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ABSTRACT 12 

The state dependence of cloud feedback—its variation with the mean state climate—has 13 

been found in many paleoclimate and contemporary climate simulations. Previous results 14 

have shown inconsistencies in the sign, magnitude, and underlying mechanisms of state 15 

dependence. To address this, we utilize a perturbed parameter ensemble (PPE) approach with 16 

fixed sea-surface temperature (SST) in the Community Atmosphere Model version 6. Our 17 

suites of PPEs span a wide range of global mean surface temperatures (GMSTs), with 18 

spatially uniform SST perturbations of ‒4, 0, 4, 8, 12, and 16 K from the pre-industrial. The 19 

results reveal a non-monotonic variation with GMSTs: cloud feedback increases under both 20 

cooler and warmer-than-pre-industrial conditions, with a rise of ~0.1 W m‒2 K‒1 under a 4-K 21 

colder climate and ~0.4 W m‒2 K‒1 under a 12-K warmer climate. This complexity arises 22 

from differing cloud feedback responses in high and low latitudes. In high latitudes, cloud 23 

feedback consistently rises with warming, likely driven by a moist adiabatic mechanism that 24 

influences cloud liquid water. The low-latitude feedback increases under both cooler and 25 

warmer conditions, likely influenced by changes in the lower-tropospheric stability. This 26 

stability shift is tied to nonlinearity in thermodynamic responses, particularly in the tropical 27 

latent heating, alongside potential state-dependent changes in tropical circulations. Under 28 

warmer-than-pre-industrial conditions, the increase in cloud feedback with warming is 29 

negatively correlated with its preindustrial value. Our PPE approach takes the model 30 

parameter uncertainty into account and emphasizes the critical role of state dependence in 31 

understanding past and predicting future climates. 32 

 33 

SIGNIFICANCE STATEMENT 34 

This study focuses on how cloud feedback—one of the most uncertain aspects in climate 35 

change—varies as global temperatures rise. We found that the cloud feedback decreases at 36 

first with warming, then increases, showing significant variation. This complexity stems from 37 

nonlinear thermodynamics, such as the Clapeyron-Clausius relationship, which describes 38 

how temperature affects moisture in the atmosphere. Our results indicate that the cloud 39 

feedback depends on the level of global warming, which is a significant factor rooted in 40 

fundamental physics. Recognizing this dependence is important for studies that aim to 41 

interpret past climates and predict future climate changes. 42 

  43 
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1. Introduction 44 

The cloud feedback describes the radiative effects of cloud changes induced by surface 45 

warming (or cooling) that in turn can either amplify or damp the initial surface temperature 46 

change. Strength of the cloud feedback is quantified using the cloud feedback parameter λcld, 47 

as a function of changes in the cloud induced top-of-atmosphere (TOA) radiation effects 48 

(ΔCRE) and surface temperature (ΔT): 49 

λcld = ΔCRE / ΔT   (1). 50 

λcld depends on changes in cloud macrophysical (such as coverage, height, and location) and 51 

microphysical (such as water content, phase partition, and particle number concentration and 52 

size) characteristics, as well as their interactions with thermodynamical, radiative, and 53 

dynamical processes across a range of spatial and temporal scales (e.g., Gettelman and 54 

Sherwood 2016). The cloud feedback is responsible for the spread of equilibrium climate 55 

sensitivity (ECS) in multiple generations of climate models (Caldwell et al. 2015; Vial et al. 56 

2013; Zelinka et al. 2020). An improved understanding and modeling of the complicated 57 

physical processes that drive the cloud feedback is crucial for reducing uncertainties in 58 

climate sensitivity and future climate projection (Zelinka et al. 2017; Ceppi et al. 2017). 59 

The cloud feedback varies in space and time and depends on the background climate state 60 

and details of surface temperature change. A useful way to investigate the variability is to 61 

approximately separate it into (1) the state dependence that is directly linked to mean state 62 

climate (such as the global mean surface temperature; GMST) and (2) the pattern dependence 63 

that is related to the geographic pattern of surface temperature change (Bloch-Johnson et al. 64 

2021; Sherwood et al. 2020). The pattern dependence, in particular the sea-surface 65 

temperature (SST) pattern effect, has been intensively investigated in the context of historical 66 

warming (Armour et al. 2013; Dong et al. 2019; Andrews and Webb 2018; Zhou et al. 2016). 67 

The west Pacific has warmed more than the east Pacific and the Southern Ocean during the 68 

historical period, where the Earth system features more negative feedbacks than that from the 69 

future projection with greater warming in the east Pacific and high latitudes. As a result of the 70 

different SST patterns, observations of the historical forcing and temperature responses can 71 

lead to underestimation of ECS. A proper accounting for the SST pattern effect in the 72 

historical constraint has contributed to the increase of the low-end estimation of ECS in the 73 

Intergovernmental Panel on Climate Change Assessment Report (Intergovernmental Panel on 74 

Climate Change (IPCC) 2023; Armour et al. 2024). 75 
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Different from the pattern dependence, state dependence of the cloud feedback relies only 76 

on the GMST and is more naturally studied in a paleoclimate context, given the much greater 77 

temperature variation in Earth’s past. For example, GMST during the Cenozoic (the last 65 78 

million years) varies by  more than 20℃, which is approximately 20 times the historical 79 

warming since 1850 (Tierney et al. 2020; Hansen et al. 2013). State dependence of the cloud 80 

feedback has been suggested to be an essential element for the simulation of past hothouse 81 

climates (Caballero and Huber 2013; Zhu et al. 2019; Schneider et al. 2019; Abbot and 82 

Tziperman 2008) and has been found in high-CO2 simulations based on the present-day 83 

climate (e.g., Meraner et al. 2013; Zhu and Poulsen 2020). 84 

State dependence of the cloud feedback can be mathematically viewed as derivative of 85 

the cloud feedback with respect to GMST, which indicates potentially greater uncertainty in 86 

our quantification and understanding than that of the cloud feedback itself. Previous 87 

modeling studies do not agree on the rate of change, e.g., abrupt nonlinear increase 88 

(Caballero and Huber 2013; Schneider et al. 2019) versus gradual linear increase with 89 

temperature (Zhu et al. 2019). In addition, mechanisms responsible for the state dependence 90 

remain elusive. In principle, state dependence in any cloud feedback-related process may give 91 

rise to state dependence of the cloud feedback. The near-exponential increase of atmospheric 92 

water vapor with temperature represents such a nonlinear mechanism. Water vapor can 93 

potentially produce state dependence of the cloud feedback through changing (1) surface 94 

latent heat flux and mixing in the atmospheric boundary layer (BL), (2) the specific humidity 95 

gradient and entrainment between the free troposphere and BL, and (3) free-tropospheric 96 

downwelling longwave radiation and the impact on cloud-top cooling and BL stability 97 

(Bretherton 2015). In addition to water vapor, changes in cloud phase partitioning (the 98 

decrease of cloud ice content in mixed-phase clouds with warming) can lead to an increase of 99 

cloud feedback through weakening the negative cloud-phase feedback (Tan et al. 2016; Zhu 100 

and Poulsen 2020). Other potential mechanisms may involve radiation and large-scale 101 

dynamics (Caballero and Huber 2013; Henry and Vallis 2022) but, along with the 102 

mechanisms mentioned above, are in general much less studied. Moreover, quantification and 103 

mechanistic understanding of the state dependence have been confounded with changes in 104 

forcing and the geographical pattern of temperatures in previous studies owing to the 105 

substantial difference in model complexity and experimental design. Due partly to the large 106 

uncertainty in state dependence of the cloud feedback, Sherwood et al (2020) excluded the 107 

past hothouse climates such as the Paleocene-Eocene Thermal Maximum in the paleoclimate 108 
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constraints on ECS but suggested that “Differentiating between state dependence in the 109 

radiative forcing, and in the feedbacks, could be an area of future progress”. 110 

Here we investigate state dependence of the cloud feedback using a perturbed parameter 111 

ensemble (PPE) with the Community Atmosphere Model version 6 (CAM6). We focus on 112 

two questions: (1) How does the cloud feedback depend on the wide range of GMSTs that the 113 

Earth has gone through during the Cenozoic? and (2) What can we learn about the 114 

mechanisms of state dependence? We use pre-industrial based atmosphere/land-only 115 

simulations with prescribed uniform warming/cooling in SST, which helps us to focus on the 116 

state dependence without complications from forcing and the pattern dependence. We use the 117 

PPE approach, which has been proven to be a useful approach to explore uncertainties in 118 

model physical parameterizations and gain deeper mechanistic understanding (e.g., 119 

Gettelman et al. 2024). 120 

This study focuses on the state dependence of cloud feedback, whereas analysis and 121 

parametric sensitivity on the present-day cloud feedback can be found in previous studies 122 

with a similar model and approach (Duffy et al. 2024; Eidhammer et al. 2024; Gettelman et 123 

al. 2024). The PPE approach and the experimental setup, along with calculation of the cloud 124 

feedback, are described in Section 2. Results of the state dependence are presented in Section 125 

3. Mechanistic understanding is presented in Section 4. We discuss and conclude in Section 126 

5. 127 

2. Model, Simulation, and Method 128 

a. Model 129 

We employ the Community Atmosphere Model version 6.3 (CAM6) coupled with the 130 

Community Land Model version 5, the model configuration that has been used for the PPE 131 

application to present-day and future climate (Duffy et al. 2024; Eidhammer et al. 2024; 132 

Gettelman et al. 2024). This version of CAM6 shares the same physical parameterizations 133 

and major tunings as the released version within the Community Earth System Model version 134 

2 (CESM; Danabasoglu et al. 2020; Gettelman et al. 2019) but has modifications in code and 135 

scripts to support PPE simulations. CAM6 uses a unified moist turbulence scheme, the Cloud 136 

Layers Unified By Binormals (CLUBB), for its atmospheric boundary layer, shallow 137 

convection, and cloud macrophysics schemes (Bogenschutz et al. 2013; Larson and Golaz 138 

2005). The microphysical scheme is the Morrison and Gettelman version 2 (MG2), which is a 139 
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two-moment scheme that predicts mass and number concentration of cloud and precipitation 140 

particles (Gettelman et al. 2015). CAM6 addresses indirect aerosol effects and cloud-aerosol 141 

interactions through a coupling of MG2 with the four-mode modal aerosol model and the 142 

classical-theory-based heterogeneous ice nucleation scheme in mixed-phase clouds (Liu et al. 143 

2016; Hoose et al. 2010; Wang et al. 2014). CAM6 uses the deep convection (ZM) by Zhang 144 

and McFarlane (1995). CAM6 has the capability to use online satellite simulators (COSP) to 145 

emulate satellite products to facilitate direct comparison and assessment with observations 146 

(Bodas-Salcedo et al. 2011). 147 

We implement published fixes in the cloud microphysics and ice nucleation in CAM6 to 148 

address its high ECS and strong cloud feedback (Zhu et al. 2022). The standard CESM2 with 149 

CAM6 produces a high ECS (e.g., 6.1℃ from a doubling CO2 experiment with a ~2°-150 

resolution atmosphere coupled with a slab ocean) and unrealistically cold simulation of the 151 

Last Glacial Maximum (LGM) and excessively warm early Eocene (Zhu et al. 2021, 2020, 152 

2022, 2024). The high ECS has been attributed to the cloud parameterization and feedback 153 

(Gettelman et al. 2019; Zhu et al. 2021). Zhu et al. (2022) developed fixes in the cloud 154 

microphysics and ice nucleation, which led to much reduced ECS (4.0℃) and more realistic 155 

simulation of the LGM without compromising the present-day climate. The fixes include the 156 

removal of an inappropriate limiter on the cloud ice number concentration and the increase of 157 

microphysical substepping (shortening timestep). The fixes represent a means to improve the 158 

physical and numerical aspects of the model (Shaw et al. 2021). Alternative fixes by 159 

Gettelman et al. (2023) without directly changing substepping are planned to be used in 160 

CESM3. 161 

We run the land model, CLM5, in a simplified mode with prescribed satellite phenology 162 

(SP), in which the vegetation type, leaf area index, and canopy height are prescribed 163 

according to satellite observations. The SP mode excludes vegetation phenological feedback 164 

and helps us focus on the classical atmospheric feedbacks. 165 

b. Perturbed parameter ensemble 166 

We set up the paleoclimate PPE simulations (hereafter paleoPPE) following the 167 

methodology of CAM6 PPE (Eidhammer et al. 2024) (hereafter cam6PPE). We perturb 45 168 

parameters in cloud microphysics (MG2), convection (CLUBB and ZM), and aerosol 169 

schemes. We use Latin hypercube sampling to create 250 sets of perturbed parameters that 170 

cover the entire range for each parameter and are uniformly distributed in the parameter 171 
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space. Table 1 lists the parameter name, default value in the model, range in the PPE, and 172 

short description. For detailed explanation of these parameters and the justification of their 173 

range, readers are referred to published work (Eidhammer et al. 2024).  174 

paleoPPE differs from cam6PPE in the following aspects. First, we implement the fixes in 175 

cloud microphysics and ice nucleation to have overall more realistic cloud feedback (assessed 176 

according to paleoclimate data; see the subsection a. Model). Second, we use a lower 177 

horizontal resolution (~2° versus ~1°), which reduces the computing and storage demand and 178 

allows longer simulations (5 years versus 3 years). Third, as the result of the lower horizontal 179 

resolution, the default parameter values in the unperturbed model were tuned differently, 180 

including a smaller MG2_DCS, dust emission factor, and CLUBB_gamma, and a larger sea-181 

salt emission scaling (Table 1). Fourth, paleoPPE uses C11b and a wider parameter range in 182 

CLUBB_C8, which are found to impact the cloud feedback in our exploratory simulations 183 

(not shown). A wider range of CLUBB_C8 has also been used in the calibration of Energy 184 

Exascale Earth System Model (E3SM), which shares many atmospheric parameterizations 185 

with CESM2 (Ma et al. 2022). Fifth, paleoPPE uses the preindustrial boundary condition, 186 

different from the present-day condition in cam6PPE (2000 AD). All parameter-related 187 

differences from cam6PPE are highlighted in Table 1 with bold and italic font. Note that 188 

parameters in paleoPPE are re-generated using Latin hypercube sampling and different from 189 

those in cam6PPE. 190 

Multiple suites of PPE simulations are performed with different SST and sea ice 191 

conditions, including the preindustrial and those with uniform SST change of ‒4 , +4 , +8, 192 

+12, and +16 K, as well as an additional set with a warming magnitude of +4 K in global 193 

mean with spatial pattern derived from the abrupt 4×CO2 simulation between year 131 and 194 

150 (Zhu et al. 2022). The preindustrial SST and sea ice coverage is from Hurrell et al. 195 

(2008). For the PPE suites with relatively small SST change (‒4 to +8 K), sea ice coverage is 196 

fixed at the preindustrial values. To increase the realism and numerical stability of the 197 

simulations with large magnitude of warming (+8 to +16 K), we remove sea ice and prescribe 198 

the same uniform SST change as the non-sea ice region (Table 2). As a result, we have two 199 

suites of PPEs with 8-K warming that differ in the sea-ice covered regions and can be used to 200 

separate the impacts from the replacing of sea ice with a regional warming of 8 K. In the 201 

analysis presented here, we use the pair of simulations with the same sea ice conditions to 202 

compute the cloud feedback due to a 4-K warming (e.g., P04K versus P08K, and  203 
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Table 1. List of parameters, description, default values, and the perturbed range (group by 204 
schemes, moist turbulence, microphysics, aerosol, and deep convection, respectively). Bold 205 
and italic font means the parameter differs from Eidhammer et al. (2024). Notation: u, v, w, 206 
horizontal and vertical velocity; θl, liquid water potential temperature; rt, total water mixing 207 
ratio. 208 

Parameter Name Description [units when applicable] Default Min Max 
clubb_c1 Dissipation of variance of w 1.0 0.4 3 
clubb_c2rt Dissipation of variance of rt 1.0 0.2 2 
clubb_c6rt Newtonian damping of rt flux at low skewness 4.0 2.0 6 
clubb_c6rtb Newtonian damping of rt flux at high skewness 6.0 2.0 8 
clubb_c6thl Newtonian damping of θl flux at low skewness 4.0 2.0 6 
clubb_c6thlb Newtonian damping of θl flux at high skewness 6.0 2.0 8 
clubb_c8 Newtonian damping of skewness of w 4.2 1.0 7 
clubb_c11b Buoyancy damping of skewness of w 0.7 0.2 0.8 
clubb_c14 Newtonian damping of variance of u and v 2.2 0.4 3 
clubb_beta Coefficient controlling skewness of θl and rt 2.4 1.6 2.5 
clubb_gamma_coef Constant of the width of PDF in w coordinate 0.275 0.25 0.35 
clubb_c_k10 Momentum diffusion factor 0.5 0.2 0.6 

clubb_wpxp_l_thresh Length-scale threshold below which extra damping is 
applied to C6 and C7 [m] 60 20 200 

micro_mg_accre_enhan_fact Accretion enhancement factor 1.0 0.1 10.0 
micro_mg_autocon_fact Autoconversion factor 0.01 0.005 0.2 
micro_mg_autocon_lwp_exp Liquid water exponent coefficient for autoconversion 2.47 2.10 3.30 
micro_mg_autocon_nd_exp Droplet number exponent coefficient for autoconversion -1.1 -0.8 -2 
micro_mg_berg_eff_factor Bergeron efficiency factor 1.0 0.1 1.0 
micro_mg_dcs Size threshold for ice-snow autoconversion [m] 2e-4 5e-5 1e-3 
micro_mg_effi_factor Scaling factor for effective radius for optics calculation 1.0 0.1 2.0 
micro_mg_homog_size Homogeneous freezing ice particle size [m] 2.5e-5 1e-5 2e-4 
micro_mg_iaccr_factor Scaling factor for ice-snow accretion 1.0 0.2 1.0 
micro_mg_max_nicons Maximum allowed ice number concentration [kg‒1] 1e8 1e5 1e10 
micro_mg_vtrmi_factor Scaling factor for cloud ice fall speed 1.0 0.2 5.0 
microp_aero_npccn_scale Scaling factor for activated liquid number 1 0.33 3 
microp_aero_wsub_min Minimum subgrid velocity for liquid activation [m s‒1] 0.2 0 0.5 
microp_aero_wsub_scale Scaling factor for subgrid velocity for liquid activation 1 0.1 5 
microp_aero_wsubi_min Minimum subgrid velocity for ice activation [m s‒1] 0.001 0 0.2 
microp_aero_wsubi_scale Scaling factor for subgrid velocity for ice activation 1 0.1 5 
dust_emis_fact Tuning parameter for dust emission 0.55 0.1 1.0 
seasalt_emis_scale Tuning parameter for sea-salt emission 1.1 0.5 2.5 
sol_factb_interstitial Tuning parameter for below-cloud aerosol scavenging 0.1 0.1 1 
sol_factic_interstitial Tuning parameter for in-cloud aerosol scavenging  0.4 0.1 1 
cldfrc_dp1 Deep convection cloud fraction parameter 0.1 0.05 0.25 
cldfrc_dp2 Deep convection cloud fraction parameter 500 100 1000 
zmconv_c0_lnd Convective precipitation efficiency over land [m‒1] 0.0075 0.002 0.1 
zmconv_c0_ocn Convective precipitation efficiency over ocean [m‒1] 0.03 0.02 0.1 
zmconv_capelmt Triggering threshold for deep convection [J kg‒1] 70 35 350 
zmconv_dmpdz Convective parcel fractional mass entrainment rate [m‒1] -1e-3 -2e-3 -2e-4 
zmconv_ke Convective evaporation efficiency [kg0.5 m‒1 s‒1.5] 5e-6 1e-6 1e-5 
zmconv_ke_lnd Convective evaporation efficiency land [kg0.5 m‒1 s‒1.5] 1e-5 1e-6 1e-5 
zmconv_momcd Convective momentum transport parameter (downward) 0.7 0 1 
mconv_momcu Convective momentum transport parameter (upward) 0.7 0 1 
zmconv_num_cin Allowed number of negative buoyancy crossings 1 1 5 
zmconv_tiedke_add Initial convective parcel temperature perturbation [K] 0.5 0 2 

 209 
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P08K_NOICE versus P12K_NOICE). We note that the non-local impact of sea ice treatment 210 

on clouds is relatively small (P08K vs P08K_NOICE; not shown). For simplicity, land ice 211 

sheets are not changed, as they cover a smaller area and have less impact on the overall 212 

model stability. In sum, a total of eight suites of PPE simulations (8 × 250 = 2000 ensembles 213 

and a total of 10,000 model years) are performed. (Data of a ninth suite with only 4×CO2 214 

forcing is also published but not discussed in this paper; Table 2). Simulations with the 215 

default parameter values are also carried out as a reference (referred to as the default model 216 

hereafter). The final four years of the simulation are analyzed to minimize the impact of 217 

potential drift during spinning up the atmosphere. 218 

Table 2. A list of perturbed parameter ensemble simulations performed in this study. 219 
Information includes the experiment name, global mean SST change (ΔSST) based on the 220 
preindustrial, whether the SST change has spatial pattern, sea ice conditions, as well as the 221 
mean and standard deviation of the global mean surface temperature (GMST) in each 222 
ensemble. Each ensemble has 250 PPE simulations and one simulation with the default 223 
parameter setting. Each simulation is run for 5 model years.  224 

Experiment name 
Mean ΔSST 

(K) 

Uniform 

ΔSST 
Sea ice 

GMST and ΔGMST 

(℃) 

PREI 0 Yes Preindustrial 14.6 
M04K ‒4 Yes Preindustrial ‒4.1 

P04K +4 Yes Preindustrial +4.2 

P08K +8 Yes Preindustrial +8.5 

P08K_NOICE +8 Yes Removed +9.7 

P12K_NOICE +12 Yes Removed +14.2 

P16K_NOICE +16 Yes Removed +18.8 

P04K_PAT +4 No Preindustrial +4.1 

PREI_4×CO2 0 --- Preindustrial +0.5 

 225 

c. Calculation of the cloud feedback parameter 226 

In this study, we define the cloud feedback (λ) of a certain climate state as the cloud 227 

radiative contribution (RCLD) scaled by the global mean warming in a pair of simulations with 228 

4-K warming. Take the P04K state as an example, 229 

λP04K = (RCLD_P08K ‒ RCLD_P04K) /  (TP08K ‒ TP04K)  (2). 230 
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We calculate RCLD and therefore λ using multiple methods including the simple calculation 231 

with model output of cloud radiative effects (CRE; λCRE), the approximated partial radiative 232 

perturbation (APRP; λAPRP), and the radiative kernels (λkernels). Each method is known to have 233 

strengths and weaknesses. λCRE is simple to compute but can be biased by the masking effects 234 

from other radiative processes (Soden et al. 2008). λkernels can depend on choices of the 235 

kernels and relies on assumptions of small perturbations and linearity, which may not hold in 236 

our simulations with large magnitude of temperature changes. λAPRP is accurate (error < 10%) 237 

and simpler than the sophisticated PRP method but only quantifies the shortwave component 238 

(Taylor et al. 2007). λAPRP could be superior to λkernels for shortwave due to the sensitivity of 239 

λkernels to choices of kernels. 240 

Our analysis focuses on the state dependence (Δλ between two climate states) and is 241 

found to be insensitive to choices of the method (Fig. 1). For example, shortwave λCRE 242 

correlates strongly with λAPRP (r = 1.00) but is on average biased by ‒0.15 W m‒2 K‒1 under 243 

the preindustrial background state (Fig. 1a), while ΔλCRE between the preindustrial and a 4-K 244 

warmer or colder state is the same as ΔλAPRP within the uncertainty (Fig. 1e and i). Similarly, 245 

longwave λCRE correlates strongly with λkernels (r = 0.95) but is systematically lower by 0.64 246 

W m‒2 K‒1 (Fig. 1c), while ΔλCRE is the same as Δλkernels within uncertainty (Fig. 1g and k). A 247 

small difference exists between shortwave ΔλCRE and Δλkernels (Fig. 1f and j), which could be 248 

due to the partial neglect of state dependence of the kernels method. In the remainder of the 249 

paper, we use ΔλCRE to study the state dependence with ΔλAPRP used for cross examination of 250 

the shortwave component. We use λkernels to compare the preindustrial values against the other 251 

models from the Coupled Model Intercomparison Project (CMIP) phases 5 and 6, as well as 252 

the expert assessment (Sherwood et al. 2020; Zelinka et al. 2022). 253 
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 254 
Fig. 1. Comparison of the cloud feedback calculated using the cloud radiative effect 255 

(λCRE; x-axis), the approximated partial radiative perturbation (λAPRP; y-axis of top row; 256 
shortwave only), and the radiative kernels method (λkernels; y-axis of bottom three rows for 257 
shortwave, longwave, and net, respectively). Left column shows the cloud feedback for the 258 
preindustrial climate (PREI). Right two columns show the state dependence of cloud 259 
feedback at the 4-K colder and warmer climate states (M04K and P04K), respectively. Circle 260 
markers indicate the 250 PPE members, and the star denotes the simulation with the default 261 
parameters. Numbers in the subplot title are the ensemble mean difference and the standard 262 
deviation (in parentheses) between two calculations. Units: W m‒2 K‒1. 263 

 264 
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d. Assessment of cloud fields and feedback 265 

To ensure overall realistic results on the state dependence, we focus the analysis on more 266 

plausible PPE members based on their simulation of the preindustrial cloud fields and 267 

feedback in observations and expert assessments. PPE members could be implausible because 268 

preindustrial simulations (PREI) have not been re-tuned. Furthermore, although PPE uses 269 

parameter ranges according to expert judgment regarding their physical limits, the 270 

combinations of different parameters are not necessarily realistic. State dependence from 271 

these implausible members could be much less relevant to the real world. We use gridded 272 

satellite observations to assess the representation of clouds in PREI, including the cloud 273 

fraction from the International Satellite Cloud Climatology Project H-Series (ISCCP; 60°S–274 

60°N) (Rossow et al. 2022) and the cloud radiative effects from the Clouds and Earth's 275 

Radiant Energy Systems (CERES) Energy Balanced and Filled (EBAF) Edition 4.2 (Loeb et 276 

al. 2018). Data temporal coverages are from 1999-01 to 2016-12 and 2000-03 to 2024-02, 277 

respectively. Additionally, we use the expert assessments of the total cloud feedback to 278 

evaluate the cloud feedback in PREI (Sherwood et al. 2020; Zelinka et al. 2022). We note 279 

that using modern observations to evaluate the preindustrial simulations is not ideal, but this 280 

should have limited impact on our results, as the differences between PPE simulations (e.g., 281 

shown in Fig. 2) are in general much larger than the potential preindustrial-modern 282 

differences. 283 

The cloud feedback derived from Atmospheric Modelling Intercomparison Project (amip) 284 

and amip-p4K simulations from available CMIP5 and 6 models are used as a reference to 285 

compare with our PPE results from a single model (Zelinka et al. 2022). This comparison can 286 

also contextualize the parametric uncertainty in CAM6 within the structural uncertainty 287 

described by other CMIP models. 288 

3. State dependence of the cloud feedback in paleoPPE  289 

a. Assessment of the preindustrial cloud and cloud feedback 290 

PaleoPPE generates a wide range of cloud and cloud feedback under the preindustrial 291 

condition (Fig. 2). Compared to satellite observations, RMSEs in the shortwave and 292 

longwave CREs and cloud fraction range from 8.3 to 44.9 W m‒2, 3.4 to 26.6 W m‒2, and 9.1 293 

to 32.1%, respectively. Values in the default model ranked in the top five (8.7 W m‒2, 6.0 W 294 

m‒2, and 15.2%, respectively), highlighting the overall success of the expert tuning of the 295 
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model during the development process. The cloud feedback (λkernels) ranges from 0.0 to 1.5 W 296 

m‒2 K‒1 with the default value of 0.36 W m‒2 K‒1. The cloud feedback has negligible 297 

correlation with the RMSEs in CREs (0.10 and 0.19; Figures 2a,b) and weak negative 298 

correlation with RMSE in the cloud fraction (‒0.41). These results suggest that efforts that 299 

aim to reduce error in the present-day clouds may not necessarily lead to reduced uncertainty 300 

in the cloud feedback. Many PPE members have RMSEs of cloud fields and the cloud 301 

feedback outside the range from the CMIP5 and 6 models and WCRP assessments (Zelinka et 302 

al. 2020, 2022; Bock and Lauer 2024), illustrating that not all parameter combinations have 303 

good skill at simulating present-day clouds and the cloud feedback. 304 

 305 
Fig. 2. Assessment of the simulation of cloud and cloud feedback under the preindustrial 306 

condition. Shown are the cloud feedback calculated using the kernels method (λkernels with 307 
PREI and P04K; y-axis) against the root-mean-squared errors (RMSEs; x-axis) in (a) the 308 
shortwave cloud radiative effect (SWCRE), (b) the longwave cloud radiative effect 309 
(LWCRE), and (c) cloud fraction. RMSEs in cloud radiative effects and fraction are 310 
calculated by comparing them in PREI against the satellite observations. The dashed 311 
horizontal line indicates the central estimation of the cloud feedback from the WCRP (World 312 
Climate Research Programme) expert assessment with the gray patch indicating the 90% 313 
interval (Sherwood et al., 2020; Zelinka et al., 2022). The PPE members are ranked according 314 
to the mean of standardized RMSEs and departure from the WCRP central estimation of the 315 
cloud feedback, as reflected by the face color of the markers in the plot. Circle markers 316 
indicate the 250 PPE members, and the star denotes the simulation with the default 317 
parameters. The correlation coefficient between the cloud feedback and RMSEs in the PPEs 318 
is also listed. 319 

 320 

To remove the less plausible PPE members that may contaminate our results, we rank the 321 

PPE members using a combined metric that averages the standardized RMSEs of global 322 

mean cloud CREs and fraction and mean bias of the cloud feedback from the expert 323 

assessment. Based on this ranking, the top-50 members have RMSEs in cloud shortwave 324 

CREs of 8.3–20.3 W m‒2 , longwave CREs of 3.7–8.5 W m‒2, and fraction of 9.2–20.8%, 325 

respectively (Fig. 2; markers with darker color and white edge), which is comparable to 326 
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values from the CMIP5 and 6 models and other multiple model assessments (Bock and Lauer 327 

2024; Medeiros et al. 2023). The persistent large bias across the PPE and CMIP models 328 

indicates a structural deficiency of the current generation of models. The total cloud feedback 329 

in the top-50 members ranges from 0.2 to 1.0 W m‒2 K‒1 with an ensemble mean of 0.6 W m‒330 
2 K‒1 (calculated using PREI and P04K), which is also comparable to the range in the CMIP 331 

models and agrees better with the WCRP assessment (Fig. 3). We note that our choices of the 332 

metric to rank the PPE members aim to remove the implausible members and retain sufficient 333 

members for exploring the parameter uncertainty and providing good statistics. In addition, 334 

the top-50 members broadly exhibit a similar degree of biases in the cloud fields and range of 335 

the cloud feedback as the other CMIP5 & 6 models. Our following analysis emphasizes the 336 

top-50 members, and any statistics are calculated from these members. Results on the state 337 

dependence of the cloud feedback do not depend much on details of the choice of the metrics 338 

(e.g., mean bias versus RMSE), as long as the analysis is focused on top-performed members. 339 

 340 
Fig. 3. Assessment of the simulation of cloud feedback components under the 341 

preindustrial condition. The cloud feedback and decomposition from the WCRP (World 342 
Climate Research Programme) expert assessment are shown as the black horizontal lines with 343 
error bars indicating the one standard deviation and 90% confidence intervals (Sherwood et 344 
al., 2020; Zelinka et al., 2022). Circles are the cloud feedback from the 250 PPE members 345 
with the face color indicating their performance ranking by their agreement with the satellite 346 
observations of cloud radiative effects and fraction, as well as the WCRP central estimation 347 
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of the total cloud feedback. The star denotes the simulation with the default parameters. Blue 348 
circles are results from the CMIP5 and CMIP6 models. 349 

 350 

For different cloud feedback components, paleoPPE in general matches the spread in 351 

CMIP and WCRP assessment well, especially the top-50 members (Fig. 3). The land cloud 352 

amount and mid-latitude marine low-cloud amount feedbacks overlap with the WCRP 353 

assessment quite well. The high-cloud altitude feedback is stronger than that of the WCRP 354 

assessment (mean values of 0.4 W m‒2 K‒1 in the top-50 members vs 0.2 W m‒2 K‒1 in the 355 

WCRP assessment), which likely reflects a deficiency in the simulation of tropical deep 356 

convection and/or ice clouds (Duffy et al. 2024). In addition, the tropical anvil cloud area 357 

feedback is higher than the WCRP assessment  (mean values of ‒0.1 W m‒2 K‒1 in the top-50 358 

members vs ‒0.2 W m‒2 K‒1 in WCRP assessment), which seems to agree with recent studies 359 

indicating a potential low bias in the WCRP assessment (McKim et al. 2024; Sokol et al. 360 

2024). The tropical marine low-cloud feedback is at the lower end of the WCRP assessment 361 

(mean of 0.1 vs 0.25 W m‒2 K‒1). The high-latitude optical depth feedback is somewhat lower 362 

than the WCRP assessment (mean of ‒0.1 vs 0.0 W m‒2 K‒1). The top-50 members are 363 

overall comparable to that of CMIP5 and 6 models, suggesting that PPE is an effective way 364 

to study the cloud feedback by accounting for uncertainties in model physics within a single 365 

climate model. 366 

b. State dependence of the cloud feedback in paleoPPE 367 

The global mean cloud feedback varies non-monotonically with the background 368 

temperature with higher ensemble means under both colder and warmer than preindustrial 369 

conditions (Fig. 4a; top-50 members are shown). Under colder conditions (M04K), 44 of the 370 

top-50 members exhibit stronger cloud feedback than the corresponding members in PREI. 371 

On average, the cloud feedback in M04K is larger by 0.12±0.12 W m‒2 K‒1 (ΔλCRE). Under 372 

warmer states,  the cloud feedback increases by 0.10 W m‒2 K‒1 in P04K and then further 373 

rises by 0.22 W m‒2 K‒1 and 0.07 W m‒2 K‒1 in P08K and P12K, respectively. Compared 374 

with PREI, 46 of the top-50 members exhibit stronger cloud feedback in P12K, with an 375 

average increase of 0.38±0.32 W m‒2 K‒1. This non-monotonic state dependence is also clear 376 

in individual members (thin gray lines in Fig. 4a). 377 
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 378 
Fig. 4. (a) Global mean cloud feedback for the background states with uniform ΔSST of ‒379 

4 K (M04K in blue), 0 K (PREI in black), 4 K (P04K in yellow), 8 K (P08K in orange), and 380 
12 K (P12K in red) added to the preindustrial. The cloud feedback parameter for a certain 381 
background state is calculated using the CRE method (λCRE) with the background state and 382 
the corresponding state with a uniform SST warming of 4 K. The same PPE members are 383 
connected using thin gray lines. (b) Zonal mean cloud feedback for various background 384 
states. Results are from the top-50 ensemble members. Units: W m‒2 K‒1. 385 

 386 

 387 
Fig. 5. Comparison of the global mean cloud feedback in PREI (x-axis) and that in (a) 388 

M04K, (b) P04K, (c) P08K, and (d) P12K (y-axis), as well as the state dependence defined as 389 
the cloud feedback change in (e) M04K, (f) P04K, (g) P08K, and (h) P12K from that in PREI 390 
(y-axis). Correlation coefficient and mean difference are listed in each figure. Results are 391 
from the top-50 ensemble members. The star denotes the simulation with the default 392 
parameters. Units: W m‒2 K‒1. 393 
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The non-monotonic state dependence in the cloud feedback results from distinct 395 

behaviors over different cloud regimes. Based on the zonal mean in Fig. 4b, 40°N/S seems to 396 

be a good threshold across the cold and very warm climates to generally separate the high and 397 

low latitudes that feature different behaviors. Over high latitudes (40°N/S polewards), all the 398 

members show a strengthening of the cloud feedback with warming that saturates at a GMST 399 

of ~24℃ (see also Fig. 6a). The ensemble mean increases by 0.39±0.16 W m‒2 K‒1 from 400 

M04K to P08K and stays largely unchanged in P12K (this value has been scaled by fraction 401 

area coverage such that it measures the net contribution to the global mean). Over low 402 

latitudes (40°S–40°N), cold climate (M04K; blue in Fig. 4b) has mean cloud feedback that is 403 

higher by 0.27±0.12 W m‒2 K‒1 than the preindustrial while warm climate (P12K; red in Fig. 404 

4b) is also higher by 0.21±0.26 W m‒2 K‒1 (see also Fig. 9a). All top-50 members show an 405 

increase of the low-latitude cloud feedback from PREI to M04K, whereas 40 of the 50 406 

members showing increases from PREI to P12K. 407 

The overall coherence among individual members is quantitatively supported by the 408 

strong correlation with correlation coefficients of 0.86 and 0.74 between the preindustrial 409 

cloud feedback and that in M04K and P04K, respectively (Fig. 5a–b). The cloud feedback in 410 

P12K, however, exhibits minimal correlation with the preindustrial value (0.05; Fig. 5d), 411 

potentially indicating larger uncertainty in modeling the cloud processes under extreme 412 

conditions. In general, state dependence of the cloud feedback is smaller than the range of the 413 

cloud feedback across PPEs. 414 

A clear negative relationship (r = ‒0.6) between preindustrial cloud feedback and its state 415 

dependence is identified in the PPEs—i.e., members with stronger preindustrial cloud 416 

feedback are associated with smaller increases with warming (Fig. 5e–h). This relationship 417 

holds for both high and low latitudes but is more pronounced at high latitudes, with 418 

correlation coefficients of ‒0.9 and ‒0.5, respectively (figures not shown). As discussed in 419 

Section 4, this correlation arises likely from processes related to thermodynamic and lower-420 

tropospheric stability. The negative relationship suggests that reducing biases in preindustrial 421 

cloud feedback could help constrain uncertainties in its state dependence. Additionally, it 422 

may mitigate some risks associated with positive feedback temperature dependence (Bloch-423 

Johnson et al. 2021). 424 

4. Further Decomposition and Mechanisms for the state dependence 425 
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We next investigate mechanisms for the state dependence through decomposition of the 426 

cloud feedback into different components, correlation with large-scale and cloud state 427 

variables using the cloud controlling factor (CCF) framework, and through examining the 428 

sensitivity to model parameters. In the CCF framework. λCRE can be written as 429 

𝜆CRE =
$CRE
$T

= $CRE
$CCF

$CCF
$T

   (3). 430 

Note that the CCF framework emphasizes the large-scale environmental changes and the 431 

associated impact on CCFs ($CCF
$T

) and assumes that clouds respond to the local values of the 432 

cloud-controlling factors ($CRE
$CCF

) remains largely unchanged (Klein et al. 2017). 433 

a. High Latitudes 434 

In the PPE simulations, the high-latitude (poleward of 40°N/S) cloud feedback and its 435 

state dependence is primarily produced by the shortwave component through processes that 436 

impact the cloud optical depth. Fig. 6a–c shows the λCRE decomposed into shortwave and 437 

longwave components. The longwave component is several times smaller in magnitude and 438 

plays a secondary role to oppose the shortwave. The ensemble mean of the shortwave 439 

increases by 0.50 W m‒2 K‒1 from M04K to M08K, with a smaller cancellation of ‒0.16 in 440 

the longwave (scaled values showing the net contribution to the global mean). Interestingly, 441 

the increase of cloud feedback with warming saturates in M08K and does not further increase 442 

in M12K. The APRP calculation (λAPRP) reproduces the shortwave λCRE from the CRE 443 

method and further decomposes it into contributions from changes in cloud amount and 444 

scattering (absorption contribution is small and not shown; Fig. 6d–f). The APRP 445 

decomposition suggests that the shortwave cloud feedback and its state dependence is 446 

determined by the cloud scattering components (the cloud optical-depth feedback). The 447 

contribution from the cloud amount change is approximately 0.14 W m‒2 K‒1 and largely 448 

invariant with climate change. 449 

 450 
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451 
Fig. 6. (a) High-latitude net cloud feedback for the background states with uniform ΔSST of ‒452 
4 K (M04K in blue), 0 K (PREI in black), 4 K (P04K in yellow), 8 K (P08K in orange), and 453 
12 K (P12K in red) added to the preindustrial. Values are weighted by the area coverage and 454 
measure their direct contribution to the global mean in Figure 4a. (b) and (c) The same as (a) 455 
but for the shortwave and longwave components, respectively. (a)–(c) use the CRE method 456 
(λCRE). (d) The same as (b) but with the Approximated Partial Radiative Perturbation method 457 
(λAPRP). (e) and (f) The same as (d) but for the cloud scattering and amount components, 458 
respectively. Results are from the top-50 ensemble members. Units: W m‒2 K‒1. 459 

 460 

Several physical mechanisms could explain the increase and eventual saturation of the 461 

cloud optical-depth feedback with warming (Fig. 6e). Cloud optical depth can increase 462 

because of the increase of water path or the decrease of particle size (Stephens, 1978). 463 

Accordingly, a warming-induced melt of cloud ice into liquid water increases the cloud 464 

optical depth due to the smaller particle size of liquid droplets than ice particles, which forms 465 

the cloud-phase feedback to dampen the initial surface warming (Mitchell et al. 1989; Tan et 466 

al. 2016). Moreover, the reduction of cloud ice can increase cloud water due to the higher 467 

precipitation efficiency (bigger sizes) of ice clouds, forming the cloud-lifetime feedback 468 

(Mülmenstädt et al. 2021; Frazer and Ming 2022). Both the cloud phase and lifetime 469 

feedbacks are negative and depend on the cloud ice content in the background climate, which 470 

follows simple thermodynamics and can give rise to a weakening and eventual saturation of 471 

the feedback as ice in mixed-phase clouds melts and disappears with warming. Nevertheless, 472 

details of the responses of mixed-phase clouds are subject to both parametric and structural 473 

uncertainties (Gettelman et al. 2023, p. 202; Zhao et al. 2023) In addition to the 474 
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thermodynamic cloud ice mechanism, surface warming can increase the cloud liquid water 475 

through a moist adiabatic process, in which cloud condensation along moist adiabats 476 

increases with temperature due to the exponential Clapeyron-Clausius relationship (Betts and 477 

Harshvardhan 1987). Importantly, a thermodynamic decrease of moist adiabatic lapse rate 478 

with warming means that the warming-induced increase of cloud water is relatively stronger 479 

at lower temperatures, which leads to a state dependence and a potential saturation (Betts and 480 

Harshvardhan 1987). 481 

Analysis of the PPEs indicates that the moist adiabatic mechanism, rather than the cloud 482 

ice mechanism, is responsible for the high-latitude cloud optical-depth feedback and its state 483 

dependence. To demonstrate this, we use the CCF framework to examine the role of cloud 484 

liquid and ice water path (LWP and IWP). We focus on the shortwave λCRE in PREI and the 485 

increases from M04K to P08K to maximize the signal in state dependence (Fig. 6b). In 486 

response to warming, both magnitudes of $LWP
$T

 and $IWP
$T

 decrease and reach a saturation under 487 

high temperatures (Fig. 7a,b), which are quantitatively consistent with both thermodynamical 488 

moist adiabatic and cloud ice mechanisms. However, λCRE in PREI correlates much stronger 489 

with $LWP
$T

 (r = ‒0.8) than with $IWP
$T

 (r = ‒0.3) among the top-50 PPE members (Fig. 7c,d). 490 

Similarly, ΔλCRE (calculated as the difference between P08K and M04K) correlates much 491 

stronger with  ∆$$LWP
$T

% than with ∆ $$IWP
$T
%, with correlation coefficients of ‒0.8 and 0.0, 492 

respectively (Fig. 7e,f). The correlation analysis suggests a predominant role of the moist 493 

adiabatic mechanisms in determining the high-latitude cloud optical depth feedback and its 494 

state dependence. Additionally, no correlation is found between the background IWP and the 495 

warming-induced ΔLWP in PREI, indicating that the increase of LWP is not due to the melt 496 

of cloud ice. The correlation does not depend on whether we rank the PPEs or not (not 497 

shown), consistent with the simple and robust thermodynamic mechanism that are insensitive 498 

to model parameters. 499 
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 500 
Fig. 7. Rate of cloud (a) liquid and (b) ice water path changes with warming (units: g kg‒1 501 

K‒1) over the high latitude for the background states with uniform ΔSST of ‒4 K (M04K in 502 
blue), 0 K (PREI in black), 4 K (P04K in yellow), 8 K (P08K in orange), and 12 K (P12K in 503 
red) added to the preindustrial. Scatter plot of the shortwave cloud feedback (λCRE; units: W 504 
m‒2 K‒1) against rate of cloud (c) liquid and (d) ice water path changes with warming under 505 
the preindustrial condition. Scatter plot of the changes in the shortwave cloud feedback 506 
between P08K and M04K (ΔλCRE) against the corresponding variation in the rate of cloud (e) 507 
liquid and (f) ice water path changes with warming. Correlation coefficients are listed in (c)–508 
(f). Results are from the top-50 ensemble members. 509 
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 511 

Fig. 8. Slopes of the linear regression of the shortwave cloud feedback and state 512 
dependence (x-axis) against model parameters (y-axis) over the high latitude (left) and low-513 
latitude subsidence (middle) and ascent (right) regions. Regression is performed for the 514 
preindustrial cloud feedback (λPREI) and the changes between P08K and M04K (ΔλP08K-M04K) 515 
over the high latitude, and between PREI and M04K (ΔλPREI-M04K) and between P12K and 516 
P04K (ΔλP12K-P04K) over the low latitude. Model parameters are normalized, and cloud 517 
feedbacks are standardized before the regression analysis. Model parameters are grouped into 518 
turbulence and shallow convection, microphysics, aerosol, and deep convection. For more 519 
robust statistics, all ensemble members are used in the analysis. 520 

Our mechanistic explanation is supported by the parameter sensitivity in the PPE 521 

simulations. Fig. 8 shows the linear regression coefficients of the shortwave cloud feedback 522 
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and its state dependence against model parameters. Model parameters are normalized (scaled 523 

to be between 0 and 1 by the minimum and maximum parameter values), and cloud 524 

feedbacks are standardized (scaled to have a mean of 0 and a standard deviation of 1) before 525 

the regression analysis. In general, the high-latitude λCRE is mostly sensitive to the 526 

microphysical parameters related to liquid water (left column of Fig. 8), e.g., the liquid water 527 

content exponential coefficient (micro_mg_autocon_lwp_exp) in the autoconversion formula 528 

and the accretion enhancement factor (micro_mg_accre_enhanc_factor). Similarly, the 529 

increase of λCRE with warming (ΔλP08K‒M04K) is also mostly influenced by the two 530 

microphysical parameters. A higher micro_mg_autocon_lwp_exp decreases the cloud liquid-531 

to-rain autoconversion rate (note that the in-cloud liquid water content is smaller than 1 Kg 532 

Kg‒1) and increases the LWP in the model. As a result, this configuration will allow more 533 

increase of LWP with warming, leading to more negative cloud feedback. The state 534 

dependence (ΔλCRE) becomes greater due to the greater potential to reach cloud feedback 535 

saturation. We note that these cloud microphysical parameters control the sink of cloud water 536 

and could increase as a nonlinear function of cloud liquid water content. For example, in the 537 

commonly used scheme (Khairoutdinov and Kogan 2000), both the autoconversion and 538 

accretion rates increases exponentially with cloud water content. Therefore, the saturation of 539 

λCRE with warming potentially represents a combination of the thermodynamic weakening of 540 

LWP increase and a microphysical increase of sinks of cloud water.  541 

In sum, model configurations that allow more LWP in the background climate shows 542 

more LWP increase due to warming (see also Gettelman et al. (2024)), thus more negative 543 

cloud feedback (the so-called liquid water lapse-rate feedback). Due to nonlinearities rooted 544 

in relatively simple thermodynamics (and potentially microphysics), the cloud feedback 545 

could saturate with warming, which means that a model configuration with more negative 546 

cloud feedback in the present climate will feature more increases with warming in the future. 547 

Other mechanisms, such as the changes in cloud phase, particle size, entrainment drying and 548 

moisture convergence from lower latitudes could be secondary (McCoy et al. 2023, 2022). 549 

Notably, we found no correlation between moisture convergence and the high-latitude cloud 550 

feedback across PPE members (not shown). We suggest that the potential state dependence 551 

from the autoconversion and accretion formula should be further studied. Our findings also 552 

indicate that targeted improvements or emergent constraints on present-day LWP could help 553 

refine and better constrain high-latitude cloud feedback and its state dependence. 554 
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b. Low Latitudes 555 

The state dependence of the low-latitude cloud feedback is non-monotonic and more 556 

complicated than that in high latitudes. The ensemble mean λCRE decreases by 0.27 W m‒2 K‒557 
1 from M04K to PREI and then increases gradually by 0.21 W m‒2 K‒1 in P12K (Fig. 9a; 558 

scaled values showing the net contribution to the global mean).  λCRE over the ocean plays a 559 

dominant role while the feedback over land has a smaller positive contribution that weakens 560 

gradually with warming (Fig. 9b,c). We focus on the marine low-latitude feedback and 561 

further decompose it into that from the subsidence and ascent regimes using 500-hPa vertical 562 

pressure velocity as a criterion (ω500; Bony et al., 2004). Over both the ascent and 563 

subsidence regions, the shortwave λCRE first decreases from M04K to P04K and then 564 

increases slightly afterwards with an overall larger contribution from the subsidence region. 565 

APRP analysis suggests that both the cloud amount and scattering components contribute to 566 

the total shortwave feedback (not shown). The longwave λCRE over both regions increases 567 

with warming from M04K to P04K, partly canceling the decreases in shortwave. We note 568 

that these cloud feedback changes are not attributable to the relatively small area changes 569 

(<3%) in the ascent and subsidence regions; they are consistent across low latitudes (see also 570 

Fig. 4b). 571 
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 572 
Fig. 9. (a) Low-latitude total cloud feedback (units: W m‒2 K‒1) for the background states 573 

with uniform ΔSST of ‒4 K (M04K in blue), 0 K (PREI in black), 4 K (P04K in yellow), 8 K 574 
(P08K in orange), and 12 K (P12K in red) added to the preindustrial. (b) and (c) The same as 575 
(a) but for the decomposition into values over ocean and land, respectively. (d) The net cloud 576 
feedback over the low-latitude subsidence region according to the vertical velocity at 500 hPa 577 
and its (e) shortwave and (f) longwave components. (g)–(i) The same as (d)–(f) but for the 578 
cloud feedback over the low-latitude ascent region. The CRE method (λCRE) is used in the 579 
calculation. λCRE values are weighted by the area coverage and measure their direct 580 
contribution to the global mean in Figure 4a. Results are from the top-50 ensemble members. 581 

 582 

We use the CCF framework to examine the potential contribution of multiple processes 583 

on the cloud feedback and its state dependence over both the ascent and subsidence regions 584 

(Qu et al. 2015b; Klein et al. 2017; Scott et al. 2020). For low latitudes, we investigate CCFs 585 

including the estimated inversion strength (EIS) as an indicator for the lower-tropospheric 586 

stability (Wood and Bretherton 2006), ω500 for the large-scale circulation (Myers and Norris 587 

2013), the specific humidity difference between 700 hPa and surface (dQ) as an indicator for 588 

the inversion specific humidity gradient (Brient and Bony 2013), and the surface latent heat 589 

flux (LHF) for vertical mixing by boundary layer turbulence or convection (Rieck et al. 590 
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2012). Our choice of CCFs differs from previous studies mainly in that we do not use SST or 591 

SST advection because they are prescribed and invariant among our ensemble members. 592 

Briefly, a larger dEIS/dT (see Equation 3) strengthens more the lower-tropospheric stability 593 

and promotes more increase in low clouds with warming. A larger dω500/dT means less 594 

weakening of large-scale subsidence and produces less increase in low clouds. A larger 595 

dLHF/dT means more energy to increase vertical mixing by turbulence or convection, which 596 

desiccates more low clouds. A larger dQ/dT leads to more entrainment drying on low clouds. 597 

We refer readers to published work (Klein et al. 2017; Bretherton 2015; Scott et al. 2020; 598 

Webb et al. 2024) for further discussion on relevant physical processes. 599 

Consistent with previous work (Qu et al. 2015b; Klein et al. 2017; Scott et al. 2020), the 600 

preindustrial λCRE in our PPEs can be well explained using these CCFs. Over the subsidence 601 

regions, EIS, ω500 and LHF are found to be the most influential CCFs, while EIS and LHF 602 

are dominant over the ascent regions. Together, a multiple linear regression model has a good 603 

skill reproducing the preindustrial λCRE in both the subsidence and ascent regions and can 604 

explain more than 70% of the total variance with a mean absolute error less than 0.1 W m‒2 605 

K‒1 (not shown; similar results from Ridge and Lasso regression models). 606 

State dependence of EIS resembles most closely the state dependence of low-latitude 607 

cloud feedback. Fig. 10 shows variations of the mean CCFs with GMST over the subsidence 608 

and ascent regions, which are plotted such that upward means CCFs contributing to stronger 609 

cloud feedbacks. In response to a uniform 4-K warming in PREI, EIS increases at a rate of 610 

~0.1 K K‒1 over low latitudes (Fig. 10a,e), which is comparable to values in CMIP models 611 

(Qu et al. 2015a). dEIS/dT is not constant and increases with warming from M04K to P04K 612 

and then decreases to values less than 0.1 K K‒1 in P12K (note the reversed y-axis). All else 613 

being equal, the evolution of dEIS/dT would produce cloud feedback that first decrease and 614 

then increase with warming, which is what we observe in Fig. 9d,g. The importance of 615 

dEIS/dT is confirmed by its relatively high correlation with the λCRE in PREI and its state 616 

dependence including the decrease from P04K to M04K and the increase from P04K to P12K 617 

(r = ‒0.6, ‒0.3 and ‒0.4, respectively). 618 
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 619 

Fig. 10. (a) Rate of changes in the mean estimated inversion strength (EIS) with warming 620 
(unites: K K‒1) over the low-latitude subsidence region for the background states with 621 
uniform ΔSST of ‒4 K (M04K in blue), 0 K (PREI in black), 4 K (P04K in yellow), 8 K 622 
(P08K in orange), and 12 K (P12K in red) added to the preindustrial. (b)–(d) The same as (a) 623 
but for the vertical velocity at 500 hPa (ω500; units: hPa day‒1 K‒1), the specific humidity 624 
contrast between surface and 700 hPa (dQ; units: g kg‒1 K‒1), and the latent heat flux (LHF; 625 
units: W m‒2 K‒1), respectively. (e)–(h) The same as (a)–(d) but for these cloud controlling 626 
factors over the low-latitude ascent region. Results are from the top-50 ensemble members. 627 

 628 

We suggest that the variation of dEIS/dT with GMST could be due to the competing 629 

effects from the nonlinearity in thermodynamics and changes in the large-scale circulation. 630 

We note that an overall positive dEIS/dT has been attributed to a known thermodynamic 631 

mechanism. In this mechanism, the enhanced warming with height due to tropical moist 632 

convection and latent heating is propagated into the subtropics via tropical waves and the 633 

mean overturning circulation, increasing the lower-tropospheric stability (dEIS/dT > 0) (Qu 634 

et al. 2015a; Webb et al. 2018). Our focus here is on the state dependence of dEIS/dT. In our 635 

PPEs, the ensemble mean of dLHF/dT over the ascent region increases with the warming 636 

from M04K to P04K and flattens with further warming (Fig. 10h), which contributes to an 637 

increase of dEIS/dT that saturates at P04K. At the same time, a continued weakening of the 638 

tropical subsidence (dω500/dT in Fig. 10b) is a robust response to warming according to 639 

theory and modeling (Vecchi and Soden 2007; Held and Soden 2006), and could contribute 640 

to a weaker inversion change (dEIS/dT) following the relationship seen in observations 641 

(Myers and Norris 2013). We hypothesize that the thermodynamics-driven increasing 642 

(dLHF/dT) and the dynamics-driven decreasing (dω500/dT) effects compete and produce a 643 

U-shaped dEIS/dT. We further suggest that the increase of dLHF/dT over the ascent region is 644 

due to the exponential Clapeyron-Clausius relationship, while the flattening after P04K could 645 
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be due to the weakening of surface winds and a thermodynamics-induced increase of the 646 

near-surface relative humidity with warming (e.g., Richter and Xie 2008; Equation 3 of 647 

Schneider et al. 2010). 648 

In contrast to EIS, the other CCFs (ω500, dQ, and LHF) do not resemble as well the 649 

overall evolution of the cloud feedback with warming. However, the tropical LHF and ω500 650 

may indirectly influence the cloud feedback through changing EIS (see the discussion above). 651 

In addition, the rate of circulation weakening (dω500/dT) becomes smaller in magnitude for 652 

very warm climates (Fig. 10b), which could directly strengthen the cloud feedback with 653 

warming from P04K to P12K. Over the subsidence region, dQ/dT in general first increases 654 

and then decreases with warming, which is opposite to the state dependence of the cloud 655 

feedback. However, dQ/dT over the ascent region increases with warming consistently, 656 

which may contribute to the increase of the cloud feedback from P04K to P12K though 657 

enhancing the entrainment drying of low clouds. 658 

We next explore the sensitivity of the low-latitude cloud feedback to model parameters. 659 

The low-latitude cloud feedback in PREI is primarily influenced by the microphysical ice-660 

snow autoconversion parameter (micro_mg_dcs; first column of the middle and right panels 661 

of Fig. 8). A higher micro_mg_dcs reduces ice-snow autoconversion (microphysical snow 662 

formation) and increases cloud IWP, LWP and cloud cover in the background climate likely 663 

due to an overall lower precipitation efficiency. In response to warming, PPEs with higher 664 

micro_mg_dcs simulate greater reduction in cloud condensates and cover, and thus a stronger 665 

cloud feedback (see also Figure 10 of Gettelman et al. (2024)). This relationship between the 666 

cloud feedback and the background clouds can be explained by the so-called “beta feedback” 667 

(Brient and Bony 2012): a low-cloud reduction decreases the cloud-top radiative cooling and 668 

relative humidity in the BL, which amplifies the low-cloud reduction, forming a feedback 669 

loop with its strength depending on the background clouds. Additionally, micro_mg_dcs also 670 

acts in the tropics, suggesting additional role of the tropical cirrus clouds (Figures 9 and 11 of 671 

Gettelman et al. (2024)). More discussion on the sensitivity to model parameters can be found 672 

in Gettelman et al. (2024). In contrast to the mean state cloud feedback, the state dependence 673 

(e.g., Δλ between P04K and M04K, and between P12K and P04K; Fig. 8) appears to rely less 674 

on individual cloud parameters, which is consistent with our explanations (see above) related 675 

to large-scale stability, circulation, and their connections to simple nonlinear 676 

thermodynamics. 677 
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In summary, the state dependence of low-latitude cloud feedback primarily arises from 678 

the shortwave component over the ocean. This feedback shows a strong correlation with the 679 

state dependence of the estimated inversion strength, which we hypothesize is due to 680 

nonlinearity in thermodynamics and large-scale circulation. To further investigate this 681 

relationship, mechanism denial experiments are needed, such as simulations with fixed 682 

circulation. This will be the focus of our future research. 683 

5. Discussion and Conclusion 684 

a. Discussion 685 

Our investigation of the cloud feedback with a variety of parameter configurations over a 686 

wide range of global temperatures represents an effective way to identify robust cloud 687 

feedback processes. Specifically, the important role of the cloud liquid water on the high-688 

latitude cloud feedback emphasizes the moist adiabatic mechanism (Betts and Harshvardhan 689 

1987; Mülmenstädt et al. 2021; Frazer and Ming 2022) over the debated cloud ice 690 

mechanisms in mixed phase clouds (e.g., Tan et al. 2016). The significant influence of cloud 691 

microphysical parameters, particularly those regarding liquid water autoconversion and 692 

accretion, points to the necessity for further research to reduce uncertainties in these areas. 693 

Additionally, the good match of the lower-tropospheric stability change with the low-latitude 694 

cloud feedback across different climate states emphasizes the vital connection between the 695 

atmospheric stability and cloud processes. Future studies should aim to deepen our 696 

understanding of stability changes and their interactions with dynamical, thermodynamical, 697 

and radiative processes, ultimately enhancing our comprehension of cloud feedback 698 

mechanisms and refining climate model predictions. Future work with different 699 

models/parameterizations is needed to test the sensitivity to model structural uncertainties, 700 

which are challenging to explore in a single model with known structural biases in mixed-701 

phase clouds and warm rain processes (Gettelman et al. 2020; Medeiros et al. 2023; 702 

Gettelman et al. 2021). 703 

Our results suggest that state dependence of the cloud feedback could be as important as 704 

the SST pattern effect within a typical ΔGMST range of an abrupt 4×CO2 simulation of 150 705 

years. Fig. 11 compares the zonal mean cloud feedback changes resulting from the state 706 

dependence (blue for M04K and yellow for P04K) and the SST pattern effect (brown for 707 

PREI_PAT). The pattern effect is calculated as the cloud feedback difference between 708 
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P04K_PAT and P04K, both with PREI as a reference. The SST pattern in P04K_PAT is 709 

derived from the fully coupled 4×CO2 simulation (averaged between year 131 and 150). The 710 

global mean ΔλCRE associated with state dependence is slightly larger than that from the 711 

pattern effect (0.10 and 0.12 versus 0.07 W m‒2 K‒1). The larger state dependence is more 712 

prominent at regional scales. From these results, we suggest that the state dependence from a 713 

4-K warming or cooling could be as important as, if not more important than, the SST pattern 714 

effect, although results may depend on details of the SST pattern. We further suggest that 715 

mechanistic understanding and quantification of the cloud feedback should be carefully 716 

performed with considerations of both the state dependence and pattern effect. 717 

 718 
Fig. 11. Comparison of the state dependence and the sea-surface temperature pattern 719 

effect of the cloud feedback. State dependence is the cloud feedback change from the 720 
preindustrial (PREI) for the background states with uniform 4-K SST cooling (λM04K ‒λPREI in 721 
blue) and warming (λP04K ‒λPREI in yellow). The pattern effect is the cloud feedback change 722 
from preindustrial (PREI) for the experiment with a patterned 4-K SST warming from the 723 
preindustrial (λPREI_P04K_PAT ‒λPREI in brown). Results are from the top-50 ensemble members. 724 
Units: W m‒2 K‒1. 725 

 726 

Stronger low-latitude cloud feedback under conditions colder than the preindustrial has 727 

been found in simulations of the Last Glacial Maximum using multiple generations of CESM 728 

(Zhu and Poulsen 2021; Zhu et al. 2021). Likewise, stronger global cloud feedback is 729 

consistently observed in simulations of warmer conditions (Caballero and Huber 2013; Zhu et 730 

al. 2019; Zhu and Poulsen 2020). Here we find that uniform cooling or warming can lead to 731 

significantly enhanced cloud feedback. This nonlinear state dependence is tied to 732 

fundamental thermodynamic mechanisms, specifically the moist adiabatic processes 733 
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involving cloud liquid water at high latitudes and the tropical latent heating that influences 734 

the lower-tropospheric stability at low latitudes. Changes in the tropical circulation may also 735 

contribute additional mechanisms. However, we recognize that using cloud-controlling 736 

factors may limit our ability to identify causality between cloud processes and their 737 

environments. To address this, future studies should employ mechanism-denial simulations—738 

where circulation or clouds are fixed—to disentangle the complex interactions among 739 

circulation, thermodynamics, and lower-tropospheric stability. This will be a focus of our 740 

future research. 741 

Nevertheless, integrating state dependence and the pattern effect into paleoclimate 742 

constraints on climate sensitivity is crucial. The research by Cooper et al. (2024) is pivotal in 743 

this regard, as it provides a comprehensive framework that incorporates both the pattern 744 

effect and state dependence in cloud feedback, along with other climate feedbacks. 745 

Particularly for distant periods in Earth’s history like the early Eocene (~50 million years ago 746 

with GMST of ~14℃ warmer), where conditions were markedly different from today's 747 

climate, understanding state dependence becomes increasingly important (Zhu et al. 2024, 748 

2019). 749 

b. Conclusion 750 

In this study, we performed a suite of PPE simulations to investigate state dependence of 751 

the cloud feedback over a wide range of global mean surface temperatures that covers 752 

roughly the past 66 million years. Multiple sets of PPE simulations were run employing an 753 

updated version of CAM6 in the preindustrial condition with prescribed uniform SST 754 

perturbations of ‒4, 0, +4, +8, +12, and +16 K, respectively. Each PPE set uses 250 ensemble 755 

members to sample uncertainty of 45 parameters in cloud microphysics, aerosol and 756 

convection and turbulence. After removing configurations that are less realistic according to 757 

satellite observations and expert assessments, the top-50 PPE members still exhibit wide 758 

ranges in cloud properties and feedbacks comparable to those in CMIP5 and 6 models, 759 

supporting PPE as an effective approach for exploring model uncertainties within a single-760 

model framework. We contend that our PPE approach with a wide temperature range could 761 

provide more robust results on the state dependence than previous studies that rely on a single 762 

model or configuration (Caballero and Huber 2013; Zhu et al. 2019; Zhu and Poulsen 2020). 763 

Our results suggest a nonconstant cloud feedback parameter that increases to higher 764 

values under both colder and warmer GMSTs. Under a climate colder by ~4 K than the 765 
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preindustrial (M04K), the global mean cloud feedback increases by 0.12±0.12 W m‒2 K‒1 (1 766 

standard deviation derived from the top-50 members) from the preindustrial with 44 of the 767 

top-50 members exhibiting an increase. Under conditions warmer than the preindustrial, the 768 

cloud feedback strengthens gradually with GMST with an increase of 0.38±0.32 W m‒2 K‒1 769 

in the warmest state (P12K), with 46 out of the top-50 members showing an increase trend. 770 

The state dependence of cloud feedback results from distinct behaviors over the high and low 771 

latitudes (divided broadly by 40°N/S) and are linked to the large-scale changes in 772 

thermodynamics and circulation. 773 

Over high latitudes, the cloud feedback increases monotonically by 0.34±0.16 W m‒2 K‒1 774 

from M04K to M08K and appears to reach a saturation in P08K (scaled values showing the 775 

net contribution to the global mean). This response correlates strongly with changes in cloud 776 

liquid water, which suggests a moist adiabatic mechanism, i.e. the cloud liquid water 777 

feedback (Betts and Harshvardhan 1987). In this thermodynamic mechanism, the rate of 778 

warming-induced increase of cloud water scales with the change of the moist adiabatic lapse 779 

rate rather than changes in saturation mixing ratio. As a result, the rate of cloud water 780 

increase is relatively higher at lower temperatures, giving rise to the temperature dependence 781 

and eventual saturation of the cloud liquid water feedback. In contrast, the feedbacks related 782 

to cloud ice content, such as cloud lifetime and phase changes in mixed-phase clouds, appear 783 

to have a secondary influence. This is supported by the very weak or negligible correlation 784 

between cloud feedback and variations in cloud ice water content. Moreover, the strong 785 

correlation of high-latitude cloud feedback with microphysical parameters related to cloud 786 

liquid water processes—such as autoconversion and accretion—further underscores the 787 

dominant influence of the cloud liquid water feedback and the moist adiabatic mechanism. 788 

Over low latitudes, the cloud feedback increases under both colder and warmer conditions 789 

compared to the preindustrial, showing an increase of 0.27±0.12 W m‒2 K‒1 in a 4-K colder 790 

climate (M04K) and a gradual increase of 0.21±0.26 W m‒2 K‒1 in a 12-K warmer climate. 791 

The state dependence is primarily driven by the cloud feedback over the ocean, with a greater 792 

contribution from subsidence than from ascent regions. Using the framework of cloud 793 

controlling factor, the state dependence is found to follow most closely the EIS variations, 794 

suggesting an important role of the lower-tropospheric stability in regulating the cloud 795 

behavior. The variations of EIS sensitivity, the initial increasing of dEIS/dT from M04K to 796 

PREI and the subsequent decreasing to P12K, are hypothesized to result from competing 797 
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effects from the nonlinearity in thermodynamics and changes in the large-scale circulation. 798 

The rate of latent heat increase with warming (dLHF/dT) over the tropical ascent region 799 

strengthens from M04K to P04K and becomes saturated afterwards, which could contribute 800 

to the initial increasing dEIS/dT through affecting the free troposphere temperature via latent 801 

heating (Webb et al. 2018). This nonlinearity in the latent heat sensitivity, in turn, could 802 

result from combined effects of the exponential Clapeyron-Clausius relationship (e.g., 803 

Schneider et al. 2010) and the declining surface winds and increasing near-surface relative 804 

humidity with warming (e.g., Richter and Xie 2008). In addition, the weakening of tropical 805 

circulations emerges as a consistent response to warming, which could impact the cloud 806 

feedback either indirectly through regulating the EIS or directly through impacting the cloud 807 

top entrainment (Myers and Norris 2013), which, we suggest, may be important for the 808 

decrease of dEIS/dT and the increase of cloud feedback after P04K. This intricate interplay 809 

between thermodynamics and circulation emphasizes the complex dynamics of cloud 810 

feedback processes in low-latitude regions. 811 
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