
7 Quasi-geostrophic theory for a stratified atmosphere.

We have so far been examining the dynamics of various different types of wave motions
in the simplified setting of the shallow water system. This allowed us to understand the
dynamics of Rossby waves i.e. waves that are close to geostrophic balance that rely on
a background gradient in the potential vorticity for their existence. It was demonstrated
that if you formulate the quasi-geostrophic equations (i.e. the equations that effectively
filter out the higher frequency noise) then the solutions you are left with are the solutions
that correspond to Rossby wave. So, when examining the large scale motion of the
atmosphere on the timescale of days to weeks we have to understand the dynamics of
Rossby wave propagation.

We then went on to look at the two layer quasi-geostrophic system which was the next
step in complexity. The presence of two layers allowed for an additional solution. Two
types of Rossby waves could exist in that system: the Barotropic mode and the Baroclinic
mode.

In the extratropical atmosphere what we have, for the most part, is a strongly stably
stratified atmosphere. This section will therefore go on to examine the quasi-geostrophic
theory for a continuosly stratified atmosphere. We therefore now don’t make any as-
sumptions about incompressibility and must allow for vertical motion and include the
thermodynamic equation in our formulation of Potential vorticity conservation.

We will therefore begin with the full equations for a stratified atmosphere (derived
in Section 2) and go through very similar procedures as we did for the shallow water
system to derive the Q-G PV equation for a fully stratified atmosphere. Once the Q-G
PV equation has been derived it can then be solved to find the Rossby wave solutions for
the continuously stratified atmosphere.

7.1 The full primitive equations in log-pressure height coordi-

nates

The full primitive equations in pressure coordinates were derived in Section 2. They are:
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These are mass conservation, momentum conservation, the thermodynamic equation and
the final equation is the hypsometric equation which makes use of the ideal gas law to
write hydrostatic balance in terms of the geopotential. In deriving the Q-G approximation
the vertical coordinate that will be used is log(pressure) height. This is defined as
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)
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where H is a scale height given by H = RTs/g, pS is the surface pressure and Ts is a
globally averaged surface temperature. This comes from the combination of hydrostatic
balance and the ideal gas law which demonstrates that for an isothermal atmosphere the
pressure will fall off exponentially with height (or alternatively the geometric height can
be calculated from the the log of the pressure level divided by the surface pressure). The
advantage of using z∗ instead of p as the vertical coordinate is that the dimensions of the
vertical coordinate are now the same as for the horizontal coordinates (i.e. metres rather
than pascals). Also we have a vertical coordinate which increases upward unlike pressure
which increases downward. For an isothermal atmosphere the z∗ will be identical to the
geometric height. In the real atmosphere there are temperature variations which result in
the scale height (H = RTs/g) being not exactly equal to the true scale height (RT/g) but
to a good approximation the scale height H is approximately constant and has a value of
about 8km.

So, in an isothermal atmosphere both pressure and density will fall off exponentially
with z∗. We may write these pressure and density profiles as

po = psexp(−z
∗/H) ρo = ρsexp(−z

∗/H)

In reality temperature variations will result in slight deviations from these exponential
profiles. The primitive equations in pressure coordinates can be derived by transforming
1 to 4 from p to z∗ coordinates. Horizontal momentum balance will be unchanged since a
balance that occurs on constant pressure surfaces will also ba a balance that occurs on con-
stant log pressure surfaces. The thermodynamic equation will also be unchanged except
for the vertical velocity that appears in the material derivativ of potential temperature
will now be the vertical velocity in the z∗ coordinates (i.e. w∗ = Dz∗/Dt).

The hypsometric equation (4) can be simply changed into z∗ coordinates by noting
that ∂/∂lnp = −(1/H)∂/∂z∗ giving
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Transformation of the mass conservation equation into z∗ coordinates can be made by
converting the ∂ω/∂p term as follows:
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Therefore the mass conservation equation becomes
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So, the starting point for deriving the Q-G equations for the stratified atmosphere are
the primitive equations in log(pressure) coordinates as follows
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D~vH
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In order to derive the Q-G versions of these equations the same assumptions as in
the shallow water system will be used i.e. the Rossby number is small and the velocity
components can be separated into geostrophic and ageostrophic contributions

u = ua + ug v = va + vg w∗ = w∗

a

where ua/ug ∼ va/vg ∼ Ro. Note that the vertical velocity only has an ageostrophic
component since the geostrophic velocity is purely horizontal.

7.2 Q-G Momentum balance for a stratified atmosphere

The horizontal momentum balance 6 has exactly the same form as the horizontal momen-
tum balance in the shallow water system (Equation 1 in Section 5) with the exception that
instead of the pressure gradient being associated with the depth of the fluid layer, here the
pressure gradient is associated with the horizontal gradients in geopotential height. But,
this is irrelevant for forming the Q-G equations because by definition the horizontal pres-
sure gradients are balanced by the coriolis force on the geostrophic wind so the term on
the RHS is only involved in the highest order equation (i.e. the equation for geostrophic
balance). Therefore to find the next order equation we need only be concerned with the
terms on the left hand side which are identical to the shallow water case. So, the same
scaling assumptions as in section 5.2 can be made and exactly the same Q-G horizontal
momentum balance equations obtained. These are

Dug
Dt

− fova − βyvg = 0 (9)

Dvg
Dt

+ foua + βyug = 0 (10)

7.3 The Q-G thermodynamic equation

The thermodynamic equation can be written in terms of the geostrophic and ageostrophic
velocities as follows:
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The atmosphere is predominantly stratified in the vertical i.e. the vertical gradients in
potential temperature are much greater than horizontal gradients. The potential temper-
ature can therefore be decomposed into a background vertical profile (that would occur
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for an isothermal atmosphere associated only with the vertica pressure gradient) and a
small departure from that

θ = θo + θ′(x, y, z, t)

where
|∂θ′/∂z|

|∂θo/∂z|
∼ O(Ro)

The highest order thermodynamic equation is given by

Dgθo
Dt

= 0 (11)

where Dg/Dt represents the material derivative following the geostrophic velocity. The
next order equation can be found by scale analysis on the remaining terms as follows
(taking the characteristic scale potential temperature perturbations (θ′) to be Θ)
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where the scaling for Wa/H has been obtained from the mass conservation equation (5).
Therefore the Q-G thermodynamic equation is given by
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= 0 (12)

i.e. the potential temperature will not be constant following the geostrophic velocity since,
although the ageostrophic vertical velocity is small, the vertical stratification is strong and
so the term involving vertical advection by the agoestrophic velocity is just as important
as the horizontal advection by the geostrophic velocities in the overall conservation of
potential temperature following the fluid parcel.

The Q-G primitive equations may then be summarised as follows
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7.4 The Q-G PV equation

The vorticity equation can be formed from 13 and 14 as for the shallow water system (see
Section 5.4)
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= 0

where ζg is the geostrophic vorticity (∂vg/∂x−∂ug/∂y andDg/Dt is the material derivative
following the geostrophic flow. The continuity equation 16 can then be used to re-write
this as
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The w∗

a can then be written in terms of θ from the thermodynamic equation (7)
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ρo is the reference density profile which depends on z∗ only. So, this third term can be
manipulated to be in a more convenient form
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But from thermal wind balance (Equation 50 in Section 2) it can be demonstrated that
the the two terms in the second quantity will cancel each other out to leave
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The term βvg can be written as Dgf/Dt and so we are left with the PV conservation
equation

Dgq

Dt
= 0 q = f(y) + ζg +
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)

(18)

Finally, this equation is more useful if it is written entirely in terms of the geostrophic
stream function. The geostrophic stream function can be defined as before

ψ′ =
φ′

fo

where the geopotential has been divided into the reference profile that would occur if the
atmosphere was isothermal and the perturbation component

φ = Φo(z
∗) + φ′(x, y, z∗, t) (19)

Note that since the background profile is the profile that would occur in an isothermal
atmosphere and since log pressure height is identically equal to height in that case then

dΦo

dz∗
= g (20)

The buoyancy frequency associated with the vertical stratification is given by

N2 =
g

θo

dθo
dz∗
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The third term in 22 may therefore be written as
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Then, some rearranging of the relationship between potential temperature and tempera-
ture gives
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Then the hypsometric equation (17) can be used to write potential temperature in terms
of geopotential height
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Plugging these into 21 and remembering 20 this third term may be written in terms
of geopotential height (φ′) and therefore in terms of the stream function (ψ′) to give the
final form of the PV conservation equation
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7.5 Vertically propagating Rossby waves in a stratified atmo-

sphere.

The Q-G PV equation (22) can be used to solve for the wave solutions in a stratified
atmosphere. The climatological wind in the atmosphere is predominantely in the zonal
direction with variations both horizontally and vertically. We therefore consider small
perturbations to a background zonal state that varies in the y and z∗ directions i.e.
u = uo + u′, v = v′ and q = qo + q′ where dashed quantities are small compared to the
basic state. Linearising PV conservation and noting that ∂qo/∂x = 0 and ∂qo/∂t = 0
gives
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= 0 (23)

where q′ is given by (22) so that the equation that must be satistifed by the perturbation
stream function (Ψ′) is
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ψ′ + qoy
∂Ψ′
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= 0 (24)

Consider a wave solution of the form Ψ′(x, y, z∗, t) = exp
(

z∗

2H

)

ψ(x, y, z, t). The factor

exp
(

z∗

2H

)

simplifies matters as there are non constant coefficients in the equation. The
amplitude of the disturbance would be expected to grow exponentially with height since
density falls exponentially with height.
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The stratification N2 is a constant since it is the stratification of the background state
which has a potential temperature distribution θo ∝ exp (κz/H) so that 1

θo

dθo
dz

= constant.
The term involving the vertical derivative of the stream function in 24 can therefore be
re-arranged to give

f 2
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)
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]

So, this, together with plugging the wave solution into the other terms gives
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+ qoy
∂ψ′

∂x
= 0 (25)

Consider a solution of the form ψ′ = ψoexp [i(kx+ ly +mz − ωt)] where m is the vertical
wavenumber. Here the WKB assumption has been made, that is that the wavenumbers
are slowly varying functions of latitude and height. The variations of the wave are on a
smaller scale than the variations of the mean flow.

This gives the following dispersion relation for vertically propagating Rossby waves in
a stratified atmosphere

ω = uok −
qoyk

(

k2 + l2 + f2
o

N2m2 + f2
o

4N2H2

) (26)

There are several interesting things to note from this dispersion relation.

• It can be compared with the two-layer dispersion relations (Eq. (25) and (26) in
section 6). The differences are that now we have a zonal wind profile that varies
with y and z (u(y, z)) so the background gradient of potential vorticity is not just
due to the gradient of planetary vorticity but is also due to the background gradient
of potential vorticity associated with the zonal wind structure. The basic state zonal
wind profile can be written Ψ = −Uy and putting that into 22, the expression for
the background gradient of potential vorticity is

qoy = β +
∂2u

∂y2
+
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∂

∂z

(

ρo
f 2

o

N2

∂u

∂z

)

So, the basic state PV gradient depends on the planetary vorticity gradient, the
meridional curvature of the zonal wind and the vertical shear and curvature of the
zonal wind.

The fully stratified dispersion relation can be seen to be comparable to the two layer
dispersion relations. If the vertical wavenumber m =0 then the dispersion relation
is very similar to the dispersion relation for the barotropic stream function in the
2-layer system. There is an extra constant (f 2

o /4N
2H2), which comes in from the

fact that density depends on height. Similarly the m = 1 case could be compared
with the baroclinic stream function dispersion relation in the two-layer model. This
would be a baroclinic mode that has a slower phase speed than the barotropic mode.
The difference now is that we don’t have discrete layers and there is no boundary
at the top, so the wavenumber doesn’t have to be quantised and could be anything.
There are a whole spectrum of waves that can exist with different vertical structures
that will have different phase speeds.
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• The zonal phase speed can be found from the dispersion relation. It is given by

cpx =
ω

k
= Uo −

qoy
(

k2 + l2 + f2
o

N2m2 + f2
o

4N2H2

) (27)

Therefore, much like the Rossby waves discussed in the shallow water system, these
waves have a westward phase speed relative to the background flow.

• Equation 27 can be rearranged to give the following expression for the vertical
wavenumber.

m2 =
N2

f 2
o

[

qoy

Uo − cpx
− (k2 + l2)

]

−
1

4H2
(28)

Since the perturbation stream function amplitude is proportional to exp(imz∗), if
m is real then the wave is vertically propagating whereas if m is complex the wave
is vertically evanescent.

So, for vertical propagation of the waves the following condition must be satisfied

0 < Uo − cpx <
qoy

(k2 + l2) + f2
o

4N2H2

= Uc (29)

That is, for vertical propagation the zonal wind must be greater than the phase
speed, but less than some critical value given by Uc+cpx. This critical value depends
both on the basic state PV gradient as well as the horizontal scale of the waves.

For stationary waves (cpx = 0) this is known as the Charney-Drazin Criterion.

This has important consequences, particularly for the stratosphere. Westerly winds
exist in the winter stratosphere, but Easterly winds exist in the summer strato-
sphere. Therefore, vertical propagation of waves into the stratosphere only occurs
in the winter hemisphere. Moreover, since the wind speed has to be less than a
critical value which depends on the horizontal scale, it can be seen that this critical
value will be smaller for higher wavenumbers (smaller scale waves). Therefore, in
regions of strong westerly winds such as the high latitude winter stratosphere, only
the smallest wavenumbers (largest horizontal scales) may propagate vertically. This
explains the lack of high wavenumber disturbances in the stratosphere and their
restriction to the troposphere.

• An expression for the vertical group velocity can by found from 27

cgz =
∂ω

∂m
=

2f 2

o qoykm
(
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o

N2m2 +
f2
o

4N2H2

)2
(30)

All the terms in this expression are positive so the vertical group velocity is positive
and the wave propagates information upward.

• Lines of constant phase (kx+ ly +mz − ωt) slope westward with height.

• Vertically propagating waves transport heat poleward. From the hypsometric equa-
tion and the relation ship between the stream function and geopotential (ψ′ = φ′/fo),
the temperature perturbation associated with the wave can be written as

T ′ =
Hfo
R

∂ψ′

∂z
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Also,

v′ =
∂ψ′

∂x

From these, an expression for the zonal mean poleward heat flux (v′T ′) associated
with the wave can be found as follows

v′T ′ = ikψoexp
( z

2H

)

exp(iχ)×
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R
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denoting the phase (lx+ ly +mz) by χ. This gives
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Re-arranging and taking only the real component gives
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Using the trigonometric identity cos2χ− sin2χ = 2cos2χ− 1 this can be written
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Upon taking the zonal mean all expressions involving sinχ or cosχ will go to zero
and we are left with

v′T ′ =
kHfoψ

2

o

R
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( z

H

)

m

i.e. the zonal mean poleward heat transport is positive. So, any wave that is verti-
cally propagating will have a westward phase tilt with height and will be associated
with a positive poleward heat flux.
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