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Understanding Earth’s past warm climates is crucial for improving climate

modeling and future projections. We revisit the early Eocene “Equable Climate

Problem”, the longstanding mismatch between proxy-inferred weak meridional

and seasonal temperature contrasts at ∼50 Ma and the overly strong gradients

and seasonality simulated by climate models, using the first fully coupled, high-

resolution (HR) Eocene simulations. Our simulation employs ∼10× finer spatial

resolution in both the atmosphere and ocean than conventional low-resolution

(LR) models at ∼1–2°. The HR simulation produces a more equable Eocene cli-

mate, with over 5 ◦C warmer temperatures in continental interiors during winter

and oceanic western boundary current regions. These temperatures more closely

align with paleoclimate proxies, reducing the model-proxy discrepancy by ∼20–

30% relative to LR simulations. The improvements arise from a poleward shifted
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storm track with stronger wintertime atmospheric storminess at high latitudes,

enhancing atmospheric heat transport and downward cloud longwave radiation,

along with differences in oceanic eddy heat transport. Parallel HR simulations

of future climate change similarly show additional regional and seasonal warm-

ing relative to LR. These findings indicate that traditional LR models may sys-

tematically underestimate extreme warming in past and future warm climates,

underscoring the need for HR simulations in climate research and projections.

Introduction

Equable Climates refer to past warm periods—such as the Cretaceous (∼100 million years ago)

and the Eocene (∼50 million years ago)—that have a reduced equator-to-pole temperature gradient

compared to modern, and above-freezing winter temperatures at high latitudes (1–3). Reproducing

these climates in models has historically been challenging, leading to what is known as the Equable

Climate Problem (1, 4, 5). Recent climate models, with upgraded cloud-related parameterizations

and improved paleoclimate boundary conditions, better simulate the global mean surface temper-

ature (GMST) but still struggle to capture the high-latitude sea-surface temperature (SST) and

cold month mean temperature (CMMT) (6–9). For example, models substantially underestimate

proxy-inferred high-latitude SSTs over the Southwest Pacific and winter warmth in the continental

interiors of both poles, in some cases by as much as 15–30◦C (Figure 1). These persistent dis-

crepancies imply that current models may be deficient in simulating key warm-climate processes

at mid-to-high latitudes, with significant implications for predicting and preparing for future cli-

mate change, including polar amplification, hydroclimate responses, and extreme weather events

(e.g. (10, 11)).

Here we revisit the “Equable Climate Problem” of the early Eocene by conducting, to the best

of our knowledge, the first fully coupled paleoclimate simulation at an unprecedented horizontal

resolution in both the atmosphere and ocean—approximately 10× finer than that of traditional

low-resolution (LR) models at 1–2° (Materials and Methods). This advancement is made possi-

ble by recent progress in high-resolution (HR) modeling and supercomputing capabilities. A key

advantage of HR models (at a grid spacing of ∼10 km in the ocean and ∼ 25 km in the atmo-
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sphere) is that they explicitly resolve, rather than parameterize, ocean eddies, and they improve

the representation of mesoscale air-sea interactions and mesoscale weather features in the atmo-

sphere (12–14). As a result, a wide range of atmospheric, hydroclimate, and oceanic processes are

simulated more realistically (12–19). Despite these advantages, HR capabilities have rarely been

applied in paleoclimate contexts, due both to their high computational cost (typically ∼100× that

of LR models) and the substantially different boundary conditions and long integrations required

for ocean-atmosphere coupled paleoclimate simulations to approach equilibrium. We address these

challenges with a new spin-up strategy: first running a corresponding LR paleoclimate simulation

for several thousand years to achieve near equilibrium, then interpolating its ocean state to initialize

the HR run (Materials and Methods). This approach enables us to conduct the HR simulation for

60 model years, allowing direct comparison with its LR counterpart and providing insights into the

climatic impact of resolution at decadal and potentially longer timescales.

Results

Deficiencies in modeled temperatures in the low-resolution simulation

The LR simulation was run with the Community Earth System Model version 1.3 (CESM1.3), using

a similar setup to the previously published CESM1.2 simulations (Materials and Methods) (6, 20).

The Eocene GMST in the new LR CESM1.3 simulation matches that in CESM1.2 (24.9 ◦C,

calculated using 2-meter air temperature). Similar to CESM1.2, CESM1.3 reproduces 21 out of

53 Eocene proxy records of the mean annual air temperature (MAAT) within their uncertainty

(90% confidence intervals; CI), and 14 out of 29 proxy SST records (Figure 1A-C). The overall

root-mean-square errors (RMSEs) of simulating the proxy MAAT and SST are 7.3 ◦C and 7.8 ◦C

respectively, both comparable to the averaged intrinsic proxy uncertainties (>5–6 ◦C; 90% CI;

Supplementary Materials Data S1 and S2), especially given the methodological differences among

reconstructions (21–24). The equator-to-pole SST gradient is similar in CESM1.2 and CESM1.3,

both falling within the proxy-suggested ∼28% (90% CI of 14–46%) reduced SST gradient (with

the deep-ocean temperature used as a substitute for the polar SSTs due to proxy scarcity) (9).

The model–data mismatch is much larger for winter temperatures, particularly for continental

interior high-Arctic sites (Figures 1B,2B). Across sites, the RMSE increases to 9.8 ◦C for CMMT,
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with the greatest errors occurring inland. For example, at the Giraffe Kimberlite site in the Canadian

Arctic, proxies indicate a CMMT of 3.4 ◦C from mutual climate range analysis, a warm winter

condition further supported by palm phytoliths and warm-water aquatic organisms (25, 26). In

contrast, the LR simulation produces extremely cold winters with a CMMT near −18 ◦C. Likewise,

for the New Siberian Islands in Russia, proxy data suggest CMMTs of about 11 ◦C based on

warm-winter fossil taxa (27), while the model simulates −19 ◦C. These interior Arctic sites provide

strong constraints on minimum winter temperatures due to their inland setting and well-preserved

proxy records. For the non-Arctic sites (paleolatitude < 60°), the RMSE in CMMT is substantially

lower, at 8.0◦C compared with 15.0◦C for the Arctic.

The LR simulation also substantially underestimates the warm SSTs observed in the South-

west Pacific near New Zealand, where multiple proxy records indicate temperatures of ∼30 ◦C

(Figures 1C,2C). In contrast, the model simulates SSTs of only ∼15 ◦C in this region under 3×

preindustrial CO2, yielding a discrepancy of ∼15 ◦C. This pronounced model–data mismatch in

the Southwest Pacific stands in contrast to other regions, where LR reproduces regional SSTs more

accurately. For instance, the model simulates a tropical mean SST of 33.0 ◦C, matching proxy

reconstructions within their uncertainty (35.0 ± 3.7 ◦C; 90% CI).

Importantly, the model–data mismatches in both high-latitude winter temperatures and South-

west Pacific SSTs are not unique to CESM1 but are common across all models participating in the

Deep-Time Model Intercomparison Project (DeepMIP), highlighting a persistent and unresolved

challenge in simulating key aspects of the Eocene climate (7–9,28). Together, these results suggest

that the discrepancies likely stem from missing or inadequate representation of model physics, or

the absence of additional, non-traditional forcings that are typically excluded from current climate

models (4, 10, 29–32). Nevertheless, uncertainties in proxy interpretations and calibrations cannot

be fully ruled out (22, 28, 33).

Improved and more equable climate in the high-resolution simulation

The HR simulation produces a markedly more equable climate than the LR, with both reduced

spatial temperature contrasts and reduced seasonal variations. Winters are substantially warmer

in the HR simulation, with CMMTs exceeding those in the LR simulation across the continental

interiors of both polar regions (Figure 1E,G). At both the Giraffe Kimberlite and the New Siberian
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Islands sites, CMMTs in HR are approximately 5 ◦C higher than in LR, reducing model bias by up to

∼25%. In contrast, temperature differences for low-latitude land and annual means remain modest,

generally less than 1–2 ◦C at most locations (Figures 1D and 2A). Aggregating all high-Arctic proxy

sites, the HR simulation reduces the RMSE in CMMT by about 2 ◦C compared to LR (from 15.1 to

13.1 ◦C) and reduces the RMSE for MAAT from 9.3 to 8.3 ◦C. The increased winter warmth over

continental interiors is linked to a reduction in temperature seasonality (Figure 3A,C). Over the

Canadian Arctic (land area between 50–75°N and 100–40°W), LR simulates a seasonal temperature

amplitude of∼41 ◦C (Tseason, defined as the temperature difference between the warmest and coldest

months in the climatology), while HR exhibits a smaller amplitude of ∼37 ◦C, corresponding to

a 10% reduction (Figure 3B). Similarly, seasonality over Siberia (land area between 58–75°N and

75–105°E) declines by approximately 10% (∼4 ◦C, Figure 3D). These simulated Eocene seasonal

temperature ranges are considerably narrower than those in present-day climate, which reaches

55 ◦C over Siberia and 45 ◦C over the Canadian Arctic (34).

The HR simulation demonstrates notably warmer SSTs as well, particularly in mid-to-high

latitudes (Figures 1F,H and 2C). In the Southwest Pacific region, SSTs are up to 5 ◦C warmer

than in the LR simulation, reducing the model bias by ∼30%. Similarly elevated SSTs are found

over other western boundary current systems, including the Northwest Pacific, Northwest Atlantic,

and Southwest Atlantic. While SSTs in low-latitude regions are also higher in HR, the average

difference is smaller, at approximately 1 ◦C. The enhanced SST warming over western boundary

current regions in our coupled simulations qualitatively agrees with results from previous ocean-

only simulations of past warm climates (35).

CESM1 LR is one of the best-performing DeepMIP models for the early Eocene, simulating

global mean temperature, precipitation, oxygen isotopes, and inferred vegetation distribution in good

agreement with proxy records (7,9,36–38). CESM1 HR further enhances the simulation of regional

and seasonal temperatures, reducing model-data discrepancies by ∼20–30%. Apart from minor

tuning adjustments to maintain top-of-atmosphere radiation balance (13), HR and LR share nearly

identical boundary and initial conditions and differ primarily in horizontal resolution (Materials and

Methods). The enhanced performance of the HR simulation can therefore be attributed largely to its

finer horizontal resolution. We further suggest that the improvements in HR identified here would

persist if substantially greater computational resources were available to extend the simulation
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beyond 60 years, as both the GMST and top-of-model radiation are relatively stable in HR and

are not very different from the LR counterparts (Figure S1). Together with the underlying physical

mechanisms, which operate on relatively short timescales (see next section), this supports the

robustness of the HR improvements beyond decadal timescales.

Mechanisms for the More Equable Climate at High Resolution

To identify the mechanisms underlying the more equable and realistic climate in the HR simulation,

we first disentangle the relative contributions of atmospheric and oceanic horizontal resolution,

given that both components are refined in the fully coupled HR configuration. To this end, we

analyze an additional hybrid-resolution simulation (HaLo; High-resolution atmosphere and Low-

resolution ocean), in which the atmosphere and land components employ the same horizontal

resolution as the HR simulation and the ocean and sea ice remain at the same resolution as

in the LR simulation (Materials and Methods). Comparisons between HaLo and LR therefore

primarily isolate the effects of increased atmospheric resolution, whereas differences between HR

and HaLo quantify the contribution of enhanced oceanic resolution. Because additional pathways

may operate in the coupled system—for example, changes in ocean resolution can modify SST

patterns and thereby influence land temperatures via SST-mediated atmospheric responses—we also

conduct atmosphere-only simulations with prescribed SSTs to isolate the role of these SST-mediated

atmospheric pathways (Materials and Methods).

As shown in Figures 4A and B, HaLo exhibits up to 5 ◦C of continental winter warming relative

to LR, while HR produces a smaller winter warming of ∼1–2 ◦C relative to HaLo, largely confined

to coastal regions. Resolution-induced differences in land temperature are strongly seasonally

asymmetric, peaking in winter and remaining negligible in summer. As a result, CMMT increases by

approximately 4 ◦C on average over the Canadian Arctic and Siberia regions (Figures 3A,C). Higher

atmospheric resolution accounts for more than half of the reduction in the seasonal temperature

range between HR and LR (ΔTseason). This interpretation is supported by the pronounced decrease

in ΔTseason of ∼3 ◦C between HaLo and LR, two fully coupled simulations that differ only in

atmospheric resolution (Figures 3B,D). Further support comes from the substantial reduction in

ΔTseason of ∼2 ◦C in HaLo relative to an additional LR atmosphere-only simulation forced with

HaLo SSTs (La SSTHaLo; Materials and Methods). Because HaLo and La SSTHaLo share identical
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SST climatology but differ in atmospheric resolution, this comparison isolates the direct influence

of atmospheric resolution, independent of SST-mediated feedbacks. In contrast, changes in ocean

resolution exert only a minor influence on ΔTseason when atmospheric resolution is held fixed.

Specifically, ΔTseason differs by less than 1 ◦C between HR and HaLo (two coupled simulations

with identical high-resolution atmosphere but different ocean resolution) and between La SSTHR

and La SSTLR, which employ the same low-resolution atmosphere but prescribe SSTs from HR and

LR, respectively (Materials and Methods). Overall, atmospheric resolution emerges as the primary

driver of enhanced continental winter warming and reduced seasonality in the HR configuration.

We hypothesize that the improved representation of synoptic- and mesoscale atmospheric

systems in the HR simulation enhances diabatic heating, storm activity, and cloudiness at high

latitudes, leading to warmer winters in continental interiors. Consistent with this interpretation,

wintertime storminess, quantified by 2–8-day bandpass-filtered eddy kinetic energy at 850 hPa

(EKE850; Materials and Methods), is approximately 30% greater in HR than in the LR simulation

at high latitudes in association with a more poleward shifted stormtrack (Figure 5). This enhanced

high-latitude storminess is accompanied by stronger meridional eddy heat flux, increased cloud

cover and cloud water content and associated increases in downward longwave radiation, and

greater precipitation (Figure S2). The increases in cloudiness and their longwave radiative effects

are consistent with previous studies linking enhanced low clouds to polar winter warming as a

potential contributor to resolving the Equable Climate Problem (10). The enhanced high-latitude

storminess is associated with a poleward shift of wintertime storm tracks in both preindustrial

and Eocene HR simulations, with a markedly stronger signal under Eocene warming (Figure S3).

This behavior is consistent with theoretical and modeling studies highlighting the role of latent

heating in modulating high-latitude storminess (39–42), as well as with the poleward shift of storm

tracks seen in high-resolution models (43–45). It also aligns with earlier work demonstrating that

higher atmospheric resolution is required to resolve the mesoscale structure of winter storms,

their associated latent heating, and their interactions with jet streams without excessive numerical

diffusion (45–47). Importantly, the resolution-driven enhancement and poleward shift of storminess

are primarily attributable to increased atmospheric resolution, supporting our proposed mechanism,

whereas higher oceanic resolution mainly contributes to weaker storminess over much of the mid-

latitude oceans (Figures 5C,D).
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In contrast to atmospheric resolution, higher oceanic resolution explains the warmer SSTs across

mid-latitude western boundary current regions and provides a secondary contribution to continental

warming. Regions of pronounced SST warming coincide with areas of intense oceanic eddy activity

(Figures 4 and S4; Materials and Methods), indicating that explicitly resolved eddies in HR influ-

ence ocean temperatures in ways not fully captured by the parameterized eddies in LR. Enhanced

ocean resolution with resolved eddies tends to cool tropical SSTs while warming mid-latitude SSTs

(HR versus HaLo in Figure 4D; see also Figure S5F for the parallel preindustrial simulations), con-

sistent with stronger eddy-induced meridional heat transport. Additional warming likely arises from

reduced vertical heat redistribution in high-resolution ocean with explicit simulation of mesoscale

ocean eddies (17). These results reinforce the importance of explicitly resolving oceanic mesoscale

eddies for regional SSTs and point to potential deficiencies in current-generation eddy parameter-

izations (12, 13, 17, 48, 49). For example, a recent study introduced a stochastic energetics-based

scheme into an ocean eddy parameterization to represent missing eddy-induced variability in LR

and found enhanced meridional heat transport in eddy-rich western boundary current regions and

the Antarctic Circumpolar Current, leading to warmer SSTs (50).

We emphasize that the benefits of high resolution in paleoclimate simulations stem from its

improved representation of the modern climate, and we further suggest that these resolution-

related improvements are state dependent and become more pronounced under strong external

forcing. Consistent with this interpretation, the HR configuration performs better in present-day

simulations, yielding more realistic winter temperatures over continental interiors and more accurate

SST structures along western boundary currents (Figures S6, S5; see also (12, 13)). For example,

relative to reanalysis (averaged over 1950–1978), the LR preindustrial simulation exhibits a cold

bias in CMMT exceeding 5 ◦C across much of the high Arctic, particularly over Siberia, whereas

HR substantially reduces the spatial extent of this bias, primarily due to the increased atmospheric

resolution (Figures S6D,F,H). Consistently, enhanced ocean resolution reduces SST biases over the

western boundary current regions when compared with present-day observation (Figure S5). Beyond

mean-state temperatures, HR more accurately captures climate variability over western boundary

current regions (18), better reproduces observed ocean heat uptake during the historical period

(see Figure 1 of (17)), and demonstrates higher predictive skill in decadal forecast systems (16).

Importantly, we note that the structural differences identified in our relatively short (60-year) Eocene
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HR simulation closely resemble those found in the long preindustrial HR simulation exceeding 700

years, indicating that our results are robust and unlikely to be strongly influenced by the limited

length of the HR simulations.

Under Eocene warming, these resolution-related differences intensify, indicating a clear state-

dependent resolution effect. In particular, diabatic heating and storminess associated with finer

atmospheric resolution strengthens as temperatures rise, consistent with the nonlinear Clau-

sius–Clapeyron relationship (Figure S3). Likewise, oceanic processes may also establish a positive

feedback that enhances the impact of resolution under strong external forcing. Specifically, HR

models tend to simulate a more stratified and realistic upper ocean in the background state, which

leads to reduced ocean heat uptake below 250 m and a warmer upper ocean layer compared to LR

counterparts for comparable surface fluxes (17). Together, these mechanisms amplify the climatic

influence of resolution when external forcing is strong.

Implications for modern-day climate change

To evaluate the implications of our findings for modern-day climate change, we performed parallel

HR and LR simulations with present-day continental configurations under 4×CO2 forcing. The

LR 4×CO2 experiment was branched from a preindustrial (PI) simulation and integrated for 2,700

model years. The HR simulation was then initialized and integrated for 50 years, following the same

initialization procedure used for the HR Eocene experiment (Materials and Methods). This pair of

quasi-equilibrated 4×CO2 simulations isolates the influence of model resolution on equilibrated

warm climate states and enables direct comparison with the Eocene results. To further assess

resolution effects under more moderate warming, we analyzed 10-member ensembles of HR and

LR Representative Concentration Pathway 8.5 (RCP8.5) simulations from the Understanding the

Role of MESoscale Atmosphere–Ocean Interactions in Seasonal-to-Decadal CLImate Prediction

(MESACLIP) project (13, 19, 51, 52). These transient experiments complement the 4×CO2 and

Eocene simulations by sampling resolution-driven differences in a transient 21st-century emissions

scenario. The 10-member ensemble also reduces much of the influence of internal variability on

our results.

Consistent with the Eocene experiments, both the HR 4×CO2 and RCP8.5 simulations exhibit

substantially warmer CMMT over high latitudes than its LR counterpart (Figure 6), with differences
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reaching up to 5 ◦C over Siberia and the Canadian Arctic. At the process level, these simulations

show a poleward shift and intensification of storminess along the poleward flanks, accompanied

by increases in cloudiness and associated cloud radiative effects, closely mirroring the behavior

seen in the Eocene simulations (Figure S3). Both HR simulations also produce enhanced warming

along western boundary current regions, consistent with the Eocene results, albeit with reduced

magnitude. The similarity of these responses across climate states highlights the broader relevance

of the resolution-dependent mechanisms identified here for future climate projections. In particular,

enhanced diabatic heating and ocean eddy–driven heat transport and redistribution operate in a

comparable manner in PI-based future warming experiments as atmospheric and oceanic resolution

increase. Nonetheless, differences in background states between the Eocene and the modern world

may modulate the strength and expression of these effects through factors such as distinct continental

configurations, cryospheric feedbacks, and altered freshwater and heat exchange through ocean

gateways (53).

Building on our Eocene results, we propose that CMMT differences between HR and LR

simulations become increasingly pronounced in warmer climates because the mesoscale latent-

heating feedback is state dependent, intensifying with temperature through the nonlinear Clau-

sius–Clapeyron relationship. The resulting enhancement of winter warming and storminess implies

reduced cold extremes, such as cold-air outbreaks, particularly over continental interiors, where

winter storms already cause multi-billion-dollar damages in regions such as the continental United

States.

Discussion

We have investigated how unprecedented high horizontal resolution influences simulated temper-

atures in early Eocene and future warming simulations. We find that the high-resolution Eocene

simulation produces up to 5 ◦C warmer temperatures in high-latitude continental interiors during

winter and in western boundary current regions, yielding a more equable climate with reduced

spatial and seasonal temperature gradients. Similar enhancements in surface temperature responses

are also evident in parallel high-resolution simulations of future warming. These results suggest that

key characteristics of both past and future climate change—including polar amplification, regional
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and seasonal temperature patterns, and associated hydrological and extreme-event responses, may

be underestimated or incompletely represented in conventional low-resolution models. Our find-

ings are consistent with a growing body of literature highlighting the limitations of low-resolution

models and the benefits of increased resolution (18, 19, 53), while providing a long-term climate

change and paleoclimate perspective.

High resolution helps to address the long-standing “Equable Climate Problem” by reducing

the model-proxy discrepancies by up to 30%. Nevertheless, at 3×CO2, substantial model-proxy

mismatches persist, indicating that the high resolution employed in this study alone is insufficient

to fully reconcile models with proxy evidence. One contributing factor is that our HR Eocene

simulation adopts 3× preindustrial CO2, which lies at the lower end of recent reconstructions

(54, 55), and model–proxy agreement would therefore be expected to improve under stronger CO2

forcing. The remaining discrepancies likely reflect a combination of factors, including the need for

even finer resolution, additional feedback mechanisms, and uncertainties in proxy reconstructions

and paleoclimate boundary conditions. As an illustrative example, if high-latitude SST proxies are

assumed to reflect local summer temperatures—consistent with a light limitation on biological

growth—RMSE in the HR simulation decreases to 5.3 ◦C and approaches the intrinsic mean proxy

uncertainty, compared with 6.6 ◦C for the annual-mean SST (Figure 2C). We suggest that future

progress will likely depend on improved constraints on CO2 and non-CO2 boundary conditions

(e.g., paleogeography, vegetation, and land surface properties), together with continued advances

in model resolution, physical fidelity, and proxy reconstruction techniques. Despite these remaining

uncertainties, the HR simulations reported here represent significant progress relative to traditional

low-resolution models.

Our results underscore the critical role of increasing model resolution for simulating both past

and future warm climates. Higher resolution enhances the representation of weather and climate

systems, primarily through better resolving synoptic- and mesoscale atmospheric activities and

more accurate depiction of oceanic eddies. While the current HR simulations still depend on

several parameterizations, further gains may be achieved by moving toward kilometer-scale, storm-

resolving models that explicitly capture deep convection and a broader spectrum of mesoscale and

submesoscale processes.

We encourage the climate dynamics and paleoclimate communities to adopt high-resolution
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modeling capabilities early and to pursue innovative strategies for assessing their influence on both

past and future warm climates, particularly regarding hydrological cycle changes and extreme events.

High resolution is especially valuable for paleoclimate studies, as many proxy records originate from

coastal and eddy-rich regions with high biological productivity and strong spatial heterogeneity.

A hierarchical modeling framework that combines high- and standard-resolution configurations,

leveraging the physical realism of the former together with the long, fully equilibrated spinups of

the latter, is essential for delivering more robust climate representations.
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(A) MAAT: LR (B) CMMT: LR (C) SST: LR

(D) MAAT: HR - LR (E) CMMT: HR - LR (F) SST: HR - LR

−5−4−3−2−1 0 1 2 3 4 5

(G) CMMT: HR - LR (High Arctic) (H) SST: HR - LR (Southern Ocean)

−20−14 −8 −2 4 10 16 22 28 34 40 0 4 8 12 16 20 24 28 32 36 40

Figure 1: Spatial distribution, model–data comparison, and resolution dependence of Eocene

temperatures (◦C). (A) Mean annual surface air temperature (MAAT) from the low-resolution

(LR) simulation (shading) compared with proxy reconstructions (markers). (B, C) Same as A,

but for cold-month mean temperature (CMMT) and annual mean sea-surface temperature (SST),

respectively. (D) Difference in MAAT between the high-resolution (HR) and LR simulations. (E,

F) As in D, but for CMMT and SST, respectively. (G, H) As in E and F, but shown in a polar

projection to highlight resolution-induced differences at high latitudes.
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Figure 2: Model–data comparison of Eocene temperatures and resolution dependence. (A)

Latitudinal distribution of model–proxy differences in mean annual surface air temperature (MAAT)

from the low-resolution (LR; blue) and high-resolution (HR; red) simulations. (B, C) As in A, but

for cold-month mean temperature (CMMT) and sea-surface temperature (SST), respectively. In

C, model–data comparisons of summer-mean SST are also shown (orange), assuming the proxies

reflect summer SSTs; summer is defined as the warmest consecutive three months. Error bars

indicate the 90% confidence intervals of proxy uncertainties. Colored numbers denote the root-

mean-square errors (RMSE) across all available proxy sites.
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Figure 3: Seasonal temperature range over the high Arctic across different simulations. (A)

Climatological surface air temperature (SAT) by month of the year in the low-resolution (LR),

high-resolution (HR), and hybrid high-resolution–atmosphere/low-resolution–ocean (HaLo) simu-

lations, averaged over land in the Canadian Arctic (50–75°N, 100–40°W). (B) Differences in the

seasonal SAT range (ΔTseason) over the Canadian Arctic among the HR, LR, HaLo, and atmosphere-

only simulations with prescribed sea-surface temperatures (SSTs) from HR (La SSTHR), LR

(La SSTLR), and HaLo (La SSTHaLo), respectively. (C, D) Same as A and B, but for Siberia

(58–75°N, 75–105°E).
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(A) CMMT: HaLo - LR (B) CMMT: HR - HaLo

(C) SST: HaLo - LR (D) SST: HR - HaLo

−5 −4 −3 −2 −1 0 1 2 3 4 5 (℃)

Figure 4: Effects of model resolution on simulated temperatures isolated by a hybrid-

resolution simulation. (A) Difference in cold-month mean temperature (CMMT) between the

hybrid high-resolution–atmosphere/low-resolution–ocean (HaLo) and low-resolution (LR) simu-

lations. (B) Same as A, but showing the difference between the high-resolution (HR) and HaLo

simulations. (C, D) Same as A and B, respectively, but for annual-mean sea-surface temperature

(SST).
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(A) Winter EKE850: LR (B) Winter EKE850: HR - LR

(C) Winter EKE850: HaLo - LR (D) Winter EKE850: HR - HaLo

0 3 6 9 12 15 18 21 24 27 30 (m2 s¡2)

−5 −4 −3 −2 −1 0 1 2 3 4 5 (m2 s¡2)

Figure 5: Resolution dependence of wintertime storminess. (A) Storminess, quantified by eddy

kinetic energy at 850 hPa (EKE850), in the low-resolution (LR) simulation. (B) Difference in EKE850

between the high-resolution (HR) and LR simulations. (C) Same as B, but showing the difference

between the hybrid high-resolution–atmosphere/low-resolution–ocean (HaLo) and LR simulations.

(D) Same as B, but showing the difference between the HR and HaLo simulations. Winter is defined

as December–February (DJF) for the Northern Hemisphere and June–August (JJA) for the Southern

Hemisphere. EKE850 is calculated using bandpass-filtered daily data.
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(A) CMMT PI_4xCO2: HR - LR (B) CMMT RCP85 (10 mbrs): HR - LR

(C) SST PI_4xCO2: HR - LR (D) SST RCP85 (10 mbrs): HR - LR

−5 −4 −3 −2 −1 0 1 2 3 4 5 (℃)

Figure 6: High-resolution simulations produce warmer winters and western boundary current

regions under future climate forcing. (A) Difference in cold-month mean temperature (CMMT)

between the high-resolution (HR) and low-resolution (LR) simulations for the abrupt 4×CO2

experiment. (B) Same as A, but for the RCP8.5 simulations. Shown are ensemble means from ten

RCP8.5 members averaged between 2071 and 2100. (C, D) Same as A and B, but for the annual

mean sea surface temperature (SST).
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Materials and Methods

Model and Resolution

We use the Community Earth System Model version 1.3 with water isotope capabilities (CESM1.3)

(56, 57). CESM1.3 retains the same model components as CESM1.2, including the Community

Atmosphere Model version 5 (CAM5), the Community Land Model version 4 (CLM4), the Parallel

Ocean Program version 2 (POP2), the Community Ice CodE version 4 (CICE4), and the River

Transport Model (RTM). CESM1.3 incorporates additional bug fixes and performs comparably

to CESM1.2 at the standard low-resolution (LR) configuration (∼1–2° for atmosphere/land and

∼1° for ocean/sea ice) (56, 57). Among Coupled Model Intercomparison Project phase 5 (CMIP5)

models, the CESM1 family shows one of the closest matches to present-day observations across

multiple performance metrics (58). It also reproduces large-scale temperature patterns across both

glacial and greenhouse climates more accurately than other models including its CMIP6 successor

(6, 7, 9, 59, 60).

In addition to the LR configuration, CESM1.3 includes infrastructure and code optimizations

that enable high-resolution (HR) applications (12, 13, 56). The atmospheric component employs a

spectral-element dynamical core that efficiently supports ∼0.25° horizontal resolution (61), while

the ocean and sea-ice components operate at ∼0.1° resolution (12). All physical parameterizations

remain identical to those in LR, except that oceanic mesoscale and submesoscale eddy param-

eterizations are disabled, as these processes are partially resolved at higher resolution. The HR

model uses shorter timesteps to maintain numerical stability and includes minor retuning to achieve

preindustrial radiation balance (13). In the modern climate, HR improves the simulation of mean

conditions and extremes, including tropical cyclones, atmospheric rivers, and precipitation diurnal

cycles, as well as coastal sea-surface temperatures (SSTs) (12,13), while maintaining a comparable

equilibrium climate sensitivity to LR (3.7 versus 3.6 °C in abrupt 4×CO2 simulations) (62). Never-

theless, increased resolution does not uniformly improve performance: HR degrades some aspects,

including both Arctic and Antarctic sea-ice extent, Antarctic Circumpolar Current transport, and

ITCZ rainfall bias, and worsens ENSO frequency despite improving its amplitude (13).
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Coupled simulations

The LR Eocene simulation is initialized from a previously published CESM1.2 experiment with

identical boundary conditions, but using a finer ∼1° atmosphere–land grid instead of ∼2° (6, 20).

The boundary conditions include 3× preindustrial atmospheric CO2 and non-CO2 forcings (Eocene

paleogeography and vegetation, absence of ice sheets and anthropogenic aerosols, and preindustrial

orbital parameters) from the Deep-time Model Intercomparison Project (DeepMIP) (7,63). The LR

simulation is integrated for 300 years to allow the upper ocean to reach quasi-equilibrium under

the altered atmospheric resolution. The resulting climatology closely resembles earlier CESM1.2

Eocene simulation that has been run for 2,200 years (not shown).

The high-resolution (HR) Eocene simulation is initialized using the ocean state at the end of

the LR run. No discontinuities are observed in global mean surface temperature (GMST), and

the top-of-model net radiation in the HR run adjusts rapidly, reaching values largely consistent

with the differences seen between the PI HR and LR simulations (Figure S1). Boundary-condition

fields are linearly interpolated from LR to HR, as higher-resolution fields such as paleogeography

and vegetation distributions are unavailable. This approach maintains consistency between the two

configurations and isolates the effects of model resolution. The HR simulation is integrated for

60 years due to its high computational cost—roughly 100 times that of the LR simulation. The

HR configuration achieves an average throughput of one model year per day while producing

high-frequency output suitable for weather analyses.

We also conduct hybrid-resolution simulations, in which the atmosphere and land components

are run at high horizontal resolution while the ocean and sea ice remain at LR (High atmosphere Low

ocean; HaLo). HaLo simulations are initialized from the ocean state from the corresponding LR and

run for 60 and 50 years for the Eocene and PI, respectively (Figure S1). HaLo isolates the climatic

impacts of atmospheric resolution from those associated with oceanic resolution. Specifically,

comparing HaLo with LR quantifies the effect of high atmospheric resolution, while comparing

HR with HaLo reveals contributions from higher oceanic resolution. This linear factorisation

assumes that any nonlinearities (‘synergies’) between the atmospheric and oceanic resolution are

small (64). In principle, an additional LaHo configuration (low-resolution atmosphere with high-

resolution ocean) could further quantify these nonlinearities, but it is not pursued here due to

S3



the substantial effort required to retune the preindustrial simulation. Instead, we assess part of

the potential nonlinearity using simpler atmosphere-only experiments (see section “Fixed SST

simulations” below).

To assess the effects of model resolution on the climate response with a present-day continental

configuration, corresponding abrupt-4×CO2 simulations based on the preindustrial conditions are

conducted. The LR 4×CO2 simulation is integrated for 2,700 years to reach quasi-equilibrium. An

HR 4×CO2 simulation is then branched from the LR run, when the upper-ocean thermal state and

large-scale circulation had equilibrated, and is integrated for 50 years (Figure S1).

We also analyze HR simulations under Representative Concentration Pathway 8.5 (RCP8.5)

from the Understanding the Role of MESoscale Atmosphere-Ocean Interactions in Seasonal-to-

Decadal CLImate Prediction (MESACLIP) project, which employ the same model configuration

but exclude water isotopes. The MESACLIP preindustrial control is on average ∼1.5 ◦C warmer in

HR than LR, due to the limited tuning effort in their LR simulations (13,19,51,52). This differs from

the PI simulation used in our study, which has been re-tuned via adjustment of the relative humidity

threshold for low-cloud formation (rhminl) and thereby attains a GMST comparable to that of HR.

Accordingly, when comparing RCP8.5 simulations between HR and LR, the LR fields are adjusted

by the difference between the MESACLIP PI and our PI simulations (e.g., in Figure 6). Both LR and

HR RCP8.5 ensembles consist of ten members each. We note that our HR PI simulation represents a

60-year extension of the 646-year MESACLIP HR PI run, augmented with water isotope capability.

Unless otherwise noted, the final 30 years of each simulation are used for analysis in this study,

following the canonical definition of climate normal.

Fixed SST simulation

To further isolate the respective roles of atmospheric and oceanic resolution and to evaluate the

role of SST-mediated atmospheric pathways, we perform a suite of low-resolution, atmosphere-

only Eocene simulations forced with prescribed SSTs derived from the coupled HR (La SSTHR),

LR (La SSTLR), and HaLo (La SSTHaLo) experiments. These fixed-SST simulations are run for

30 years, with the last 25 years used for analysis. By comparing the atmosphere-only simulations

with each other and with their coupled counterparts, we can quantify the impacts of resolution

from complementary perspectives. For example, differences between La SSTHR with La SSTLR
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isolates the effect of warmer SSTs associated with the high-resolution ocean in a low-resolution

atmosphere, whereas contrasts between HaLo with La SSTHaLo isolates the effect of increased

atmospheric resolution. Although additional high-resolution atmosphere-only simulations would

further strengthen this separation and better capture potential nonlinear interactions, they were

not conducted due to the high computational cost. Seasonal temperature responses from these

simulations are shown in Figure 3, and additional analyses of storminess (not shown) are consistent

with the interpretations presented in the main text.

Estimation of atmospheric and oceanic eddy activity

Daily 850-hPa zonal (𝑢) and meridional (𝑣) wind components are filtered using a 2–8-day But-

terworth band-pass filter to isolate synoptic-scale variability. The eddy kinetic energy at 850 hPa

(EKE850) is then computed as

EKE850 =
1
2

(
𝑢′2 + 𝑣′2

)
,

where primes denote band-pass-filtered anomalies. The resulting EKE850 fields are regridded to a

common 1°×1° regular grid using linear interpolation prior to plotting. To improve the statistical

robustness of the results, the analysis incorporates all winter days—December to February (DJF)

in the Northern Hemisphere and June to August (JJA) in the Southern Hemisphere—rather than

restricting the analysis to the coldest month. The results are shown in Figure 5 and are insensitive

to the specific choices of filtering and regridding methods.

In addition to the high-frequency calculation described above, we estimate EKE from monthly

mean model output to enable efficient diagnostics across multiple vertical levels and climate states.

In this approach, EKE is approximated from the variance of monthly winds as

EKE = 1
2

(
𝑢2 + 𝑣2 − 𝑢 2 − 𝑣 2

)
,

where overbars denote monthly means. The terms 𝑢2 and 𝑣2 are provided directly by the model

as the monthly means of squared velocities (UU and VV), while 𝑢 and 𝑣 are the monthly mean

zonal and meridional winds (U and V). This formulation captures the submonthly wind variance

within each month and therefore provides a first-order estimate of eddy kinetic energy. Although

this approximation underestimates the absolute magnitude of EKE relative to calculations based
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on daily data, it does not affect the qualitative comparison among simulations and is therefore used

for the vertical–latitudinal analysis shown in Figure S3.

Because high-frequency ocean data are unavailable, oceanic eddy activity is approximated

from monthly mean sea surface height (SSH) and its square (SSH2). The standard deviation of SSH

occurring on sub-month timescales (𝑆𝑆𝐻𝑆𝐷), serving as a coarse proxy for mesoscale variability,

is estimated as

SSHSD =

(
SSH2 − SSH

2)1/2
,

where the overbars denote monthly averages from the available monthly model output.

Proxy Compilation

We compile sea-surface temperature (SST) proxies from the early Eocene Climate Optimum

(EECO; 49.14–53.26 Ma) following the DeepMIP framework (21). In addition to the DeepMIP

database, we incorporate recently published SST estimates from the Bass River (24), Knapps

Narrows (65), M0077A (66), DSDP516 (67), IODPU1407, IODPU1409, and ODP1258 (68),

IODPU1443 (69), Mid-Waipara River (70), ODP1172 (71), ODP1210 (72), and ODP1265 (73).

The compilation includes SST estimates derived from foraminiferal 𝛿18O, Mg/Ca ratios, TEX86,

and clumped isotopes, all processed using consistent calibration approaches (Supplementary Mate-

rials Data S1). For foraminiferal 𝛿18O–based temperatures, seawater isotope composition (𝛿18Osw)

is obtained from the high-resolution simulation (this study) at the nearest model grid point, and

pH effects are corrected following (20). The BAYFOX model is then used to convert the data to

SST (74). Mg/Ca data are converted to SST using BAYMAG (75), assuming an Eocene ocean pH of

7.7 and carbonate saturation state (Ω) values drawn from a cGENIE Eocene simulation, consistent

with the methodology in (20). TEX86-based estimates are derived using the BAYSPAR (Bayesian,

spatially varying regression) calibration (76). For clumped isotope data, we use the temperatures

given in ref. (77).

Mean annual air temperature (MAAT) and cold-month mean temperature (CMMT) estimates

are compiled from the DeepMIP database (21) and previous syntheses (4, 78). We also include

recently published records from the Gonjo Basin (79), McAbee (80), Oh!Locality (81), Xining

Basin (82), Caribou Hills CaH2 (83), IODP302 (84), and Giraffe Kimberlite (25,26). The terrestrial

compilation (Supplementary Materials Data S2) uses the published values for MAAT and CMMT,
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with the exception of data from the MBT5Me proxy, which are recalibrated using the BAYMBT

soils calibration (85).

All proxy sites are rotated to their 52 Ma paleogeographic positions following the DeepMIP

protocol, using plate reconstructions and a hotspot-based rotation framework (7, 63, 86, 87).

Proxy records originating from the same location or from nearby sites (paleolatitude and

paleolongitude differences < 1◦) are grouped together. Grouped estimates are combined using an

uncertainty-weighted mean, with total uncertainties incorporating both analytical errors and the

scatter among multiple proxy measurements. This grouping reduces the number of SST records

from 40 to 29 and the number of terrestrial records from 100 to 53 (not all terrestrial sites contain

both MAAT and CMMT; see the second tab in Supplementary Materials Data S1 and S2).
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Figure S1: Temporal evolution of global mean surface temperature and top-of-model net

radiation. (A) Annual mean global mean surface temperature (GMST) from all simulations: high

resolution (HR), low resolution (LR), and hybrid configuration with a high-resolution atmosphere

and low-resolution ocean (HaLo). (B) Annual mean top-of-model net radiation (RESTOM). Mean

values over the final 30 years of each simulation are indicated in the panels. Note that the HR

preindustrial simulation was an extension of an available spun-up run of 646 years (13)
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Figure S2: Differences between the high-resolution (HR) and low-resolution (LR) Eocene

simulations over the Northern Hemisphere high latitudes. Panels show HR–LR differences in

(A) Meridional heat transport by transient eddies at 850 hPa, (B) precipitation rate, (C) surface latent

heat flux (LHFLX; positive downward leading to surface warming), (D) surface sensible heat flux

(SHFLX; positive downward), (E) surface shortwave cloud radiative effect (SWCRE SFC; positive

downward), (F) surface longwave cloud radiative effect (LWCRE SFC; positive downward), (G)

total cloud cover in percentage, (H) cloud liquid water path (LWP), and (I) cloud ice water path

(IWP). All fields are regridded to a common 1◦ grid prior to plotting. Relative to LR, the HR

simulation exhibits enhanced precipitation and stronger LWCRE, accompanied by increased cloud

fraction and cloud ice content.
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Figure S3: High-resolution simulations enhance wintertime eddy kinetic energy (EKE) at high

latitudes across climate states. (A, C, E, G) Zonal-mean wintertime EKE from low-resolution

(LR) simulations for preindustrial (PI), RCP8.5 (member #5), PI 4×CO2, and Eocene 3×CO2

climates, respectively. Panels (B, D, F, H) show the corresponding high-minus-low resolution

(HR−LR) differences. For the RCP8.5 case, the HR−LR anomaly is corrected by subtracting the PI

LR difference between this study and that from the MESACLIP to isolate the resolution-dependent

response. MESACLIP RCP8.5 member #5 is shown; the signal is consistent across all 10 members.
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Figure S4: Ocean eddy activity inferred from the standard deviation of sea surface height

(SSH SD). (A) SSH SD in the high-resolution (HR) Eocene simulation. (B–C) Same as A, but for

the low-resolution (LR) and hybrid (HaLo; high-resolution atmosphere coupled to a low-resolution

ocean) simulations. (D, E) Differences in SSH SD between the HR and HaLo simulations relative

to LR, respectively.
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Figure S5: High-resolution (HR) ocean simulations better capture SSTs in eddy-rich regions.

(A) Annual-mean sea-surface temperature (SST) from the HadISST dataset (1870–1920). (B–D)

show SST differences between the low-resolution (LR), HR, and hybrid (HaLo; high-resolution

atmosphere coupled to a low-resolution ocean) simulations and HadISST, respectively. (E–G)

show pairwise SST differences among the HR, LR, and HaLo simulations, highlighting the ocean

resolution-related SST improvements (e.g., F versus D and C), particularly in eddy-rich regions.

Mean model bias and root-mean-squared error (RMSE) are indicated in the subfigure titles of B–D.

S12



Figure S6: High-resolution simulations better capture cold-month mean temperatures over

high latitudes. Mean annual surface air temperature (MAAT) (A) and cold-month mean temper-

ature (CMMT) (B) from the ERA5 reanalysis (1950–1978). Panels (C, D) show differences in

MAAT (C) and CMMT (D) between the low-resolution (LR) simulation and ERA5; (E, F) and

(G, H) show the same for the high-resolution (HR) and hybrid simulations with a high-resolution

atmosphere and low-resolution ocean (HaLo), respectively.
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Caption for Data S1. Sea-surface temperature (SST) compilation for the early Eocene. Excel

spreadsheet containing early Eocene marine SST reconstructions, including site name, age, modern

coordinates, paleocoordinates, proxy type and proxy values, reconstructed SST estimates with

associated 1𝜎 uncertainties, and reference information.

Caption for Data S2. Terrestrial temperature compilation of the early Eocene: mean annual

air temperature (MAAT) and cold-month mean temperature (CMMT). Excel spreadsheet

containing early Eocene terrestrial temperature reconstructions, including site name, age, modern

coordinates, paleocoordinates, proxy type and proxy values, reconstructed MAAT and CMMT with

associated 1𝜎 uncertainties, and reference information.
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