forced

and internal components.

2) APPLICATION TO OBSERVATIONS

To dynamically adjust the observed SAT, we use SLP

analogs from the Twentieth Century Reanalysis (20CR)

over the period 1899–2012, leaving out the targeted

month/year, and then construct their optimal linear set

following the procedures described above. For the re-

sults shown here, we use Na 5 80, Ns 5 50, and Nr 5
100. The results are not sensitive to the precise choices of

these parameters (see the appendix). Since we do not

have an observational ‘‘control run’’ fromwhich to draw

the SLP analogs and their associated effects on SAT, we

high-pass filter the SAT data before computing their

dynamically induced component to minimize any po-

tential effects from forced, thermodynamically induced

SAT; a similar strategy was employed in Smoliak et al.

(2015). We use the framework of the CESM-LE to test

how well this approach works and to determine the

sensitivity to our choice of high-pass filter. We find that

subtracting a quadratic trend or a spline trend over the

full period 1920–2012 produces the closest estimates of

the true unforced dynamically induced SAT (on average,

within 3.7% of the true RMS amplitude using six en-

semble members as test cases); 10- and 20-yr high-pass

filters perform less well (within 16% and 23% of the true

RMSamplitude in a smaller sample of test cases). Further

information on the sensitivity to choice of high-pass filter

is provided in the appendix. For simplicity, the results

shown here are based on quadratic trend removal.

To obtain the internal dynamical contribution to the

observed SAT anomalies, we have performed a separate

dynamical adjustment based on the internal component of

the observed SLP anomalies, obtained by subtracting the

CESM-LE ensemble-mean SLP anomaly from the ob-

served SLP anomaly at each time step. The forced dy-

namical contribution to observed SAT anomalies is then

obtained by subtracting the internal dynamical contribu-

tion from the total dynamical contribution. Thermody-

namic contributions are obtained as residuals (e.g., total

minus dynamical) for both forced and internal components.

3. Results

This section is organized as follows. We begin by

showing the diversity of SAT and SLP trends simulated

across the 30 CESM-LE ensemble members and placing

the observed trends within this context (section 3a). We

then demonstrate the key role of internal dynamics in

producingmuchof the trend spreadwithin theCESM-LE

and its influence on observed SAT trends (section 3b).

We show next that removing the influence of internal

dynamics brings the observed SAT trends into closer

alignment with the radiatively forced component simu-

lated by the CESM-LE (section 3c). Additional benefits

of removing internal dynamics from the SAT trends are

given in section 3d, including reduction of ensemble

spread, enhancement of signal to noise and advance-

ment of time of emergence. We conclude with a com-

plete decomposition of the simulated and observed SAT

trends into internal and forced dynamical and thermo-

dynamic components, both for observations and an il-

lustrative member of the CESM-LE (section 3e). In the

remainder of this section, we use the term ‘‘dynamically

adjusted SAT trends’’ to denote that the internal com-

ponent of circulation-induced SAT trends has been re-

moved, leaving the total (dynamic plus thermodynamic)

forced component plus the internal thermodynamic

component.

a. SAT and SLP trends in the CESM-LE and
observations

Figure 1 shows maps of 50-yr (1963–2012) winter SAT

and SLP trends over North America from each of the
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FIG. 1. DJF SAT [color shading; 8C (50 yr)21] and SLP [contours; hPa (50 yr)21] trends (1963–2012) for each member of the CESM-LE

(labeled 1–30), the CESM-LE ensemble-mean trend (labeled EM), and observations (labeled OBS). SLP contour interval is 1 hPa

(50 yr)21 starting at 60.5 hPa (50 yr)21, with solid (dashed) contours for positive (negative) values. SAT and SLP observation are from

MLOST and 20CR, respectively.
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30 members of the CESM-LE (labeled 1–30), as well as

from observations and the CESM-LE ensemble mean.

The SAT and SLP trends vary widely in pattern, polarity,

and magnitude across the individual ensemble members,

despite the fact that each simulation was conducted with

the same model and subjected to the identical radiative

forcing. Focusing first on SAT, it is evident that most

ensemble members show warming, consistent with physi-

cal expectation because of the increase in GHG concen-

trations. However, despite the increased radiative forcing,

it is also clear that large regions of North America can

experience cooling in any single realization. Further, the

pattern of SAT trends can be nearly opposite between

individual runs. For example, run 28 exhibits cooling over

northwestern North America and warming in the south-

east, while run 19 shows opposite-signed trends. Many

other examples can be found where individual ensemble

members show SAT trends of opposite polarity or dispa-

rate amplitude at a given location.

The observed SAT trends (OBS) (Fig. 1, bottom-right

panel) are positive everywhere, with the largest warm-

ing (.48C over 50 yr) over northwestern Canada and

smaller-amplitude warming (,18C over 50 yr) over the

western United States and far eastern Canada. Some

members (e.g., runs 7, 12, and 24) resemble the observed

trend pattern while others are nearly orthogonal (e.g.,

runs 14, 21, and 28). Viewed in the context of the

30-member CESM-LE, the observed SAT trend distri-

bution lies within the range of simulated outcomes, each

of which is consistent with the response to radiative

forcing. As discussed further below, ensemblemember 7

happens to provide a particularly close match to the

observed trends, both in terms of pattern and magni-

tude, because of the chance superposition of forced and

internal variability.

The degree of resemblance between the observed and

simulated trend maps can be quantified in terms of cen-

tered pattern correlation (e.g., the area-average SAT trend

is removed before computing the pattern correlation)

and RMS difference (Fig. 2, gray dots). Pattern corre-

lations range from 20.7 to 10.7, and RMS differences

range from 0.68 to 1.88C (50 yr)21, with a close linear

relationship between the two (e.g., lowest RMS corre-

sponding to highest pattern correlation and vice versa).

In other words, numerous SAT trend configurations are

possible because of the superposition of forced and

internally generated components, and no single CESM-

LE run need match the one realization in nature (al-

though given enough ensemble members, one would

expect some to be realistic if the model is credible).

The externally forced component of the simulated SAT

trends can be obtained by averaging the trends from all 30

members together [the CESM-LE ensemble-mean trend

(EM)] (Fig. 1, bottom panel). This component shows a

generally poleward-amplified warming pattern, with

maximum values ;28–3 8C (50 yr)21 along the Arctic

border compared to ;0.58–1.58C (50 yr)21 over most of

the United States. In addition to poleward amplification,

the forcedwarming trend in the CESM-LE exhibits zonal

contrasts across Canada, with smaller magnitudes in the

west compared to the east, and a local maximum over the

U.S. Rocky Mountains. Areas of amplified warming may

be due to local positive feedbacks associated with re-

ductions in snow and sea ice.

It is instructive to compare the observed SAT trend

pattern with the CESM-LE forced response, noting that

agreement is not necessarily expected because of the

added contribution of internal variability in observations.

Like the model’s forced response, the observed trend

pattern shows some evidence for poleward amplification,

but the largest warming occurs over western Canada

[.4 8C (50yr)21] instead of the Canadian archipelago

and the Alaskan west coast (note, however, that the

comparison is hindered by sparse data coverage over the

Canadian archipelago). The pattern correlation between

SAT trends in observations and the CESM-LE ensemble

mean is only 0.12, with an RMS difference of 0.98C
(50yr)21 (recall that individual ensemble members ex-

hibit much larger pattern correlations and smaller RMS

differences than the ensemble mean; Fig. 2).

FIG. 2. Pattern correlation (x axis) vs RMS difference [y axis; 8C
(50 yr)21] of DJF SAT trends (1963–2012) over North America for

each member of the CESM-LE against observations (MLOST;

20CR). Gray dots are for total trends, and blue dots are for dy-

namically adjusted trends (internal dynamics removed). See text

for explanation.
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The diversity of SAT trends within the CESM-LE is

accompanied by a variety of atmospheric circulation

(SLP) trend patterns and polarities (Fig. 1). Opposite-

signed trends of similar magnitude are evident over the

North Pacific in individual ensemble members: for ex-

ample, negative SLP trends in runs 7, 13, 17, 19, and 26

compared to positive trends in runs 8, 10, 14, 20, 21, and

30, with maximum amplitudes approximately 4–8hPa

(50 yr)21. Notably, the ensemble-mean SLP trends

during 1963–2012 are near zero everywhere, indicating

that SLP trends in any given realization are almost en-

tirely due to internal variability. This point will become

especially important when we turn to the diagnosis of

dynamical versus thermodynamic contributions to the

forced and internal components of the SAT trends.

The observed SLP trend pattern shows negative

values over the northeast Pacific extending into western

Canada and weaker positive values to the south (Fig. 1,

bottom right). The observed SLP trend pattern bears

some resemblance to individual ensemble members,

notably runs 12 and 17, and a lack of resemblance to

others (e.g., runs 8, 10, 14, and 21). Consistent with this

visual impression, the pattern correlations between the

simulated and observed SLP trendmaps range from20.6

to10.8 (Fig. 3). Interestingly, there is a close relationship

between the pattern correlations of the simulated SLP

and SAT trends with observations (Fig. 3). That is, en-

semble members that show large positive (negative) SLP

trend pattern correlations with observations also show

large positive (negative) SAT trend pattern correlations

with observations. This linear dependence of the SLP and

SAT trend pattern correlations suggests that the circu-

lation plays an important role in the diversity of SAT

trends across the CESM-LE and, by extension, in the

observed SAT trends. Next, we quantify this role through

the use of dynamical adjustment.

b. Dynamically adjusted SAT trends in the CESM-LE
and observations

Removing the effects of internal atmospheric circu-

lation variability via the constructed analog technique

greatly reduces the diversity of SAT trends across the

CESM-LE and essentially eliminates any SLP trends

(Fig. 4). Not only are the patterns and magnitudes of the

SAT trends more similar between individual ensemble

members, their amplitudes are generally smaller than

their unadjusted counterparts (recall Fig. 1). Notably,

regions of cooling are largely eliminated, and areas of

extreme warming [.48C (50 yr)21] are reduced. The

remaining spread across the dynamically adjusted SAT

trend maps is largely attributable to thermodynamic

processes (in particular, those associated with sea ice

and snow cover: see section 4), as the circulation analog

technique removes more than 90% of the internal SLP

trend variance (Fig. S2 in the supplemental material).

Indeed, the SLP trend maps based on the PiCTL con-

structed analogs (Fig. S3 in the supplemental material)

are very similar to the raw SLP trend maps, with pattern

correlations . 0.96 and RMS differences , 0.11 hPa

(50 yr)21 for all ensemble members.

In observations, the dynamically adjusted SAT trend

map (bottom-right panel of Fig. 4) shows less spatial

heterogeneity and a more dominant expression of

poleward amplification compared to the raw SAT trend

map. In particular, the warming across western Canada

is considerably reduced, and the east–west contrast

across the United States is largely alleviated.

To highlight the importance of internal circulation

effects in observations, Fig. 5 compares maps of the total

and (internal) dynamically induced SAT trends, along

with the contribution of internal dynamics expressed

as a fraction of the total SAT trend at each location.

Unforced circulation trends contribute 40%–60% of the

total warming over much of western Canada and the

eastern United States and up to 70% in some locations.

In other areas, such as the western United States, parts

of Alaska, and far northeastern Canada, internal dy-

namics offset the warming trend by up to 20%–30%.

Dynamical adjustment improves the resemblance

between the observed SAT trend distribution and those

of the individual CESM-LE ensemble members (Fig. 4).

FIG. 3. Pattern correlations between simulated and observed

1963–2012 DJF SAT (x axis) and SLP (y axis) trends. Each dot

represents a different CESM-LE run. Pattern correlations are

based on the Pacific-North American domain for SLP and North

America for SAT. SAT and SLP observation are fromMLOST and

20CR, respectively.
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In particular, the RMS differences are considerably

lower after applying dynamical adjustment to the internal

component of circulation trends, with values ranging from

0.328 to 0.718C (50yr)21 and an average of 0.498C (50yr)21

(blue circles in Fig. 2) compared to 0.628–1.758C (50yr)21

and an average of 1.158C (50yr)21 for the raw trends (gray

circles in Fig. 2). Thepattern correlations are also improved

for the dynamically adjusted SAT trends, ranging from

0.01 to 0.72 with a mean of 0.37 compared to a range

from20.70 to 0.66 with a mean of 0.02 for the raw trends

FIG. 4. As in Fig. 1, but internal circulation effects removed (see text).
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(Fig. 2; note that the spatial-mean trend is excluded when

computing pattern correlations).

Dynamical adjustment also improves the resemblance

between the observed SAT trend pattern and the forced

SAT trend pattern obtained from the average of the

CESM-LE members (Fig. 4, bottom-right panels labeled

OBS and EM, respectively). In particular, the pattern

correlation between the CESM-LE ensemblemean trend

and the observed trend increases from 0.12 to 0.54, and

the RMS difference decreases from 0.908 to 0.348C
(50yr)21, after applying dynamical adjustment. Thus,

dynamical adjustment provides an improved estimate of

the anthropogenic signal in observed 50-yr trends.

c. Probability distributions of raw and dynamically
adjusted SAT trends

The raw and dynamically adjusted SAT trends for a

given location or region may be summarized in terms of

probability distributions based on the set of 30 CESM-LE

simulations. These distributions also provide context for

the single estimate from observations. Figure 6 shows

results for three regions of contrasting spatial scale: North

America, western Canada (1408–908W), and the grid box

containing Fairbanks, Alaska. Compared to the raw trend

distributions (gray bars), the dynamically adjusted ones

(blue bars) are considerably narrower andmore Gaussian

in character. Not surprisingly, the relative degree of nar-

rowing of the trend distributions depends on spatial scale,

with the greatest reductions for Fairbanks and the smallest

for North America. For example, Fairbanks shows a broad

range of SAT trend values [from21.88 to16.18C (50yr)21]

with 75% of the simulations in the range from 20.88
to 13.58C (50yr)21. After removing the influence of in-

ternal atmospheric circulation variability, the distribution

narrows to a range from 10.18 to 12.58C (50yr)21 and

exhibits a more Gaussian character with ;75% of simula-

tions within the range from10.88 to12.28C (50yr)21.

For all three regions, the observed trends (raw and

dynamically adjusted) lie within their respective model

distributions, with the raw values (dashed orange lines)

near the upper end of the model range and the dynami-

cally adjusted values (solid orange lines) close to the

center of the model range (e.g., the model’s forced re-

sponse; Fig. 6). Recall from section 2e that the onlymodel

information used in the calculation of the observed dy-

namically adjusted SAT trends is theCESM-LEensemble-

mean SLP trends, which are nearly zero (recall Fig. 1).

For North America, the observed warming trend is re-

duced from 2.28 to 1.48C (50yr)21 after dynamical ad-

justment, a decrease of 37%. Put another way, internal

circulation variability has augmented the warming trend

due to radiative forcing (plus a small contribution from

internal thermodynamics; see below) by 57%. The effects

are larger for western Canada, where dynamical adjust-

ment reduces the warming trend by 48% [from 3.58 to
1.88C (50yr)21]; that is, internal circulation variability has

nearly doubled the forced (plus internal thermodynamic)

warming trend. The effect of dynamical adjustment for

Fairbanks is smaller than that for North America and

western Canada but still substantial, with a reduction in

warming of 34% [from 2.98 to 1.98C (50yr)21].

The sensitivity of the observational results to the choice

of dataset is summarized in Table 1 and Fig. S4 in the

supplemental material. The contribution of internal dy-

namics to the total warming trend varies by 6%–7% across

the 3 SAT datasets (Table 1). In an absolute sense, the

contribution of internal dynamics ranges by 0.088C
(50yr)21 for North America, 0.178C (50yr)21 for western

Canada, and0.298C(50yr)21 forFairbanks,Alaska (Table1):

that is, not surprisingly, observational uncertainty in-

creases as the spatial scale decreases, both for the total

SAT trend and the internal dynamically induced compo-

nent (Table 1). However, the broad spatial patterns and

magnitudes of the SAT trends (total, internal dynami-

cally induced, and residual components) across the three

observational datasets are very similar (Fig. S4).

d. Additional consequences of dynamical adjustment

Here we quantify the utility of dynamical adjustment

in reducing ensemble spread, enhancing signal to noise,

FIG. 5. Observed DJF SAT trends (1963–2012): (a) Total [8C (50 yr)21], (b) contribution from internal dynamics [8C (50 yr)21], and

(c) fractional contribution from internal dynamics.
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and advancing the ‘‘time of emergence’’ of SAT trends

in the CESM-LE. Ensemble spread, defined here as the

variance of SAT trends across the individual ensemble

members, is reduced by more than 80% over much of

the western and southeastern portions of North Amer-

ica and by 50%–60% around Hudson Bay, the Great

Lakes, central Rockies, andMexican highlands (Fig. 7c).

Averaged over the continent as a whole, removal of

internal dynamical influences via our dynamical adjust-

ment procedure reduces the variance of SAT trends

(1963–2012) in the CESM-LE by 75%, more than in any

other season (not shown). The actual SAT trend vari-

ance in the raw data is largest over western Canada and

Alaska extending southeastward along a narrow band to

the Great Lakes and over the U.S. Rocky Mountains,

with maximum values ;3–5 [8C (50 yr)21]2 (Fig. 7a). In

contrast, the SAT trend variance in the dynamically

adjusted data is nearly uniform across the continent,

with values 0.5–1 [8C (50 yr)21]2 over Alaska and central

Canada and ,0.5 [8C (50 yr)21]2 elsewhere (Fig. 7b).

Related to the reduction in ensemble spread, dy-

namical adjustment increases the signal-to-noise ratio

(SNR) of SAT trends, where the signal is defined as the

forced (ensemble mean) SAT trend and the noise as the

standard deviation of SAT trends across the 30 ensem-

ble members (Fig. 7f). Notably, dynamical adjustment

more than doubles the SAT trend SNR over the north-

western and southeastern portions of the continent and

increases it by at least 50% elsewhere (Fig. 7f). The raw

SAT trends show SNR values that are close to unity over

most of the continent (and,1 in parts of the northwest):

onlyMexico and a small area east of HudsonBay exhibit

values .2 (Fig. 7d). On average, the raw SAT trend

SNR over North America is 1.3, indicating that the

forced climate change signal and internal variability are

comparable for winter SAT trends over the past 50 yr. In

contrast, dynamically adjusted SAT trends show SNR

values generally above two over most of the continent,

with higher values (.3) along the Arctic border, Flor-

ida, the southwestern United States, and central Mexico

and lower values (1.5–2) over western Canada and the

north-central United States (Fig. 7e). On average, the

dynamically adjusted SAT trend SNR over North

America is 2.3, compared to 1.3 for the raw trends.

Many studies have examined the time of emergence

(TOE) of the anthropogenic climate change signal, es-

timated by evaluating when the forced response first

exceeds a given amplitude of internal variability [typi-

cally, one or two standard deviations (e.g., Mahlstein

et al. 2011; Diffenbaugh and Scherer 2011; Deser et al.

2012a)]. Here we assess the effect of dynamical adjust-

ment on TOE. We compute TOE from the CESM-LE

based on 10-yr running means of DJF SAT anomalies,

FIG. 6. Histograms of DJF SAT trends [1963–2012; 8C (50 yr)21]

for (a) North America, (b) western Canada, and (c) Fairbanks,

Alaska. Gray (blue) bars denote raw (dynamically adjusted) trends

from the CESM-LE. Dashed (solid) orange vertical lines denote

raw (dynamically adjusted: internal dynamics removed) trends

from observations. Note the different horizontal and vertical axis

ranges in each panel.
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where anomalies are computed relative to the period

1920–49. Specifically, we find the year when the forced

(ensemblemean) 10-yr runningmean SAT anomaly first

exceeds and remains above one standard deviation of

the internal variability (computed across the 30 SAT

anomalies at each time step after applying a 10-yr run-

ning mean). We also compute TOE based on dynami-

cally adjusted data (internal dynamics removed). This

‘‘dynamically adjusted’’ TOE will generally be earlier

than the raw TOE because of the reduced amplitude of

internal variability in the dynamically adjusted SAT

compared to the raw SAT.

The TOE map based on the raw 10-yr running mean

DJF SAT anomalies shows that the forced signal has not

yet emerged above the internal variability over a wide

swath of the western portion of the continent (gray

shading) and has only recently emerged (since 2005) over

much of the intermountain west, the central portion of

TABLE 1. Sensitivity of observed DJF SAT trends [1963–2012; 8C (50 yr)21] to choice of dataset for North America, western Canada,

and Fairbanks, Alaska (same regions used in Fig. 6). ‘‘Total’’ indicates the total trend; ‘‘internal dynamics’’ indicates the trend due to

internal dynamics; and ‘‘residual’’ indicates their difference (total minus internal dynamics). Percent change indicates the residual ex-

pressed as a fraction of the total (%). Datasets are MLOST, CRUTEM4 (CRUT), and GISTEMP (GIST). See text for details.

North America Western Canada Fairbanks, Alaska

MLOST CRUT GIST MLOST CRU GIST MLOST CRUT GIST

Total 2.19 2.53 2.44 3.51 3.95 3.83 2.93 2.86 3.16

Internal dynamics 0.82 0.78 0.86 1.70 1.61 1.78 0.99 1.17 1.30

Residual 1.37 1.75 1.58 1.81 2.34 2.05 1.94 1.68 1.86

% change 237% 231% 235% 248% 241% 246% 234% 241% 241%

FIG. 7. (Left) Variance of DJF SAT trends f1963–2012; [8C (50 yr)21]2g across the CESM-LE based on: (a) total

and (b) dynamically adjusted (internal dynamics removed) data. (c) The proportion of total trend variance (%)

accounted for by dynamical adjustment [e.g., (a) minus (b) divided by (a)]; red (blue) shading indicates that internal

dynamics contributes to a high (low) proportion of the total SAT trend variance. (right) SNR for DJF SAT trends

(1963–2012) from the CESM-LE based on (d) total and (e) dynamically adjusted (internal dynamics removed) data.

(f) The ratios of the SNR values in (e) divided by those in (d). Signal is defined as the ensemble-mean trend, and noise

is defined as the standard deviation of the trends across the 30 members.
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North America, and far eastern Canada (Fig. 8a). The

earliest TOE values (1980s) occur along the Arctic

border and the southeastern United States (Fig. 8a).

Dynamical adjustment advances the TOE considerably

at all locations, and nearly all areas are now ‘‘emergent’’

(Fig. 8b). Specifically, the dynamically adjusted TOE

values are in the 1970s over Alaska and northern Can-

ada, the 1980s over much of the eastern half of the

continent, the 1990s over the western United States, and

after 2005 over the midsection of the United States and

along the western portion of the Canadian–U.S. border

(Fig. 8b). This advancement of TOE is entirely due to

the reduction of interannual variance in the dynamically

adjusted data compared to the raw data, since the forced

signal is the same in both calculations.

e. Decomposition of forced and internal SAT trends
into dynamic and thermodynamic components in
the CESM-LE and observations

Having established the central role of internal atmo-

spheric dynamics to the CESM-LE and observed SAT

trend patterns over North America, we conclude our

analysis with a complete decomposition of the SAT trends

into forced and internal dynamical and thermodynamic

components. This full decomposition is performed for

observations and for an illustrative member of the

CESM-LE (run 7 whose SAT trends happen to bear

the closest resemblance to observations; recall Fig. 1).

The results are shown in Fig. 9a for the CESM-LE and

Fig. 9b for observations. Themodel results are discussed

first. The top row shows the total SAT trends and their

constituent internal and forced parts, the latter obtained

from the CESM-LE ensemble mean and the former

obtained by subtracting the forced component from the

total. The middle row shows the contribution of dy-

namics to the total, internal, and forced components. As

mentioned earlier, the total dynamical contribution is

obtained directly by applying the constructed analog

technique to the total SLP trend field for that particular

run; the forced dynamical contribution is obtained by

averaging the total dynamical contributions for all 30

ensemble members; the internal dynamical contribution

is obtained by subtracting the forced dynamics contri-

bution from the total dynamical contribution. Finally,

the bottom row shows the contribution of thermody-

namics to the total, internal, and forced components,

obtained as residuals between the total and dynamical

contributions. Strictly speaking, the residuals also contain

dynamical contributions not accounted for in the circu-

lation analog technique (as a result of both inadequate

sampling as well as methodological uncertainty). How-

ever, as discussed in the appendix, these errors are gen-

erally very small given the length of control run used to

identify the constructed analogs as well as the repeated

random sampling and averaging of the optimal linear

combinations of constructed analogs.

As already described, run 7 features strong warming

over the northern two-thirds of the continent, with max-

imum values exceeding 48C (50yr)21 over large regions

of Canada and the northeast United States [Fig. 9a(i)].

Atmospheric circulation trends contribute much of the

warming over western Canada by virtue of anomalous

southerly flow associated with a deepened Aleutian low

[recall Fig. 4; Fig. 9a(ii)]. Thermodynamic processes are

responsible for the enhanced warming in the vicinity of

Hudson Bay, the Canadian archipelago, and northern

Alaska [Fig. 9a(iii)], in association with diminished snow

cover and sea ice cover (not shown). The total dynamical

component [Fig. 9a(ii)] is mainly a result of internal cir-

culation trends [Fig. 9a(v)], with forced circulation trends

contributing mainly to warming along the Arctic border

[Fig. 9a(viii)].On the other hand, the total thermodynamic

contribution [Fig. 9a(iii)] is largely forced [Fig. 9a(ix)];

the internal thermodynamic component [Fig. 9a(vi)]

augments the forced warming over eastern Canada, the

Great Lakes region, and Alaska and partially offsets the

forced warming elsewhere. In summary, both dynamics

FIG. 8. Maps of TOE of forced winter SAT anomalies based on

10-yr running means from the CESM-LE for (a) total and

(b) dynamically adjusted (internal dynamics removed) data. See

text for details. Gray areas denote grid boxes where the forced

signal has not yet emerged by 2012.
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FIG. 9. Decomposition of DJF SAT trends [1963–2012; 8C (50 yr)21] into internal, forced, dynamical, and thermodynamic components for

(a) run 7 of the CESM-LE and (b) observations (MLOST). See text for details.
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and thermodynamics contribute to the total SAT trends;

further, the dynamical contribution is almost entirely

internal, whereas the thermodynamic contribution is

both internal and forced.

The same decomposition is performed for the ob-

served SAT trends in Fig. 9b. Strictly speaking, the only

partitioning that can be made based purely on obser-

vations is the separation of the raw trends into dynam-

ical and thermodynamic components (left column).

Using the model’s forced SLP response in conjunction

with observed SLP–SAT relationships enables separa-

tion of the dynamical contribution into internal and

forced components (middle row). Specifically, we have

performed a separate dynamical adjustment for obser-

vations based on the internal component of the SLP

anomalies at each time step, where the internal com-

ponent is obtained by subtracting the ensemble-mean

SLP anomaly from the CESM-LE from the observed

SLP anomaly. The forced dynamical contribution in

observations is then obtained by subtracting the internal

dynamical contribution from the total dynamical con-

tribution. The remaining components require use of the

model’s forced SAT and were determined as follows

(note that, for this purpose, the model’s forced SAT was

regridded to the mesh of the observed SAT data). The

total forced component of the observed SAT is equated

to the model’s total forced SAT, and the total internal

component of the observed SAT is obtained by sub-

tracting the forced SAT from the observed SAT. The

forced thermodynamic component of the observed SAT

is obtained by subtracting the forced dynamical com-

ponent of the observed SAT from the total forced SAT.

Finally, the internal thermodynamic component of the

observed SAT is obtained by subtracting the internal

dynamic component from the total internal component.

Dynamics contributes to warming [28–38C (50 yr)21]

across western Canada and weak cooling over north-

eastern Canada, western Alaska and the northwestern

United States [Fig. 9b(ii)] while thermodynamics ac-

counts for a broad pattern of warming over the entire

continent,with largest amplitudes overCanada [Fig. 9b(iii)].

These patterns are remarkably similar to those from

CESM-LE run 7 [Figs. 9a(ii), 9a(iii)], as are the patterns

of the total trends [Fig. 9a(i)], although they are based

on completely independent datasets. This, in turn, lends

confidence to the robustness of the decomposition and

interpretation of the results in both the model and ob-

servations. The circulation-induced component of the

observed SAT trends [Fig. 9b(ii)] is almost entirely in-

ternal [Fig. 9b(v)], similar to that found for run 7 of the

CESM-LE except along the Arctic border, where the

model shows modest warming from forced circulation

changes [Fig. 9a(viii)]. It is difficult to assess whether the

differences along the Arctic border are a result of model

shortcomings or observational data constraints, since this

is a region of limited data coverage. Further, this region

may be subject to thermodynamic influences from dy-

namically forced changes in sea ice cover that are im-

plicitly included in the circulation analogs from the

model’s control run butmay not be adequately sampled in

the short observational record. Finally, it is evident that

the thermodynamic component of the observed SAT

trends [Fig. 9b(iii)] is mainly forced [Fig. 9b(ix)], with

secondary contributions from internal processes that

augment the warming over western Canada and Alaska

and cool much of the United States [Fig. 9b(vi)], in line

with the results from run 7. In summary, observed DJF

SAT trends over the past 50 years are largely the result of

internal dynamics and forced thermodynamics, with sec-

ondary contributions from internal thermodynamics.

A complementary, temporal view of the relative con-

tributions of internal and forced dynamics and thermo-

dynamics to North American SAT anomalies during

1920–2012 in run 7 of the CESM-LE is shown in Fig. 10

(observational results are shown in Fig. S5 of the sup-

plemental material). The top pair of curves contrasts the

raw (black) and dynamically adjusted (magenta) SAT

records. While the raw time series displays prominent

interannual fluctuations superimposed upon a long-term

warming trend beginning in the early 1960s, the dynam-

ically adjusted record exhibits more muted variability

and a smaller but more monotonic rise in SAT starting in

the late 1970s (similar results are obtained when both

forced and internal dynamics are removed; not shown).

Thus, not only does dynamical adjustment alter the tim-

ing and amplitude of the long-term warming trend, it also

provides for a more stable estimate of these parameters

because of the reduction in interannual variance (noise in

this context). The second pair of curves contrasts the

forced (red) and internal (blue) components of North

American SAT. The forced time series bears a close re-

semblance to the dynamically adjusted record, with even

less interannual variability, while the internal time series

is dominated by high-frequency fluctuations. The third

pair of curves compares the thermodynamic (brown) and

dynamical (orange) contributions to forced SAT. It is

clear that thermodynamics dominates, with dynamics

making a small but nonnegligible contribution to the

forced component of warming in recent decades. The fi-

nal pair of curves compares the thermodynamic (green)

and dynamical (cyan) contributions to the internal SAT

record. Both are primarily high frequency in character,

with larger amplitudes for the dynamical component than

the thermodynamic one. In summary, dynamical adjust-

ment leads to an improved estimate of the forced com-

ponent of the North American SAT time series and
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provides a more stable estimate (e.g., less subject to

sampling fluctuations) of the timing and amplitude of

low-frequency trends.

4. Discussion

The utility of dynamical adjustment for attributing

SAT trends was demonstrated in the seminal studies of

Wallace et al. (2012) and Smoliak et al. (2015) using a

variety of techniques. These studies focused primarily

on the period 1965–2000, an interval characterized by a

prominent trend in the northern annular mode with

attendant effects on winter SAT over North America

and Eurasia. Similar to our results, both studies found

that dynamics account for approximately 40% of the

total cold season SAT trend over land poleward of 408N
during 1965–2000. As shown in Smoliak et al. (2015), the

spatial pattern of the dynamical contribution to SAT

trends over North America during 1965–2000 resembles

that found in our study based on 1963–2012, except for

the lack of cooling over the western United States.

Neither Wallace et al. (2012) nor Smoliak et al. (2015)

distinguished between internal and forced contributions

to atmospheric circulation trends during 1965–2000.

FIG. 10. Time series decomposition of DJF SAT anomalies (8C) averaged over North

America from run 7 of the CESM-LE into internal, forced, dynamical, and thermodynamic

components. (top) The total (black) and dynamically adjusted (magenta; internal dynamics

removed) components. (upper middle) The internal (blue) and forced (red) components.

(lower middle) The forced thermodynamics (brown) and forced dynamics (orange) compo-

nents. (bottom) The internal thermodynamics (green) and internal dynamics (cyan) compo-

nents. Note the different vertical scales for each set of curves. See text for explanation.
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A key aspect of our study was to make use of the forced

SLP response as given by the ensemble mean of the

CESM-LE. This, in conjunction with the observed re-

lationships between SLP and SAT anomalies, enabled us

to evaluate both the internal and forced dynamical con-

tributions to observed SAT trends. In addition, by in-

corporating the model’s forced SAT response, we were

able to further decompose the remaining portion of the

observed SAT trends into internal and forced thermody-

namic components. It is noteworthy that the forced com-

ponent of winter SLP anomalies over theNorth Pacific and

North America in any given year, and in trends over the

last 50 years, is small (nearly zero) compared to the internal

component, both according to the CESM-LE (Fig. 1, EM

panel) and the CMIP5 multimodel archive (Fig. S6 in the

supplemental material, EM panel). The extent to which

this result is model dependent remains to be assessed.

Although dynamical adjustment greatly reduces the

diversity of SAT trends across the 30-member CESM-LE,

differences remain, especially in the vicinity of Hudson

Bay, the Great Lakes, and Alaska (recall Fig. 7b). For

example, dynamically adjustedwarming trends overmuch

of Canada exceed 48C in run 4 but are ,1.58C in run 27

(recall Fig. 4).What processes contribute to the remaining

spread in dynamically adjusted SAT trends? The pattern

of residual SAT trend variance (Fig. 11a) suggests that

snow cover and sea ice changes may play a role. Indeed, a

similar pattern is obtained by regressing trends in dy-

namically adjusted SAT onto trends in sea ice concen-

tration averaged over Hudson Bay (Fig. 11b). Our

physical interpretation of this regression pattern is that

internal trends in Hudson Bay sea ice (possibly initiated

by atmospheric forcing) feed back onto SAT locally and

over adjacent land areas via thermodynamic processes. In

addition, associated changes in snow cover west of the

Canadian and U.S. Great Lakes may amplify these ther-

modynamic SAT feedbacks. We speculate that similar

physical mechanisms are at work over Alaska. Further

investigation of the processes contributing to the spread in

the thermodynamic component of internal SAT trends is

warranted.

As discussed in Hawkins and Sutton (2009) and other

studies, the CMIP5 archive contains three sources of

uncertainty: model response uncertainty due to struc-

tural differences between models, radiative forcing un-

certainty, and uncertainty due to internal variability.

How large is the contribution of structural model un-

certainty versus internal variability uncertainty to the

spread of SAT trends within CMIP5 for a given radiative

forcing scenario, and does internal atmospheric circu-

lation variability play a role? This question is difficult to

address without a sufficient number of ensemble mem-

bers to define the forced response in each model,

although results based on a previous 40-member initial-

condition ensemble with the Community Climate Sys-

temModel, version 3 (CCSM3), suggested an important

role for internal variability in the spread within CMIP3

(Deser et al. 2012b).

We can gain some insight into these questions, how-

ever, by comparing the SLP and SAT trends simulated

by the CMIP5 models with those simulated by the

CESM-LE. Qualitatively, the diversity of SAT and SLP

trend patterns and magnitudes within the set of CMIP5

model runs is reminiscent of that within the CESM-LE,

although there appear to be fewer cases of strong neg-

ative SAT trends (Fig. S6). Particularly noteworthy is

the wide range of SLP trends whose multimodel mean

(panel labeled EM in Fig. S6) is near zero, just as in the

CESM-LE. Amore quantitative comparison is provided

in Fig. 12a, which shows pattern correlations and RMS

differences between the SAT trends from each of the 38

CMIP5 models against observations (red dots). The set

of CMIP5 model runs shows a similar range of pattern

FIG. 11. (a) Standard deviation of dynamically adjusted DJF

SAT trends [1963–2012; 8C (50 yr)21] across the CESM-LE.

(b) Regression map of dynamically adjusted SAT trends onto the

Hudson Bay sea ice trend index. See text for details.
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correlations (albeit with fewer large negative values) and

RMS differences as the CESM-LE (gray dots in Fig. 12a),

suggesting that internal variability may be an important

source of SAT trend spreadwithin theCMIP5 archive. The

range of pattern correlations between the observed and

simulated SLP trends is also comparable across theCMIP5

models (reddots) and theCESM-LEensemble (graydots),

and importantly, the SLP and SAT pattern correlations

show a similar relationship in the two model ensembles

(Fig. 12b). Taken together, these results are suggestive of

an important role for internal dynamics (as opposed to

model response uncertainty) in the diversity of North

American SAT trends within the CMIP5 archive. Further

investigation of the role of internal variability versusmodel

uncertainty in the CMIP5 archive is clearly warranted.

Another important implication of our results pertains

to model evaluation. A common metric for climate

model assessment is the skill with which observed trends

during recent decades are simulated. However, as this

study highlights, a single simulation with a credible

model need not match the observed climate trajectory at

local/regional scales if the contribution from internal

variability is comparable or larger than that from ex-

ternal forcing. Conversely, a single integration with a

model that is lacking in realism may show fortuitous

agreement with the observed trends. The methodology

outlined in this paper, including the application of dy-

namical adjustment in conjunction with an estimate of

the forced circulation response, can be used to provide a

more informative and reliable assessment of a model’s

ability to simulate observed climate trends.

Thompson et al. (2015) have recently argued that

climate model evaluation would be well served to focus

on two simple statistical properties of the unforced in-

terannual variability: standard deviation s and auto-

correlation. These two parameters (especially s) dictate

the confidence intervals that can be placed on trends of

any length due to internal variability, provided the data

are normally distributed and stationary in time [see

discussion in Thompson et al. (2015)]. In this context, it

is worth noting that the CESM-LE simulates generally

realistic magnitudes (within 10%–20% of observations

in most regions) and spatial patterns of SAT and SLP

s for both unfiltered and 8-yr low-pass filtered data

(Fig. S7 in the supplemental material).

Our methodology, based on a combination of obser-

vations, a large initial-condition ensemble of historical

simulations, and a technique for estimating the dynam-

ical contribution, has general applicability beyond the

specific purpose of this study. In particular, it can be

used to inform attribution of observed climate anoma-

lies on a near-real-time basis, as well as improve the

physical understanding of differences in climate changes

simulated by different models. As with any empirical

method, inherent uncertainties due to limited sampling

of circulation statistics in the short (;100 yr) observa-

tional record must be taken into account. This problem

is ameliorated to a great extent in models for which

lengthy control simulations exist. There is also the caveat

that, as models improve and resolve finer spatial and

vertical scales, their forced SLP (and SAT) responses

may be altered, leading to new insights regarding the role

FIG. 12. (a) Pattern correlation vs RMS difference [(8C (50 yr)21] of DJF SAT trends (1963–2012) over North

America for each member of the CESM-LE (gray dots) and each member of the CMIP5 archive (red dots) against

observations (MLOST). (b) Pattern correlations between simulated and observed 1963–2012 winter SAT and SLP

trends. Dots are for the CESM-LE (gray) andCMIP5 (red) simulations. Pattern correlations are based on the Pacific-

North American domain for SLP and North America for SAT.
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of the atmospheric circulation in anthropogenic climate

change.

5. Summary

By combining observations with a 30-member initial-

condition ensemble of CESM1 coupled model simula-

tions (the CESM-LE) and making use of ‘‘dynamical

adjustment,’’ we have provided insight into the mecha-

nisms of internal and forced components of winter SAT

trends over NorthAmerica during the past 50 years. Our

results show that, at local/regional scales, the simulated

SAT trends are strongly influenced by internal vari-

ability, with an average signal-to-noise ratio of only 1.3.

The importance of internal variability is evidenced by

the variety of spatial patterns, amplitudes, and polarities

of trends among the 30 simulations, each of which is

subject to the identical scenario of historical radiative

forcing. The range of model solutions spans the single

realization of the real world, providing important con-

text for the interpretation of observed long-term trends.

The internally generated component of SAT trends

within the CESM-LE is largely dynamically induced,

whereas the forced component is primarily thermody-

namically controlled, either directly via radiative effects

from increased GHGs or indirectly via changes in SSTs,

sea ice, and snow cover. This follows from the fact that

the simulated winter SLP trends in the CESM-LE over

the past 50 years are almost entirely a result of internal

climate variability, with a negligible forced component.

(It remains to be seen whether other climate models

with sufficient ensemble size also show negligible forced

SLP trends for the time period and region examined

here; however, we note that the CMIP5 multimodel

mean agrees with the CESM-LE in this respect.) For the

real world, we estimate that internal circulation trends

account for approximately one-third of the observed

wintertime warming over North America during the

past 50 years and more than half locally over parts of

Canada and theUnited States. In a few areas, such as the

central Rocky Mountains, far western Alaska, and

northeastern Quebec province, internal dynamics has

offset the warming trend by 10%–30%. Removing the

effects of internal atmospheric circulation variability

via a constructed analog technique narrows the spread

within the CESM-LE, thereby enhancing the signal-to-

noise ratio of the simulated SAT trends (by a factor of 2,

on average) and advancing the ‘‘time of emergence’’ of

the forced SAT component (by approximately a decade

in many locations). Dynamical adjustment also brings

the observed trends closer to the model’s forced re-

sponse, both in terms of pattern and amplitude, facili-

tating their interpretation.

Themethodological framework proposed in this study

provides a general template for improving physical un-

derstanding and interpretation of observed and simu-

lated climate trends worldwide. Application to other

seasons, regions, time periods, and parameters will be

pursued in future work.
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APPENDIX

Constructed Analog Technique for Dynamical
Adjustment

Here we provide additional details on our constructed

analog methodology for dynamical adjustment. As de-

scribed in the main text, we first determine the Na

closest analogsXc from the PiCTL for each time step of a

particular CESM-LE run Xh, and then randomly draw

Ns of the Na analogs. We then estimate a constructed

SLP analog Xca as a linear combination of these Ns

analogs according to

X
h
’X ca 5Xcb , (A1)

where Xc is a matrix of column vectors comprising the

selected Ns closest analogs of the column vectorXh, and

b is a column vector of the fitted regression coefficients

that are the linear proportions of the contributions of

each column of Xc to the constructed analog Xca. The

dimensions of Xh are m 3 1, where m is the number of

grid points contained in the SLP pattern. The di-

mensions of Xc arem3Ns and that of b are Ns3 1. The

b coefficients can be estimated by using the Moore–

Penrose pseudoinverse of Xc:

b5 [(Xc
TXc)

21Xc
T]X

h
. (A2)

In practice, we calculate b using a singular value de-

composition of Xc. Theb coefficients are then applied to

the Ns SAT patterns from the PiCTL simulation corre-

sponding to the selected SLP analogs to reconstruct the

dynamically induced component of SAT in the CESM-

LE run.
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For each month, we repeat the drawing of the Ns

analogs Nr times. We then end up with Nr different

samples of dynamically induced SAT. Note that these

differ mainly because of thermodynamically induced

internal variability. We then take the mean of the Nr

samples as the final dynamically induced SAT. The

spread among the Nr samples gives a lower bound for

the spread because of thermodynamically induced internal

variability. We repeat all the steps for each month of the

CESM-LE simulation to obtain a complete reconstruction

of dynamically induced SAT in that run. Finally, we repeat

the entire algorithm for each member of the CESM-LE.

Figure A1 shows the sensitivity of the results to the

choice of closest Ns analogs, for both observations and

run 7 of the CESM-LE. The SLP trends obtained from

the constructed analog methodology closely match the

actual SLP trends in both observations and CESM-LE

run 7 for a wide range of Ns values (5–50 for observations

and 10–100 for the model run; note that the observations

were only computed for Ns# 50). Similarly, only minor

FIG. A1. Total estimated dynamical contribution to SLP and SAT trends (1963–2012) as a function of the number of closest Ns analogs

used. (top) Observational results and (bottom)model results based on run 7 of the CESM–LE. (a),(d) The actual trends; (b),(c),(e),(f) the

constructed analog trend estimates [SAT in color shading, 8C (50 yr)21, and SLP in contours, contour interval5 1 hPa (50 yr)21] based on

different choices of Ns, as stated in the panel titles.

FIG. A2. RMS error (RMSE) as a function of Nr for (a) SAT [8C (50 yr)21] and (b) SLP [hPa (50 yr)21] DJF trends

(1963–2012) from theCESM-LE. Shading indicates the range across an ensemble of 200 averaging iteration steps that differ

by a random initial sequence of Nr SAT and SLP trends. The colored curve denotes the average over the ensemble.
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differences in the total estimated dynamical contribu-

tion to SAT trends are found between Ns5 50 and Ns5
5 for observations (Figs. A1b,c, respectively) and between

Ns 5 100 and Ns 5 10 for the model run (Figs. A1e,f,

respectively), although the dynamical contribution to

simulated SAT trends is slightly greater whenmore closest

analogs are used.

The sensitivity of the results to Nr, quantified in terms

of RMS error, is shown in Fig. A2 for both SAT and

SLP. The shading indicates the range across all 30

CESM-LE simulations, and the colored curve denotes

the average over the ensemble. It is clear that the results

converge for Nr . 20 and that there is less spread for

SLP compared to SAT across all Nr.

As discussed in section 2e of the main text, we have

used the framework of the CESM-LE to determine

which high-pass filter to use for dynamically adjusting

the observations. Using a single run from theCESM-LE,

we can subtract the forced SLP and SAT responses

(obtained from the CESM-LE ensemble mean) to ob-

tain the unforced ‘‘residual’’ component of variability.

We can then find circulation analogs and associated

SAT anomalies from this residual record and apply our

dynamical adjustment procedure to obtain the ‘‘true’’

unforced dynamically induced component in that run.

We can then compare this true dynamical estimate to

that obtained without knowledge of the forced response

(as is the case when dealing with observations). The

latter is found by high-pass filtering the SAT record over

the period 1920–2012 and then applying our constructed

circulation analog protocol.

We have compared the true estimate of the dynamical

SAT trend contribution with those based on quadratic

and spline trend removal for six of the CESM-LE en-

semblemembers [these cases (runs 1, 7, 16, 21, 28, and 30)

were chosen to span a broad range of patterns; recall

FIG. A3. Dynamical contribution to SAT trends [1963–2012; 8C (50 yr)21] in run 7 of the CESM-LE. Shown are

(a) the ‘‘true’’ estimate and the estimates based on (b) quadratic trend removal, (c) spline trend removal, (d) 20-yr

high-pass filter, and (e) 10-yr high-pass filter. See text for explanation.
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Fig. 1]. Both methods yield RMS amplitudes that differ

from the true RMS amplitude by 3.7% on average for

the six test cases. The 10-yr and 20-yr high-pass filters

perform less well (these were tested on only one

CESM-LE ensemble member, since their RMS errors

were found to be much larger than any of those based

on the quadratic and spline trend removals: 16% and

23%, respectively). Figure A3 illustrates the results for

ensemble member 7 of the CESM-LE, comparing the

true estimate of the dynamical SAT trend contribution

(Fig. A3a) with those based on the four different

choices of high-pass filter: quadratic trend removal

(Fig. A3b), spline trend removal (Fig. A3c), 20-yr high-

pass filter (Fig. A3d), and 10-yr high-pass filter

(Fig. A3e). All four choices yield similar patterns of

dynamical contribution, but the quadratic and spline

trend removals are the closest to the true estimate.
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