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ABSTRACT: The wintertime ENSO teleconnection over the North Pacific region consists of an intensified (weakened)

low pressure center during El Niño (La Niña) events both in observations and in climate models. Here, it is demonstrated

that this teleconnection persists too strongly into late winter and spring in the Community Earth System Model (CESM).

This discrepancy arises in both fully coupled and atmosphere-only configurations, when observed SSTs are specified, and is

shown to be robust when accounting for the sampling uncertainty due to internal variability. Furthermore, a similar problem

is found in many other models from piControl simulations of the Coupled Model Intercomparison Project (23 out of 43 in

phase 5 and 11 out of 20 in phase 6). The implications of this bias for the simulation of surface climate anomalies over North

America are assessed. The overall effect on the ENSO composite field (El Niño minus La Niña) resembles an overly

prolonged influence of ENSO into the spring with anomalously high temperatures over Alaska and western Canada, and

wet (dry) biases over California (southwest Canada). Further studies are still needed to disentangle the relative roles played

by diabatic heating, background flow, and other possible contributions in determining the overly strong springtime ENSO

teleconnection intensity over the North Pacific.
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1. Introduction
Successful seasonal forecasts have great economic and so-

cietal benefits (Meinke and Stone 2005; Lemos and Dilling

2007; Kumar 2010). Despite the unpredictable variability

produced by internal atmospheric dynamics, the response to

tropical sea surface temperature (SST) anomalies, especially

those related to the El Niño–Southern Oscillation (ENSO)

phenomenon, has long been considered a major source of

seasonal predictability for different parts of the world (Palmer

and Anderson 1994; Barnett et al. 1994; Livezey et al. 1996).

Based on this boundary forcing conception, some efforts have

been made in using atmosphere-only models (Rowell 1998;

Kumar and Hoerling 2000; Kumar et al. 2001; Barnston et al.

2005), as well as initialized coupled models, which include two-

way air–sea interaction and the prediction of the future state of

the sea surface (Stockdale et al. 1998; Chakraborty and

Krishnamurti 2006; Peng et al. 2011; Gleixner et al. 2017), to

develop seasonal prediction systems.

By integrating a general circulation model (GCM) with

varied initial conditions but identical boundary forcing, Shukla

(1981) suggested that the prediction skill of the seasonal mean

is determined by the evolution of low-frequency planetary

waves. Thus, the ENSO-induced predictability inevitably relies

on the models’ ability to simulate the large-scale atmospheric

response to tropical SST anomalies. In the presence of an El

Niño (La Niña) event, one of the most dominant features in the

Northern Hemisphere circulation response is a deepened (weak-

ened) low pressure center over the North Pacific (Bjerknes 1966,

1969; Namias 1976), which can be explained by the propagation of

Rossbywaves from the tropics (Hoskins andKaroly 1981;Webster

1981; Horel and Wallace 1981). Through this pathway, ENSO’s

effects can be transmitted to the North Pacific and North America

(Ropelewski and Halpert 1986; Papineau 2001; Schubert et al.

2008; Johnson et al. 2014). This ENSO–North Pacific relationship

is considered a fundamental process that should be reasonably

reproduced in models, despite the diversity of model configu-

rations, resolutions, numerical methods, and parameterization

schemes (Held and Kang 1987; Stoner et al. 2009; Hurwitz et al.

2014; Deser et al. 2017).

Most previous studies have focused on the peak season of

ENSO [December–February (DJF)] when the amplitudes of

SST anomalies and teleconnections are largest (Gershunov

and Barnett 1998; Yang and DelSole 2012; Bellenger et al.

2014), with a few other studies having also looked at the other

seasons before or after the peak (Alexander et al. 2002;

Spencer and Slingo 2003; Bladé et al. 2008; Lee et al. 2014; Jong
et al. 2016). According to Kumar and Hoerling (1998), the

potential for seasonal predictability over North America is

stronger during the late winter and spring season, as the SST-

forced signals remain strong enough but the background noise

is substantially reduced. By looking at the relationship between

California precipitation and ENSO events, Jong et al. (2016)

found that the influence of El Niño on California precipitation

becomes stronger when the SST anomalies weaken in the

spring, and suggested that this can be attributed to a warming

climatological mean sea surface temperature, which is favor-

able for deep convection. Some other studies have attributed
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extreme events over North America during the spring season

to the prolonged influence of ENSO (Wolter et al. 1999; Bates

et al. 2001; Schmidt et al. 2001). Therefore, the evaluation of

the models’ performance in simulating the springtime ENSO

teleconnection is of great practical value but has received rel-

atively little attention.

Two notable prior studies that examined the model fidelity

of springtime ENSO teleconnection are those of Alexander

et al. (2002) and Spencer and Slingo (2003). They each pointed

out that, compared to observations, the modeled sea level

pressure (SLP) anomalies over the North Pacific remain too

strong during the springtime after the peak of ENSO events.

Alexander et al.’s (2002) conclusions were drawn from an en-

semble of experiments with an atmospheric GCM coupled to a

one-dimensional entraining ocean mixed layer model beneath

each atmospheric grid cell, with observed SSTs specified in the

eastern equatorial Pacific. They speculated that the model’s

bias toward a stronger North Pacific SLP response during

spring was likely caused by the lack of ocean dynamics in their

model setup, although sampling due to internal variability may

have also contributed. Spencer and Slingo (2003), on the other

hand, used an ensemble of HadAM3 atmospheric GCM sim-

ulations forced by observed SSTs. They also found that the

ENSO anomalies in the simulated North Pacific SLP field

persisted too strongly into March–May (MAM), and argued

that this could be due to the model’s limitation in simulating

the tropical precipitation accurately, even in the presence of

the imposed observed SSTs. In particular, themodel was found

to overestimate the spring precipitation over the warmest

tropical SSTs, leading to a stronger extratropical wave train

response. The lack of two-way coupling and deficiencies in the

convective scheme used were suggested as possible reasons

behind the bias in simulated precipitation and the bias was not

found to be reduced significantly by increasing the vertical and

horizontal resolutions.

The aimof the present study is to evaluate the springtimeENSO

teleconnection in current generations of Earth system models

(ESMs) and assess the extent to which the overly strong springtime

teleconnectionbias discussed in the aforementioned studies, almost

two decades ago, remains ubiquitous among models and model

configurations. In addition, we discuss the implications of this bias

for the simulation of ENSO-induced surface climate anomalies

over North America. More specifically, our aims are 1) to accu-

rately place the magnitude of the bias within the context of the

internal variability that is present in both the observational record

and model simulations; 2) to examine, within one model, the de-

pendence of the bias on experimental design (e.g., prescribed SSTs

vs coupled ocean); 3) to assess the fidelity of springtime ENSO

teleconnections across a large suite of state-of-art global ESMs; and

4) to assess the implications of the bias for the simulated surface

climate response to ENSO over North America. To achieve these,

wemakeuse of nine sets of simulations from theCommunityEarth

SystemModel (CESM), preindustrial (piControl) simulations from

the Coupled Model Intercomparison Project phases 5 and 6

(CMIP5 and CMIP6), and Atmospheric Model Intercomparison

Project (AMIP) simulations from CMIP6.

The rest of this study is organized as follows. The data and

methods used are described in section 2. The assessments of the

suite of CESM configurations and other model simulations

(CMIP5, CMIP6, and ERA20CM) are presented in section 3.

The implications for the modeled surface temperature and

precipitation anomalies over North America are addressed in

section 4. In section 5, we briefly discuss the possible origin of

the bias before a summary and conclusions are provided in

section 6.

2. Data and methods

a. Observation-based products
Our primary period of analysis is 1920 to 2010. The SST dataset

used to identify the ENSO events is the Extended Reconstructed

Sea Surface Temperature version 3b (ERSSTv3b; Smith et al.

2008) from the National Oceanographic and Atmospheric

Administration (NOAA),which providesmonthly analysis from

1854with a 28 3 28 horizontal resolution. Three SLP datasets are

used for evaluating the ENSO-related circulation anomalies:

the European Centre for Medium-Range Weather Forecasts

(ECMWF) twentieth-century reanalysis (ERA20C; Poli et al.

2016), the NOAA Twentieth Century Reanalysis version 2

(20CRv2; Compo et al. 2011), and the Met Office Hadley

Center’s mean sea level pressure dataset (HadSLP2r; Allan

and Ansell 2006). Note that the interpolation procedure ap-

plied in HadSLP2r could introduce uncertainties over regions

with sparse observations. ERA20C and 20CRv2 each assimi-

late surface pressure observations, while ERA20C additionally

assimilates marine surface winds and has a higher resolution.

We primarily use ERA20C, but the same qualitative conclu-

sions can be drawn from the other two datasets. The ERA20C-

based horizontal winds and specific humidity on pressure levels

are also used. Our primary near-surface air temperature

dataset is the monthly Berkeley Earth Surface Temperature

(BEST; Rohde et al. 2013) dataset, which provides 18 3 18
gridded temperature analysis created with a large sampling of

in situ thermometer measurements. For precipitation data over

land, we use the Global Precipitation Climatology Center

(GPCC) Full Data Product version 7 (Schneider et al. 2014) at

18 3 18 horizontal resolution, which is derived from a combi-

nation of rain gauge–based analyses and remote sensing. Both

the monthly global precipitation products of ERA20C and the

Global Precipitation Climatology Project (GPCP) version 2

(Adler et al. 2003) are also used. The GPCP precipitation

product is available on a 2.58 3 2.58 grid from 1979 to the

present and is based on rain gauge stations, satellites, and

sounding observations.

b. Model simulations

1) CESM SIMULATIONS

We make use of a wide array of atmosphere-only and fully

coupled simulations with the Community Earth System Model

(Hurrell et al. 2013). These simulations are summarized in Table 1

and are available for download from http://www.cesm.ucar.edu/

experiments/. For the atmosphere-only simulations, we include

three sets of 10-member Tropical Ocean–Global Atmosphere

simulations (TOGA; Lau and Nath 1994; Trenberth et al. 1998;

Deser et al. 2018) with CESM version 1 (CESM1) that only differ
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in the SST dataset used: ERSSTv3b (Smith et al. 2008), ERSSTv4

(Huang et al. 2015), and ERSSTv5 (Huang et al. 2017) SSTs,

henceforth referred to as TOGA-ERSSTv3b, TOGA-ERSSTv4,

and TOGA-ERSSTv5, respectively. By prescribing observed

SSTs within the tropical belt (from 288S to 288N) and using the

climatological seasonal cycle elsewhere, the TOGA configuration

focuses on the model’s response to the observed historical evo-

lution of tropical SST anomalies. We also use a 10-member

ensemble of Global Ocean–Global Atmosphere (GOGA) sim-

ulations with CESM1 with observed time-varying SSTs from

ERSSTv4 imposed globally (GOGA-ERSSTv4). In addition to

the CESM1 simulations, we assess two three-member GOGA

ensembles with the newly developed CESM version 2 (CESM2)

(Danabasoglu et al. 2020). One of them employs the low-top

Community Atmosphere Model (CESM2-CAM6) (Bogenschutz

et al. 2018) and theother employs the high-topWholeAtmosphere

Community Climate Model (CESM2-WACCM6) (Gettelman

et al. 2019). Note that these two CESM2 simulations cover a

shorter period from 1950 to 2010 (Table 1).

For the fully coupled configurations, we use a 20-member

ensemble of the tropical Pacific pacemaker simulations per-

formed with CESM1 (PACEMAKER; Kosaka and Xie 2013;

Deser et al. 2017). In the PACEMAKER simulations, the

observed evolution of the ENSO events is prescribed by

TABLE 1. List of the length of simulations, and the number of El Niño (EN) and La Niña (LN) events identified in the CMIP5 and

CMIP6 piControl simulations (with CESM-related ones marked by asterisks), for nine sets of CESM simulations and ERA20CM from

ECMWF as introduced in section 2. The CMIP6 models that are also included for their AMIP simulations are marked by boldface font.

CMIP5 model Total length (yr) EN (yr) LN (yr) CMIP6 model Total length (yr) EN (yr) LN (yr)

ACCESS1.0 250 47 36 BCC-CSM2-MR 600 91 101

ACCESS1.3 500 81 70 BCC-ESM1 451 73 81

BCC-CSM1.1 500 79 82 CAMS-CSM1–0 250 48 42

BCC-CSM1.1-M 400 69 67 CanESM5 1000 156 166

BNU-ESM 559 110 100 CESM2 1200 188 199

CanESM2 996 156 176 CESM2-WACCM 499 78 73

*CCSM4 1051 179 179 CNRM-CM6–1 500 89 85

*CESM1-BGC 500 87 74 CNRM-ESM2–1 500 77 84

*CESM1-CAM5 319 46 52 E3SM-1–0 500 75 75

*CESM1-FASTCHEM 222 39 31 EC-Earth3-Veg 500 77 83

*CESM1-WACCM 200 39 34 GISS-E2–1-G 851 200 160

CMCC-CESM 277 43 45 GISS-E2–1-H 401 63 55

CMCC-CM 330 52 55 HadGEM3-GC31-LL 500 82 83

CMCC-CMS 500 87 78 HadGEM3-GC31-MM 500 91 79

CNRM-CM5 850 161 149 IPSL-CM6A-LR 1200 196 192

CNRM-CM5.2 359 61 52 MIROC6 800 109 89

CSIRO-Mk3.6.0 500 73 76 7 MRI-ESM2–0 701 113 112

FGOAlS-g2 700 123 124 NESM3 200 31 35

FGOAlS-s2 501 87 95 SAM0-UNICON 700 105 10

FIO-ESM 800 181 162 UKESM1–0-LL 750 119 117

GFDL CM3 500 81 84

GFDL-ESM2G 500 65 76

GFDL-ESM2M 500 78 67 CESM model Total length (yr) EN (yr) LN (yr)

GISS-E2-H 780 119 123 TOGA-ERSSTv3b (1920–2010) 3 10 16 3 10 14 3 10

GISS-E2-H-CC 251 39 46 TOGA-ERSSTv4 (1920–2010) 3 10 16 3 10 14 3 10

GISS-E2-R 850 139 137 TOGA-ERSSTv5 (1920–2010) 3 10 16 3 10 14 3 10

GISS-E2-R-CC 251 38 50 GOGA-ERSSTv4 (1920–2010) 3 10 16 3 10 14 3 10

HadGEM2-AO 700 113 108 CESM2-CAM6 (1950–2010) 3 3 11 3 3 9 3 3

HadGEM2-CC 240 37 35 CESM2-WACCM6 (1950–2010) 3 3 11 3 3 9 3 3

HadGEM2-ES 575 93 94 PACEMAKER (1920–2010) 3 20 16 3 20 14 3 20

INM-CM4 500 85 79 LENS-his (1920–2005) 3 40 506 484

IPSL-CM5A-LR 1000 162 170 LENS-pi 1801 277 243

IPSL-CM5A-MR 300 46 41

IPSL-CM5B-LR 300 53 47

MIROC5 670 90 96 ECMWF Total length (yr) EN (yr) LN (yr)

MIROC-ESM 630 95 99 ERA20CM (1920–2010) 3 10 16 3 10 14 3 10

MIROC-ESM-CHEM 255 41 38

MPI-ESM-LR 1000 147 161

MPI-ESM-MR 1000 159 154

MPI-ESM-P 1156 177 185

MRI-CGCM3 500 76 82

NorESM1-M 501 82 89

NorESM1-ME 252 41 40
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nudging the eastern equatorial Pacific (208S–208N, 1808–808W)

SST anomalies toward observations. We also make use of a 40-

member ensemble of fully coupled CESM1 historical simula-

tions (LENS-his) and a 1801-yr-long piControl (LENS-pi)

simulation conducted as part of the CESM1 Large Ensemble

(LENS) project (Kay et al. 2015).With the exception of LENS-

pi, all of the above simulations are forced with historical at-

mospheric forcings (Hurrell et al. 2013).

2) OTHER MODEL SIMULATIONS (CMIP5, CMIP6, AND

ERA20CM)
We also assess the piControl simulations from 43 CMIP5

and 20 CMIP6 models (listed in Table 1). The piControl sim-

ulations typically offer a larger sample of ENSO events than

historical simulations, which is helpful for accurately diagnos-

ing the ENSO forced response in the presence of internal

variability. To access the behavior of the CMIP models with

prescribed observed SSTs we also use the AMIP simulations

from selected CMIP6 models. To ensure a sufficient sample

size, onlymodels that providemore than threeAMIPmembers

from 1979 or 1950 to 2010 or at least one member that covers

the whole period of 1920–2010 are included, such that the

AMIP composites include at least as many events as observa-

tions. This leaves nine CMIP6 models with AMIP simulations

(boldface font in Table 1), in addition to the CESM2-CAM6

and CESM2-WACCM6 simulations described above. We also

make use of a 10-member ensemble of atmospheric model

integrations known as ERA20CM (Hersbach et al. 2015)

available from ECMWF. It uses prescribed historical SSTs and

sea ice cover from HadISST2 (Titchner and Rayner 2014), and

with no assimilation of atmospheric observations.

c. Methods

1) THE DEFINITION OF ENSO EVENTS

In this study, the El Niño (EN) and La Niña (LN) events are

identified by first calculating the Niño-3.4 index [defined by

Barnston et al. (1997) as the area-averaged SST anomalies over

58S–58N, 1208–1708W] for each month during 1920–2010. A

three-point binomial filter is used to smooth the indices before

the DJF mean is calculated and linear detrending is subse-

quently performed. The EN (LN) events are defined as when

the detrended DJF Niño-3.4 index is higher (lower) than plus

(minus) one standard deviation (Okumura and Deser 2010;

Deser et al. 2017). We identifited 16 EN events and 14 LN

events based onERSSTv3b as observedENSO events (Table 2).

We use the same events in the simulations with prescribed his-

torical SSTs and the PACEMAKER simulations. Since the

CESM2 simulations begin in 1950, only events after 1950 are

included in those. A summary of the number of events used for

each model or ensemble is given in Table 1.

The composite of anomalies during the EN (LN) years are

obtained by first removing the annual cycle of the monthly

climatological mean during 1920–2010 for the observational

record, and during the total simulation length used for each

model (Table 1) at each grid point, then compositing based on

the identified EN (LN) winters. For the coupled models and

AMIP simulations shorter than 1920–2010, to take into account

any differences from observed ENSO amplitude, the com-

posite anomalies are further normalized by scaling by the ratio

of the DJF composite mean EN or LN Niño-3.4 anomaly in

observations (ERSSTv3b) over 1920–2010 to that in the

models over whatever simulation period is available.

2) STATISTICAL TESTING

To evaluate the statistical significance of the difference be-

tween the modeled and observed ENSO response in the pres-

ence of sampling uncertainty, a random sampling technique is

employed following Deser et al. (2017, 2018). For observations,

we randomly samplewith replacement (bootstrap) 16ENand 14

LN events from the observed events. This is repeated 1000 times

to form1000 resampledENSO composites for observations. The

same procedure is applied to the modeled ENSO events, still

keeping the sample size of the EN and LN events the same as

that in observations (16 for the EN and 14 for the LN). Note that

for the model simulations with more than one member, the EN

(LN) events of each member are put into one single large

‘‘sampling pool’’ before bootstrapping.

3. Evaluation of the modeled springtime North Pacific
ENSO teleconnection

a. CESM simulations
To depict the North Pacific circulation related to ENSO, we

define a North Pacific index (NPI) after Trenberth and Hurrell

(1994) and Deser et al. (2017) as the area-averaged SLP

anomalies over 358–608N, 1658E–1458W. The seasonal evolu-

tion of the observed and modeled NPI is illustrated in Fig. 1 for

EN-LN and EN/LN alone. Here, we include the results from

ERA20C,HadSLP2r, and 20CRv2 reanalyses, as well as all nine

CESM configurations. The response shown by the HadSLP2r is

weaker than that displayed by the ERA20C and 20CRv2, while

the characteristics of its seasonal evolution are similar: the in-

tensification of the observed anomalies occurs in November and

peaks in January, before decaying rapidly over the next 2months

(February and March). The peak value in the models is about

50% larger than the observed, and occurs in February, not

January (i.e., one month delayed compared to observations).

When considering the timing of the peak SLP anomaly during

individual events, it is only for EN events where there is a con-

sistent difference between models and observations (Fig. S1 in

the online supplemental material). For LN events, there is no

consistent difference between the models and observations in

TABLE 2. The El Niño (EN) and LaNiña (LN) years identified in

observation based on ERSSTv3b during 1920–2010. Extremely

strong events are marked by boldface font.

EN years 1925/26, 1930/31, 1939/40, 1940/41,

1941/42, 1957/58, 1965/66, 1968/

69, 1972/73, 1982/83, 1986/87,
1991/92, 1994/95, 1997/98, 2002/

03, 2009/10

LN years 1924/25, 1933/34, 1938/39, 1942/43,

1949/95, 1955/56, 1970/71, 1973/

74, 1975/76, 1984/85, 1988/89,

1998/99, 1999/10, 2007/08
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the probability of the timing of the peak SLP anomaly (Fig. S2),

but this can be reconciled with the differences in Fig. 1c by the

fact that, in the model, the NPI peak value is on average larger

for February-peak events than for January-peak events, whereas

the opposite is true in observations (not shown). The discrep-

ancy shown in Fig. 1 appears from February to March in the

EN-LN and EN composites, and from February to May in the

LN composite. In either EN or LN, that discrepancy indicates

stronger North Pacific circulation anomalies in the models

compared to those in observations. Note that in the LN com-

posite, the difference between the models and observations is

much smaller during April–May compared to that during

February–March (FM). Although the peak magnitude of NPI is

larger for the EN composite, the bias in the EN–LN composite is

dominated by that in the LN composite. Given that prior studies

have suggested that the North Pacific circulation response may

not scale linearly with ENSO amplitude (Frauen et al. 2014;

Garfinkel et al. 2019; Jiménez-Esteve and Domeisen 2019), we

further check whether this springtime bias is heavily dependent

on the inclusion of the strongest ENSO event of the record in the

composite. The results are shown in Fig. S3, where it can be seen

that the bias remains when the extreme events of 1982/83 and

1997/98 are excluded. In fact, if anything, the bias does not seem

to be present in the extreme events, but the limited sample size

in observations inhibits our ability to draw any strong conclu-

sions in this regard. This bias is, therefore, a characteristic fea-

ture of ENSO in general and is not dominated by the extreme

events and we proceed to consider all ENSO events within the

time series together.

To test the significance of the difference between the simu-

lated and observed EN–LNNPI, the random sampling method

of Deser et al. (2017) (see section 2) is applied to generate the

box plots in Fig. 2. As depicted in Fig. 2c, the bottom and top of

each box represent the 25th and 75th percentiles of the sorted

bootstrapped NPI composites, respectively, and the middle

line is the average of the 1000 bootstrapped NPI composites.

The 5th and 95th percentiles are marked by the whiskers. For

model simulations with more than one member, the composite

anomaly of each individual member is marked by a blue circle.

For the reanalysis and the simulation with only one member

(LENS-pi), the blue circle represents the value of the com-

posited NPI for that one time series. The height of the box and

whiskers can be interpreted as the range of the uncertainty due

to internal variability for a sample size that is equivalent to that

of observations. The difference between the 75th and 25th

percentiles of the bootstrapped NPI composites varies from

2.47 hPa in DJF to 1.38 hPa in MAM for ERA20C, and from

2.68 hPa in DJF to 1.71 hPa in MAM for the average of nine

CESM simulations. Thus, both in observations and model

simulations, the internal variability during the winter season is

generally larger than that during the spring, which is consistent

with previous studies (Kumar and Hoerling 1998). During

February and March, the interquartile ranges of the observa-

tional and model samples do not overlap and for the majority

of model simulations the 95% confidence intervals do not even

overlap, which indicates a very significant difference between the

model and observations during these months in the sense that the

amplitude of the ENSO teleconnection is larger in the model.

Quantitatively, where the 95% confidence interval of the boot-

strapped samples of themodel does not overlapwith the observed

value, which is true in every case in February and March, there is

less than a 5% chance that the observed value would be sampled

from themodel distribution and, therefore, less than a 5% chance

that the model is behaving as observations.

Having found the bias in the NPI index to be the largest in

FM, we show amore detailed view of the spatial distribution of the

bias in this season in Fig. 3. The observed (based on ERA20C) and

simulated (TOGA-ERSSTv3b and PACEMAKER) SLP anoma-

lies over theNorthPacific duringFMof theENandLNevents, and

their difference (EN–LN) are shown by the contours in Fig. 3,

whereas for the CESM simulations the difference in the composite

anomaly from observed is depicted by shading. The corresponding

FIG. 1. Seasonal evolution of the NPI anomalies (hPa) for (a) the

difference betweenElNiño andLaNiña and (b) ElNiño and (c) La
Niña events. Red shows the observation-based datasets and gray

shows the nine CESM simulations with the gray shading demar-

cating their range.
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FIG. 2. Box plots of bootstrapped ENSO composites (EN–LN) of NPI (hPa) in observations

(red), and nine CESM simulations (black) in (a) each month from December to May, and

(b) 2-month averages. Box and whiskers represent the uncertainty range for an equivalent sample

size to that of observations (16 EN and 14 LN). (c) A legend for (a) and (b). The height of each box

indicates the 25th–75th percentile of the sorted 1000 resampled NPI composites, and the middle
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composite results for the otherCESM simulations are similar to the

ones shown here (Fig. S4). The box area used for defining NPI is

roughly centered on the EN–LN composite anomalies of the nine

CESM simulations throughout the DJ–FM seasons, and covers the

maximumSLPanomalydifference fromobservations inFM(Fig. 3;

see also Figs. S4 and S5). Note that the observed center of action

(1508W) is about 208 east of the center of NPI [1708W, the same as

that in Trenberth and Hurrell (1994)], but moving the NPI box 208
to the east (so that it is instead centered on the observed anomaly)

does not qualitatively change the results here. The exception is that

for the composites of LENS-his and LENS-pi simulations, the rel-

ativeweakNPIbias duringENevents (Fig. 1) ismainly a shift in the

anomaly center away from our NPI box. Overall, the conclusions

are not strongly dependent on the averaging region used and the

bias is clear from the density of contours in Fig. 3.

In observations, the negative values during EN years over

the North Pacific dominate the EN–LN composite difference

(cf. Figs. 3d,g). This asymmetric feature in the amplitude of the

EN and LN anomalies can either be attributed to a true

asymmetry in the nature of the ENSO response or to internal

variability–induced uncertainty associated with the relatively

small sample size in observations (Zhang et al. 2014; Deser

et al. 2017). By examining the distribution of 1000 boot-

strapped NPI composites for the EN and LN (inverted) from

observations, the significance of this asymmetry can be tested.

As shown in Fig. 4b, the 10th percentile of the bootstrapped

inverted LN composite is greater than the 90th percentile of

the EN composite (i.e., this is a strong indication that there is a

real asymmetry between EN and LN responses in this season).

By excluding the extreme EN events of 1982/83 and 1997/98,

this asymmetric feature becomes less significant (Fig. 4d),

suggesting that the contribution from extreme EN events in

giving an overall stronger North Pacific response in EN events

is important. As shown in Fig. 4a, a similar asymmetric re-

sponse over the North Pacific can also be seen in DJ, but, as

concluded in Deser et al. (2017) for the DJF season, it does not

 
line is the average. The 5th and 95th percentiles are indicated by the whiskers. The blue dot

represents the mean for each individual member in the simulations with more than one member

and the one value for the observations and LENS-pi. The red-shaded region extends the 25th–

75th-percentile range for ERA20C across the plot for reference.

FIG. 3. Composites of SLP anomalies (contours) over FM during (d)–(f) El Niño (EN), (g)–(i) La Niña (LN) events, and (a)–(c) their

difference (EN–LN) for the (left) ERA20C dataset and (middle) TOGA-ERSSTv3b and (right) PACEMAKER simulations from

CESM1. The contour interval is 2 hPa with negative values dashed. Shadings are the difference fields compared to ERA20C. The red box

marks the region used for defining the North Pacific index (NPI).
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pass significance tests. The modeled responses in FM are also

generally stronger in EN years than in LN years (although less

dramatic than observed) in most of the CESM simulations

(Fig. 3; see also Fig. S4). Given the reduced importance of

internal variability in the model composites due to the larger

sample size, this lends further support to the asymmetric nature

of the EN and LN responses in this season. Despite the

asymmetric absolute response, the consistency of both sets of

CESM simulations in Fig. 3 in giving a stronger response over

the North Pacific than observations in FM during both EN and

LN is obvious.

b. Simulations with other models
Figures 5a and 5c show the composite of the FM SLP

anomalies (EN–LN) over the North Pacific area for the 43

CMIP5 models and 20 CMIP6 models from the coupled

piControl simulations, and Fig. 5e shows the same but for the

CMIP6 AMIP simulations. Similar to CESM (Fig. 3; see also

Fig. S4), a stronger amplitude of the ENSO response is ob-

served in the multimodel mean composites of both CMIP5 and

CMIP6 compared to observations and the discrepancy is

largest in FM. In addition, the modeled response is centered

farther west than that in observations, much like CESM. The

seasonal evolution of the NPI (Figs. 5b,d, f) in the multimodel

mean (blue lines) of the CMIP5 and CMIP6 simulations also

shows that the modeled NPI tends to peak one month (two

months in CMIP6’s piControl simulations) later than

observations. As was also found in CESM, the bias in the

CMIP5/CMIP6 models is dominated by the bias during La

Niña events, with the simulated springtime teleconnection

during El Niño events being closer to observed (Fig. S6).

However, it is not appropriate to conclude that the models are

better in simulating the NPI during EN events given that the

modeled DJ NPI in EN events is generally weaker than ob-

served. It is speculated that if the modeled NPI during DJ of

the EN events were closer to the observational value, the CMIP

models may exhibit stronger North Pacific circulation anomalies in

the FM season as well. This also indicates that the seasonal average

commonly used for model evaluation (i.e., DJF) may average out

compensating errors in the subseasonal time scale. Similar to what

was found inCESM(Fig. S3b), the discrepancy shown inENevents

becomes larger after excluding extremes in the CMIP models (not

shown). To summarize, the biases in the distribution and evolution

of North Pacific SLP anomalies during ENSO events in the CMIP

models are consistentwith those revealedby theCESMsimulations

in the previous section.

The difference between modeled and observed (MOD-

OBS) NPI for the EN–LN composite during FM is summa-

rized for the individual models in Fig. 6. Here, the 5th–95th

(25th–75th) confidence intervals in the modeled and observed

NPI anomalies are generated using the same random sampling

technique as in Fig. 2. The models marked by red plus signs are

those with composite NPI anomalies lying outside of the 5th–

95th bootstrapped composites of observational values—that is,

FIG. 4. Histograms of the bootstrapped North Pacific index (NPI; hPa) over (a) DJ and (b) FM during El Niño
(red) and La Niña (blue) events. (c),(d) As in (a) and (b), but with extreme events (i.e., 1982/83 and 1997/98)

excluded. La Niña values are multiplied by 21. The 10th and 90th percentiles are indicated by the dashed lines.
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with less than 5% chance that the modeled NPIs could be sam-

pled from the observed distribution given the observational un-

certainty. To test based on the uncertainty range in the models, a

blue plus sign is used to indicate when the observed value lies

outside of the 5th–95th confidence interval of a given model.

These two assessments of significance will only differ if the

model’s sampling uncertainty differs from that in observation. It

is obvious that the majority of the CMIP models tend to give a

stronger rather than weaker ENSO response over the North

Pacific area compared to observations. Specifically, only three

CMIP5 models and one CMIP6 model are associated with a

positive (although not significant) bias in NPI. After taking into

account the sampling uncertainty, the compositeFMNPI from23

out of 43 CMIP5 models and 11 out of 20 CMIP6 models’

piControl simulations is significantly (exceeding 95% confidence

level against the uncertainties in both observations and models)

more negative than observed, further emphasizing that the bias

identified in CESM is present in many other models as well.

Here we are cognizant of the fact that the bias in coupled

runs could arise from a bias in the response to the ENSO SST

anomalies, a bias in the representation of the SST anomalies

themselves, or both. For example, there is a well-known bias

that modeled ENSO SST anomalies tend to extend too far west

(Kiehl and Gent 2004; Li and Xie 2014). Despite the possible

contribution of biases in the simulation of the actual ENSO

SSTs, in these coupled model composites, it is shown that

similar biases exist when observed SSTs are prescribed in these

models too (Figs. 5 and 6), indicating that the primary issue lies

in how the atmosphere responds to ENSO SST anomalies.

Recall that to partially eliminate the potential influence from

the difference in the amplitude of the ENSO events, the NPI

from the coupled simulations has been scaled by the ratio of the

composite mean Niño-3.4 anomalies in ERSSTv3b to that in

the model. The corresponding ratio of the DJF mean Niño-3.4
index in each model to that in observations is marked by a

green dot in Fig. 6. This shows that there is no clear relationship

between amodel’s NPI index bias and its ENSO amplitude. The

conclusions here are not sensitive to the season used for scaling,

namely replacing the DJF Niño-3.4 indices with the FM/FMA

index gives qualitatively the same results (not shown). It is clear

FIG. 5. (left) Composites of EN-LNSLP anomalies (contours) over FMduringENSOevents averaged over (a) 43

CMIP5, (c) 20 CMIP6models’ piControl simulations, and (e) 9CMIP6models’AMIP simulations. Shadings are the

difference fields compared to ERA20C as in Fig. 3. (right) Evolution of the NPI (hPa) in observations (red) and

each of the (b) 43 CMIP5, (d) 20 CMIP6models’ piControl simulations, and (f) 9 CMIP6models’AMIP simulations

(gray). Blue is for the multimodel mean and gray shading depicts the model range.

1 DECEMBER 2020 CHEN ET AL . 9993

Brought to you by University of Colorado Libraries | Unauthenticated | Downloaded 03/11/21 03:11 PM UTC



that the NPI bias in FM is not simply a persistence of a bias from

early winter (DJ), as shown by the red dots in Fig. 6. There is a

suggestion that the models that have less of an FM bias, actually

have a too-weak teleconnection during DJ (also see Fig. S6).

Therefore, the FM bias might be even more ubiquitous across

the models if those models had a more accurate early winter

teleconnection.

The influence of coupling can be analyzed using CESM

multi-configuration experiments and piControl/AMIP simulations

from CMIP6. In CESM, the bias in the coupled LENS-his and

LENS-pi simulations are significantly smaller (25th–75th confidence

intervals are not overlapped) than that in the TOGA-ERSSTv3b

and TOGA-ERSSTv4 simulations (Fig. 6b). However, no sig-

nificant improvement is found in the PACEMAKER simulation

compared to other atmosphere-only simulations. Compared to

LENS-his and LENS-pi, PACEMAKER is also a coupled sim-

ulation while it has more realistic ENSO SST anomalies.

Therefore, the apparent improvement shown in LENS-his and

LENS-pi simulations is not likely to be due to the two-way

coupling between atmosphere and ocean. A possibility is that

the differences in the ENSO simulation in the coupled model

partially offset the atmospheric model errors. A comparison

between the AMIP-type simulations in CMIP6 and their cor-

responding coupled simulations shows that no significant

FIG. 6. (a) The difference between the EN-LN composites of modeled and observed NPI

(NPI bias; hPa) over FM for each of the 43 CMIP5 models’ piControl simulations. The black

whiskers (red lines) indicate the 25%–75% confidence interval based on 1000 bootstrapped

samples from the models (observations), all sampling with an equivalent sample size to the

observations. The models that significantly differ from the observed value against the 5%–

95% confidence interval in the observations (models) aremarked by red (blue) plus signs. For

each model, the NPI bias averaged over December to January is marked by the red dot, and

the ratio of the DJF composite Niño-3.4 index to observations is in green (right axis). The

models developed by the same institution or that share a development history are shown in

the same color other than black. (b) As in (a), but for CMIP6 models’ piControl and AMIP

simulations, nine configurations of CESM, and ERA20CM simulations.
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improvement is found in the presence of the coupling, so the

AMIP simulations do not produce the bias as a result of the

lack of coupling but rather do so due to errors in the atmo-

spheric response to the SSTs. We also consider one set of

simulations of ERA20CM, which is a 10-member ensemble of

prescribed historical SST simulations. These are analogous to

the CESM GOGA runs but with an entirely different model,

and it can be seen in Fig. 6b (far right) that this model has a very

similar springtime bias when forced by the observed ENSO

events. Therefore, it provides further evidence for the ubiquity

of the bias in different climate models, even when forced with

observed SSTs. Furthermore, as different atmosphere-only

configurations of CESM displayed no significant difference

from each other, no evidence has been found that the influence

of extratropical SSTs (by comparing TOGA and GOGA), or

the model top height (by comparing CESM2-CAM6 and

CESM2-WACCM6) has any bearing on the bias.

In most cases, the models developed by the same institution

resemble each other in terms of the amplitude of NPI biases, es-

pecially when the models only differ in atmospheric chemistry

(MIROC-ESM and MIROC-ESM-CHEM), biochemistry (e.g.,

NorESM1-M and NorESM1-ME), and stratospheric representa-

tion (e.g., CMCC-CM and CMCC-CMS; CESM1-CAM5 and

CESM1-WACCM; andCESM2-CAM6andCESM2-WACCM6).

Model resolution, in general is not a determining factor for the

occurrence of the bias (e.g., IPSL-CM5A-LR and IPSL-CM5A-

MR;MPI-ESM-LR andMPI-ESM-MR), although there are some

cases when improvements are seen (e.g., BCC-CSM-1.1 and BCC-

CSM-1.1-M inCMIP5, andHadGEM3-GC31-LLandHadGEM3-

GC31-MM in CMIP6). There are also cases when changes in the

physics lead to improvement (e.g., compare IPSL-CM5B-LR with

IPSL-CM5A-MR and IPSL-CM5A-LR).

4. Implications for the modeled climate response over
North America
The North Pacific atmospheric circulation can have a pro-

found impact on the surface climate over North America. For

example, when the low pressure system around the Aleutian

Islands becomes deeper and shifted eastward, the southerly

and westerly winds along the west coast of North America are

intensified, increasing the frequency of heavy daily precipita-

tion events over the western United States (Kim et al. 2019),

andwarming a large portion ofAlaska (Papineau 2001) and the

western United States (Favre and Gershunov 2009).

To investigate the influence of the circulation bias on the

simulation of the climate impacts over North America, we first

compare the modeled EN–LN composites of surface air tem-

perature and precipitation anomalies during FM in the CESM

PACEMAKER simulations with observations in Figs. 7a and

7c. The PACEMAKER simulations are selected over other

CESM configurations since they has a larger ensemble size

than TOGA and GOGA simulations (20 members compared

to 10 members), and two-way air–sea interaction is included.

Moreover, compared to the LENS-his and LENS-pi simula-

tions, the SST anomalies during ENSO are more realistic. For

surface air temperature (TAS; Fig. 7a), significant warm biases

are found in the northwest coveringAlaska to Nunavut. Significant

cold biases are mostly seen to the north and northeast of the Great

Lakes. Weak warm biases also occur along the coastal area of

the Gulf of Mexico. The accompanying circulation anomalies at

850 hPa suggest that the warm bias over Alaska can be directly

linked to the northeast branch of the cyclonic circulation bias

over theNorthPacific, and associated southerlywarmadvection.

The weak warm biases along the coastal area of the Gulf of

Mexico accompany a southerly wind bias in the western North

Atlantic. The anomalous cold air over northeastern Canada

south of Hudson Bay appears to be related to circulation

anomalies over the western Atlantic and Hudson Bay, rather

than directly influenced by the NPI. The distribution of precip-

itation (PREC; Fig. 7c) shows a patch of significant dry biases

along the west coast from southern Canada to the northern tier

of the United States, and wet biases over the southwestern and

the southeastern United States. The moisture flux shown in

vectors suggests that there are offshoremoisture transport biases

prevailing over the dry-bias region and southerly inshore mois-

ture transport biases associatedwith the southwestUnitedStates

wet bias. Following Jong et al. (2016), we apply the composite

analysis to the extreme and nonextreme EN events separately

and find that California precipitation is markedly increased in

both types of events in PACEMAKER, in contrast to observa-

tions which show a larger signal during extreme EN events (not

shown).Apossible consequence is that themodels would give an

overoptimistic estimation of the role played by moderate EN

events in relieving periods of drought of California.

Similar results are given by the multimodel mean of the

CMIP5 models in Fig. 7b for surface air temperature and in

Fig. 7d for precipitation. Compared to PACEMAKER, the

warm biases shown inAlaska and western Canada are weaker in

the CMIP5models, mainly because the North Pacific circulation

bias and the associated southerly anomalies (Figs. 7e,f) are

weaker in the CMIP5 ensemble mean. The cold biases south of

Hudson Bay, by contrast, are stronger in the CMIP5 models.

The major difference in the composite precipitation bias in the

CMIP5models compared to PACEMAKER is that the wet bias

over California is missing, which can be explained by the limited

eastward extension of the cyclonic flow anomalies that prevent

the inland moisture flux anomalies from reaching the southwest

United States in the CMIP5 models.

From another perspective, the linkage between the surface

climate response and the NPI bias can be established by

regressing across the CMIP5 models. The regression maps

shown in Figs. 8a and 8b provide further evidence that the above

surface climate biases found over western North America are,

indeed, connected to the NPI bias. Note that the sign of the NPI

bias has been inverted before calculating the regression coeffi-

cients, so that the sign of the regression coefficient matches the

sign of the anomalies in the composite bias discussed above.

Figure 8a indicates that, in the CMIP5 models, a stronger North

Pacific ENSO teleconnection tends to be accompanied by a

warmer anomaly over northwest North America and colder

anomaly in the southeast. Different from Fig. 7b, no significant

temperature biases to the north and northeast of the Great

Lakes are present. In addition, the weak cold biases seen over

the coastal area of the Gulf of Mexico in the regression map

across the CMIP5 models are of opposite sign compared to the

composite bias. This suggests that these features found in the
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composite bias are not directly tied to the NPI bias. The across-

model regression coefficient map between the precipitation com-

posite bias and the NPI bias (Fig. 8b) exhibits significant positive

precipitation anomalies in California (90% confidence level) and

dry biases to the north, which is in line with a strengthening of the

canonical precipitation response to ENSO as depicted by Mo and

Higgins (1998), Mo and Schemm (2008), and many other studies.

Note that compared to the composite results, the NPI regressions

show a weaker dry bias to the west of Hudson Bay and a more

coastal-confined wet bias over the southeastern United States.

In the EN–LN composite field of SLP anomalies, the springtime

anomalies in SLP in both the PACEMAKER simulations and the

coupled CMIP5 models exhibit a positive bias centered over the

North Atlantic (Figs. 7e,f). However, the regression of SLP

anomalies onto theNPI bias across the CMIP5modelsmakes clear

that the magnitude of this North Atlantic bias is not related to the

magnitude of the NPI bias (Fig. 8c), suggesting the Atlantic and

Pacific biases may have distinct causes. The lack of significant cir-

culation changes around Hudson Bay in the regression map is also

consistent with the weak climate impacts (both in TAS and PREC)

displayed over that area (Figs. 8a,b). The cold biases over the

southeastern United States are under the influence of the prevailing

of northerly wind brought by the weak southeastern North Atlantic

low pressure anomalies, which are linked to the NPI bias. In sum-

mary, the influenceof themodel biases in the simulationof a stronger

North Pacific ENSO teleconnection after the peak season is consis-

tent with a prolonged ENSO impact on western North America in

themodels (Mo andHiggins 1998; Papineau 2001;Deser et al. 2018).

5. Potential causes of the February–March NPI bias
It is well known that diabatic heating related to tropical

precipitation anomalies plays a critical role in triggering the

FIG. 7. Composites of the difference between the (left) PACEMAKERmodeled and (right) CMIP5 multimodel

mean and the observed EN–LN anomalies in (a),(b) surface air temperature (TAS; shading) and horizontal winds

at 850 hPa (vectors), (c),(d) precipitation (PREC; shading) andmoisture flux at 850 hPa (Qflux; vectors), and (e),(f)

sea level pressure (SLP) over FM of ENSO events. Stippling indicates that the observed value lies outside of the

5th–95th percentiles from the bootstrapped composites by applying the observed confidence intervals to the model

simulations. See Deser et al. (2018) for more details.
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extratropical Rossby wave train pattern during ENSO events

(HoskinsandKaroly 1981).Herewe investigatewhether there is any

evidence that this mechanism underlies the FMNPI bias in models.

The differences in the EN–LN composited anomalous precipitation

fields for CESM PACEMAKER, TOGA-ERSSTv3b, and the

multimodel mean of the CMIP5 piControl simulations relative to

ERA20C averaged over FM are shown in Figs. 9a, 9c, and 9e, re-

spectively. Figure 9g shows the regression, across CMIP5models, of

the precipitation simulation bias at each grid point over the ocean

onto the NPI bias. Since precipitation in ERA20C may have sub-

stantial influence from the underlying model, we also show an

equivalent comparison for the shorter period from 1979–2010 using

the GPCP observational product in Fig. S7. These both give con-

sistent conclusions.

According to Spencer and Slingo’s (2003) analysis, the simu-

lated precipitation over the equatorial southwestern Pacific to

the east of New Guinea (central and western equatorial Pacific)

remains too high (low) during the springtime of EN (LN) events.

However, as can be seen in Figs. 9a, 9c, and 9e, in our study the

EN–LN composites of modeled precipitation to the east of New

Guinea around the date line are actually lower thanobservations

in FM. Furthermore, these negative precipitation anomalies are

not significantly correlated with the North Pacific SLP bias

across the CMIP5models as indicated by Fig. 9g. Instead, across

the CMIP5models, a weak positive correlation relationship with

the NPI index can be found in the precipitation anomalies from

the western tropical Pacific around the Philippines into the

equatorial western Pacific. A similar structure is detected in the

composite fields where positive precipitation biases are detected

over the western tropical Pacific surrounding the Maritime

Continent, which extend farther east along the north of the

equator in the TOGA-ERSSTv3b simulation. A significant re-

lationship is also found for precipitation anomalies over the

midlatitude North Pacific (e.g., the dry biases around the

Kuroshio area andwet biases over the central North Pacific), but

of course these are very likely due to the circulation bias as

opposed to causing it. Over the IndianOcean, there is an overall

dry-bias signal accompanying the overly strong North Pacific

ENSO teleconnection in the models. The detailed structure re-

veals that while there is a consistent dry bias over the south

Indian Ocean in each composite analyses (Figs. 9a,c,e), signifi-

cant negative correlations are found north of the equator in the

regression map across the CMIP5 models (Fig. 9g). Similar

dry biases are also seen over the north Indian Ocean in the

PACEMAKER differences from observations, but are not

present in the TOGA experiments.

Although the precipitation-induced diabatic heating is es-

sential for generating the ENSO teleconnection, the climato-

logical background flow (e.g., the location and intensity of the

jet stream) could modify the source of the waves and influence

the subsequent wave propagation (Simmons et al. 1983; Held

and Ting 1990; Hoskins et al. 1983; Sardeshmukh and Hoskins

1988). As a preliminary search for discrepancies in the mean

flow between models and observations, the zonal wind clima-

tology (over all years) in FM at 200 hPa (U200) is examined

(Figs. 9b,d,f,h). The results from the regression onto the NPI

across the CMIP5 models suggest that the strength of the cli-

matological East Asian subtropical jet stream is positively

correlated with the NPI bias across the models. Compared to

observations, the East Asian jet stream over the North Pacific

in the PACEMAKER simulations extends farther eastward

while the TOGA-ERSSTv3b simulation shows no obvious

difference from the observed background jet stream intensity.

Therefore, it is possible that the climatological U200 plays a

role in some models, although there is not a consistent dis-

crepancy in each case. It is possible that different mechanisms

are acting in different setups; for example, the north Indian

Ocean precipitation bias may be important in the coupled

configurations like CMIP5 and PACEMAKER, while other

factors may be important in TOGA. There are still several

other factors possibly involved in determining the ultimate

structure and intensity of the teleconnection pattern, such as

the role played by transient eddies, the detailed horizontal

structure and vertical profile of the diabatic heating associated

FIG. 8. Regression maps of (a) surface air temperature (TAS)

bias, (b) precipitation (PREC) bias, and (c) sea level pressure

(SLP) bias on each grid point over FM of ENSO events onto213
NPI bias across the CMIP5 models. Stippling indicates that the

regression coefficient exceeds 95% confidence level.
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with the tropical precipitation anomalies (Ting and Sardeshmukh

1993), feedbacks involving extratropical diabatic heating, and the

interactions between all these potential factors.

6. Summary and conclusions
The North Pacific ENSO teleconnection acts as an impor-

tant atmospheric bridge that helps transmit the influence of

ENSO-related SST anomalies to North American surface cli-

mate (Alexander et al. 2002). Due to a larger forced signal

relative to background noise from internal variability, the late

winter to spring season is believed to have a potential for

higher seasonal predictability for North America compared to

the midwinter (Kumar and Hoerling 1998). However, this

predictability inevitably relies on the model’s capability to

reasonably reproduce the SST-forced teleconnection pattern

over the North Pacific during that season. Here we find that

CESM1 and CESM2 display a significantly biased North

Pacific ENSO teleconnection intensity after the peak of El

Niño/La Niña events, especially in the 2-month average from

February to March, regardless of how the experiments are

FIG. 9. (left) Composites of the difference of EN–LN ocean precipitation (PREC) anomalies between

(a) PACEMAKER, (c) TOGA-ERSSTv3b, and (e) themultimodel mean of CMIP5models andERA20C over FM

of ENSO events. (g) Regression, across CMIP5models, of ocean PREC bias on each grid point onto213NPI bias

during FM of ENSO events. (right) Climatological difference (all years) of the zonal wind at 200 hPa (U200)

between (b) PACEMAKER, (d) TOGA-ERSSTv3b, and (f) themultimodel mean of CMIP5models and ERA20C

in FM. (h) Regression, across CMIP5 models, of FM U200 climatological mean (all years) at each grid point

onto 21 3 NPI bias. Blue contours delineate the observation values above 45m s21; the interval is 5m s21.

Stippling indicates that the composite difference or regression coefficient exceeds 95% confidence level.

9998 JOURNAL OF CL IMATE VOLUME 33

Brought to you by University of Colorado Libraries | Unauthenticated | Downloaded 03/11/21 03:11 PM UTC



configured (i.e., observed SSTs specified in the atmospheric

model, eastern tropical Pacific SST anomalies nudged to ob-

served in the coupled model, or free-running fully coupled

simulations). Specifically, the modeled SLP anomalies have

larger amplitude over the North Pacific, and maximize one

month later than in observations. A comparison with piControl

simulations from 43CMIP5 and 20CMIP6models demonstrates

that more than half of the CMIP models exhibit a similar sig-

nificant bias (i.e., they exhibit an overly strong teleconnection

response to ENSO in the FM season, which is not a carry-over

phenomenon from the preceding December–January season).

BothCESMand the CMIP ensemble indicate that a stronger

North Pacific ENSO teleconnection after the peak of El Niño/
La Niña is associated with a bias in the simulation of anoma-

lous surface climate over western North America. As revealed

by the EN–LN composites, this takes the form of a warm bias

overAlaska, a wet bias over California, and a dry bias along the

west coast from southern Canada to the northernUnited States

compared to observations. These features are expected based

on the large-scale circulation-induced thermal advection and

moisture transports that accompany the stronger North Pacific

circulation anomaly. In general, themodels’ bias in displaying a

stronger North Pacific ENSO teleconnection during spring

likely falsely prolongs the influence of ENSO over North

America. In a broader sense, the ENSO forced signal during

that season is overestimated in the models.

In the modeling work of Garfinkel et al. (2019), the early

spring North Pacific SLP response to ENSO events is of similar

magnitude to its winter counterpart (see Fig. 1 of their paper).

Our study suggests that this is a model deficiency and care

should be taken in interpreting the modeling results related to

the strength of springtime North Pacific circulation anomalies

during ENSO events. Further, understanding of the mecha-

nism causing that bias is of critical importance to develop fu-

turemodels that can effectively be used for studying springtime

ENSO teleconnections, or providing seasonal forecasts. While both

Spencer and Slingo (2003) and Alexander et al. (2002) speculated

that a potential cause of the bias is the lack of dynamical ocean–

atmosphere coupling, our study suggests that most coupled models

also suffer from a similar problem. By examining the tropical Pacific

precipitation discrepancy in the CESM PACEMAKER, TOGA-

ERSSTv3b, andCMIP5models’ piControl simulations,we showthat

the central tropical Pacific precipitation bias in the PACEMAKER

and TOGA-ERSSTv3b simulations are of the opposite sign com-

pared to Spencer and Slingo’s (2003) analysis. Moreover, no sig-

nificant relationship is detected in the CMIP5 models between the

bias in precipitation anomalies in the tropical Pacific and theNorth

Pacific circulation bias. Instead, the NPI biases in the CMIP5

models are found to be significantly negatively correlated with

precipitation biases over the tropical north IndianOcean.However,

such aprecipitationbias is not present in theTOGAruns.There are

many other factors that could play a role, such as biases in transient

eddy feedbacks on the extratropical circulation or biases in the

vertical structure of the heating perturbation and a detailed inves-

tigationofpossibilities like these is needed to further understand the

ultimate reason behind this modeled deficiency.

Despite considerable improvements in coupled models over

the past 15 years, the springtime bias in ENSO teleconnections

to the North Pacific and attendant climate impacts over North

America remain ubiquitous and lack explanation. Further

work is needed to fully understand the bias and disentangle the

role played by multiple components. Inspired by Held et al.

(2002) and the series of literature prior to that (Held and Kang

1987; Held et al. 1989; Ting and Sardeshmukh 1993), stationary

wave modeling that focuses on decomposing the stationary

field into multiple contributing components may be a useful

tool in future studies that aim for this understanding.

Acknowledgments. We appreciate the three anonymous re-

viewers for their thoughtful comments. The CESM project is

supported primarily by the National Science Foundation (NSF).

This material is supported by the National Natural Science

Foundation of China (41875127) and is based upon work sup-

ported by theNational Center forAtmospheric Research, which

is amajor facility sponsored by theNational Science Foundation

under Cooperative Agreement 1852977. Computing and data

storage resources, including the Cheyenne supercomputer (doi:

10.5065/D6RX99HX),were provided by the Computational and

Information Systems Laboratory (CISL) at NCAR. Ruyan

Chen was supported by the graduate visitor program of the

Advanced Study Program at NCAR. We acknowledge the

World Climate Research Programme’s Working Group on

Coupled Modelling, which is responsible for CMIP, and we

thank the climate modeling groups (listed in Table 1) for pro-

ducing and making available their model output. For CMIP, the

U.S. Department of Energy’s Program for Climate Model

Diagnosis and Intercomparison provides coordinating support

and led development of software infrastructure in partnership

with the Global Organization for Earth System Science Portals.

REFERENCES

Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation

ClimatologyProject (GPCP)monthly precipitation analysis (1979–

present). J. Hydrometeor., 4, 1147–1167, https://doi.org/

10.1175/1525-7541(2003)004,1147:TVGPCP.2.0.CO;2.

Alexander,M.A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau,

and J. D. Scott, 2002: The atmospheric bridge: The influence of

ENSO teleconnections on air–sea interaction over the global

oceans. J. Climate, 15, 2205–2231, https://doi.org/10.1175/1520-

0442(2002)015,2205:TABTIO.2.0.CO;2.

Allan, R., and T. Ansell, 2006: A new globally complete monthly

historical griddedmean sea level pressure dataset (HadSLP2):

1850–2004. J. Climate, 19, 5816–5842, https://doi.org/10.1175/

JCLI3937.1.

Barnett, T., and Coauthors, 1994: Forecasting global ENSO-

related climate anomalies. Tellus, 46A, 381–397, https://

doi.org/10.3402/tellusa.v46i4.15487.

Barnston, A. G., M. Chelliah, and S. B. Goldenberg, 1997:

Documentation of a highly ENSO–related SST region in the

equatorial Pacific: Research note.Atmos.–Ocean, 35, 367–383,

https://doi.org/10.1080/07055900.1997.9649597.

——, A. Kumar, L. Goddard, andM. P. Hoerling, 2005: Improving

seasonal prediction practices through attribution of climate

variability.Bull. Amer. Meteor. Soc., 86, 59–72, https://doi.org/

10.1175/BAMS-86-1-59.

Bates, G. T., M. P. Hoerling, and A. Kumar, 2001: Central

U.S. springtime precipitation extremes: Teleconnections

and relationships with sea surface temperature. J. Climate, 14,

1 DECEMBER 2020 CHEN ET AL . 9999

Brought to you by University of Colorado Libraries | Unauthenticated | Downloaded 03/11/21 03:11 PM UTC

doi:10.5065/D6RX99HX
doi:10.5065/D6RX99HX
https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2
https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2
https://doi.org/10.1175/JCLI3937.1
https://doi.org/10.1175/JCLI3937.1
https://doi.org/10.3402/tellusa.v46i4.15487
https://doi.org/10.3402/tellusa.v46i4.15487
https://doi.org/10.1080/07055900.1997.9649597
https://doi.org/10.1175/BAMS-86-1-59
https://doi.org/10.1175/BAMS-86-1-59


3751–3766, https://doi.org/10.1175/1520-0442(2001)014,3751:

CUSSPE.2.0.CO;2.

Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and

J. Vialard, 2014: ENSO representation in climate models:

From CMIP3 to CMIP5. Climate Dyn., 42, 1999–2018, https://

doi.org/10.1007/s00382-013-1783-z.

Bjerknes, J., 1966: A possible response of the atmospheric Hadley

circulation to equatorial anomalies of ocean temperature.

Tellus, 18, 820–829, https://doi.org/10.3402/tellusa.v18i4.9712.

——, 1969: Atmospheric teleconnections from the equatorial

Pacific. Mon. Wea. Rev., 97, 163–172, https://doi.org/10.1175/

1520-0493(1969)097,0163:ATFTEP.2.3.CO;2.

Bladé, I., M. Newman, M. A. Alexander, and J. D. Scott, 2008: The

late fall extratropical response to ENSO: Sensitivity to cou-

pling and convection in the tropical west Pacific. J. Climate, 21,

6101–6118, https://doi.org/10.1175/2008JCLI1612.1.

Bogenschutz, P. A., A. Gettelman, C. Hannay, V. E. Larson, R. B.

Neale, C. Craig, and C.-C. Chen, 2018: The path to CAM6:

Coupled simulations withCAM5.4 andCAM5.5.Geosci.Model

Dev., 11, 235–255, https://doi.org/10.5194/gmd-11-235-2018.

Chakraborty, A., and T. N. Krishnamurti, 2006: Improved seasonal

climate forecasts of the South Asian summer monsoon using a

suite of 13 coupled ocean–atmosphere models. Mon. Wea.

Rev., 134, 1697–1721, https://doi.org/10.1175/MWR3144.1.

Compo, G. P., and Coauthors, 2011: The Twentieth Century

Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137 (654), 1–

28, https://doi.org/10.1002/qj.776.

Danabasoglu, G., and Coauthors, 2020: The Community Earth

System Model version 2 (CESM2). J. Adv. Model Earth Syst.,

12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

Deser, C., I. R. Simpson, K. A. McKinnon, and A. S. Phillips, 2017:

The Northern Hemisphere extratropical atmospheric circu-

lation response to ENSO: Howwell do we know it and how do

we evaluate models accordingly? J. Climate, 30, 5059–5082,

https://doi.org/10.1175/JCLI-D-16-0844.1.

——,——, A. S. Phillips, and K. A. McKinnon, 2018: How well do

we know ENSO’s climate impacts over North America, and

how do we evaluate models accordingly? J. Climate, 31, 4991–

5014, https://doi.org/10.1175/JCLI-D-17-0783.1.

Favre, A., and A. Gershunov, 2009: North Pacific cyclonic and

anticyclonic transients in a global warming context: Possible

consequences for western North American daily precipitation

and temperature extremes. Climate Dyn., 32, 969–987, https://

doi.org/10.1007/s00382-008-0417-3.

Frauen, C., D. Dommenget, N. Tyrrell, M. Rezny, and S.Wales, 2014:

Analysis of the nonlinearity of El Niño–Southern Oscillation

teleconnections. J. Climate, 27, 6225–6244, https://doi.org/10.1175/

JCLI-D-13-00757.1.

Garfinkel, C. I., I.Weinberger, I. P.White, L. D.Oman, V.Aquila, and

Y.-K.Lim, 2019: The salience of nonlinearities in the borealwinter

response to ENSO: North Pacific and North America. Climate

Dyn., 52, 4429–4446, https://doi.org/10.1007/s00382-018-4386-x.

Gershunov, A., and T. P. Barnett, 1998: ENSO influence on intra-

seasonal extreme rainfall and temperature frequencies in the

contiguous United States: Observations and model results.

J. Climate, 11, 1575–1586, https://doi.org/10.1175/1520-0442(1998)

011,1575:EIOIER.2.0.CO;2.

Gettelman, A., and Coauthors, 2019: The Whole Atmosphere

Community ClimateModel version 6 (WACCM6). J. Geophys.

Res. Atmos., 124, 12 380–12 403, https://doi.org/10.1029/

2019JD030943.

Gleixner, S., N. S. Keenlyside, T. D. Demissie, F. Counillon,

Y.Wang, and E. Viste, 2017: Seasonal predictability of Kiremt

rainfall in coupled general circulation models. Environ. Res.

Lett., 12, 114016, https://doi.org/10.1088/1748-9326/aa8cfa.

Held, I. M., and I.-S. Kang, 1987: Barotropic models of the

extratropical response to El Niño. J. Atmos. Sci., 44, 3576–

3586, https://doi.org/10.1175/1520-0469(1987)044,3576:

BMOTER.2.0.CO;2.

——, and M. Ting, 1990: Orographic versus thermal forcing of

stationary waves: The importance of the mean low-level wind.

J. Atmos. Sci., 47, 495–500, https://doi.org/10.1175/1520-0469(1990)

047,0495:OVTFOS.2.0.CO;2.

——, S. W. Lyons, and S. Nigam, 1989: Transients and the extra-

tropical response to El Niño. J. Atmos. Sci., 46, 163–174, https://

doi.org/10.1175/1520-0469(1989)046,0163:TATERT.2.0.CO;2.

——, M. Ting, and H. Wang, 2002: Northern winter stationary waves:

Theory and modeling. J. Climate, 15, 2125–2144, https://doi.org/

10.1175/1520-0442(2002)015,2125:NWSWTA.2.0.CO;2.

Hersbach, H., C. Peubey, A. Simmons, P. Berrisford, P. Poli, and

D. Dee, 2015: ERA-20CM: A twentieth-century atmospheric

model ensemble. Quart. J. Roy. Meteor. Soc., 141, 2350–2375,

https://doi.org/10.1002/qj.2528.

Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric

phenomena associated with the southern oscillation. Mon.

Wea. Rev., 109, 813–829, https://doi.org/10.1175/1520-0493(1981)

109,0813:PSAPAW.2.0.CO;2.

Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response

of a spherical atmosphere to thermal and orographic forcing.

J. Atmos. Sci., 38, 1179–1196, https://doi.org/10.1175/1520-

0469(1981)038,1179:TSLROA.2.0.CO;2.

——, I. N. James, and G. H. White, 1983: The shape, propagation

and mean-flow interaction of large-scale weather systems.

J. Atmos. Sci., 40, 1595–1612, https://doi.org/10.1175/1520-

0469(1983)040,1595:TSPAMF.2.0.CO;2.

Huang, B., and Coauthors, 2015: Extended Reconstructed Sea

Surface Temperature version 4 (ERSST.v4). Part I: Upgrades

and intercomparisons. J. Climate, 28, 911–930, https://doi.org/

10.1175/JCLI-D-14-00006.1.

——, and Coauthors, 2017: Extended Reconstructed Sea Surface

Temperature, version 5 (ERSSTv5): Upgrades, validations,

and intercomparisons. J. Climate, 30, 8179–8205, https://

doi.org/10.1175/JCLI-D-16-0836.1.

Hurrell, J. W., and Coauthors, 2013: The Community Earth System

Model:A framework for collaborative research.Bull.Amer.Meteor.

Soc., 94, 1339–1360, https://doi.org/10.1175/BAMS-D-12-00121.1.

Hurwitz, M. M., N. Calvo, C. I. Garfinkel, A. H. Butler, S. Ineson,

C. Cagnazzo, E. Manzini, and C. Peña-Ortiz, 2014: Extra-

tropical atmospheric response to ENSO in the CMIP5models.

Climate Dyn., 43, 3367–3376, https://doi.org/10.1007/s00382-

014-2110-z.

Jiménez-Esteve, B., and D. I. V. Domeisen, 2019: Nonlinearity in

the North Pacific atmospheric response to a linear ENSO

forcing. Geophys. Res. Lett., 46, 2271–2281, https://doi.org/

10.1029/2018gl081226.

Johnson, N. C., D. C. Collins, S. B. Feldstein,M. L. L’Heureux, and

E. E. Riddle, 2014: Skillful wintertime North American tem-

perature forecasts out to 4 weeks based on the state of ENSO

and the MJO. Wea. Forecasting, 29 23–38, https://doi.org/

10.1175/WAF-D-13-00102.1.

Jong, B.-T., M. Ting, and R. Seager, 2016: El Niño’s impact on

California precipitation: Seasonality, regionality, and El Niño
intensity.Environ. Res. Lett., 11, 054021, https://doi.org/10.1088/

1748-9326/11/5/054021.

Kay, J. E., and Coauthors, 2015: The Community Earth System

Model (CESM) large ensemble project: A community re-

10000 JOURNAL OF CL IMATE VOLUME 33

Brought to you by University of Colorado Libraries | Unauthenticated | Downloaded 03/11/21 03:11 PM UTC

https://doi.org/10.1175/1520-0442(2001)014<3751:CUSSPE>2.0.CO;2
https://doi.org/10.1175/1520-0442(2001)014<3751:CUSSPE>2.0.CO;2
https://doi.org/10.1007/s00382-013-1783-z
https://doi.org/10.1007/s00382-013-1783-z
https://doi.org/10.3402/tellusa.v18i4.9712
https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2
https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2
https://doi.org/10.1175/2008JCLI1612.1
https://doi.org/10.5194/gmd-11-235-2018
https://doi.org/10.1175/MWR3144.1
https://doi.org/10.1002/qj.776
https://doi.org/10.1029/2019MS001916
https://doi.org/10.1175/JCLI-D-16-0844.1
https://doi.org/10.1175/JCLI-D-17-0783.1
https://doi.org/10.1007/s00382-008-0417-3
https://doi.org/10.1007/s00382-008-0417-3
https://doi.org/10.1175/JCLI-D-13-00757.1
https://doi.org/10.1175/JCLI-D-13-00757.1
https://doi.org/10.1007/s00382-018-4386-x
https://doi.org/10.1175/1520-0442(1998)011<1575:EIOIER>2.0.CO;2
https://doi.org/10.1175/1520-0442(1998)011<1575:EIOIER>2.0.CO;2
https://doi.org/10.1029/2019JD030943
https://doi.org/10.1029/2019JD030943
https://doi.org/10.1088/1748-9326/aa8cfa
https://doi.org/10.1175/1520-0469(1987)044<3576:BMOTER>2.0.CO;2
https://doi.org/10.1175/1520-0469(1987)044<3576:BMOTER>2.0.CO;2
https://doi.org/10.1175/1520-0469(1990)047<0495:OVTFOS>2.0.CO;2
https://doi.org/10.1175/1520-0469(1990)047<0495:OVTFOS>2.0.CO;2
https://doi.org/10.1175/1520-0469(1989)046<0163:TATERT>2.0.CO;2
https://doi.org/10.1175/1520-0469(1989)046<0163:TATERT>2.0.CO;2
https://doi.org/10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2
https://doi.org/10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2
https://doi.org/10.1002/qj.2528
https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2
https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2
https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2
https://doi.org/10.1175/JCLI-D-14-00006.1
https://doi.org/10.1175/JCLI-D-14-00006.1
https://doi.org/10.1175/JCLI-D-16-0836.1
https://doi.org/10.1175/JCLI-D-16-0836.1
https://doi.org/10.1175/BAMS-D-12-00121.1
https://doi.org/10.1007/s00382-014-2110-z
https://doi.org/10.1007/s00382-014-2110-z
https://doi.org/10.1029/2018gl081226
https://doi.org/10.1029/2018gl081226
https://doi.org/10.1175/WAF-D-13-00102.1
https://doi.org/10.1175/WAF-D-13-00102.1
https://doi.org/10.1088/1748-9326/11/5/054021
https://doi.org/10.1088/1748-9326/11/5/054021


source for studying climate change in the presence of internal

climate variability. Bull. Amer. Meteor. Soc., 96, 1333–1349,

https://doi.org/10.1175/BAMS-D-13-00255.1.

Kiehl, J. T., and P. R. Gent, 2004: The Community Climate System

Model, version 2. J. Climate, 17, 3666–3682, https://doi.org/

10.1175/1520-0442(2004)017,3666:TCCSMV.2.0.CO;2.

Kim, H.-M., Y. Zhou, and M. A. Alexander, 2019: Changes in atmo-

spheric rivers andmoisture transport over the northeast Pacific and

western North America in response to ENSO diversity. Climate

Dyn., 52, 7375–7388, https://doi.org/10.1007/s00382-017-3598-9.
Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied

to equatorial Pacific surface cooling. Nature, 501, 403–407,

https://doi.org/10.1038/nature12534.

Kumar, A., 2010: On the assessment of the value of the seasonal

forecast information. Meteor. Appl., 17, 385–392, https://

doi.org/10.1002/met.167.

——, and M. P. Hoerling, 1998: Annual cycle of Pacific–North

American seasonal predictability associated with different

phases of ENSO. J. Climate, 11, 3295–3308, https://doi.org/

10.1175/1520-0442(1998)011,3295:ACOPNA.2.0.CO;2.

——, and ——, 2000: Analysis of a conceptual model of seasonal

climate variability and implications for seasonal prediction.

Bull. Amer. Meteor. Soc., 81, 255–264, https://doi.org/10.1175/

1520-0477(2000)081,0255:AOACMO.2.3.CO;2.

——, A. G. Barnston, and M. P. Hoerling, 2001: Seasonal predic-

tions, probabilistic verifications, and ensemble size. J. Climate,

14, 1671–1676, https://doi.org/10.1175/1520-0442(2001)014,1671:

SPPVAE.2.0.CO;2.

Lau, N.-C., and M. J. Nath, 1994: A modeling study of the relative

roles of tropical and extratropical SST anomalies in the vari-

ability of the global atmosphere-ocean system. J. Climate, 7,

1184–1207, https://doi.org/10.1175/1520-0442(1994)007,1184:

AMSOTR.2.0.CO;2.

Lee, S.-K., B. E. Mapes, C. Wang, D. B. Enfield, and S. J. Weaver,

2014: Springtime ENSO phase evolution and its relation to

rainfall in the continental U.S. Geophys. Res. Lett., 41, 1673–

1680, https://doi.org/10.1002/2013GL059137.

Lemos, M. C., and L. Dilling, 2007: Equity in forecasting climate:

Can science save the world’s poor? Sci. Public Policy, 34, 109–

116, https://doi.org/10.3152/030234207X190964.

Li, G., and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel

ensemble: The excessive equatorial Pacific cold tongue and

double ITCZ problems. J. Climate, 27, 1765–1780, https://

doi.org/10.1175/JCLI-D-13-00337.1.

Livezey, R. E., M. Masutani, and M. Ji, 1996: SST-forced seasonal

simulation and prediction skill for versions of the NCEP/MRF

model. Bull. Amer. Meteor. Soc., 77, 507–518, https://doi.org/

10.1175/1520-0477(1996)077,0507:SFSSAP.2.0.CO;2.

Meinke, H., and R. C. Stone, 2005: Seasonal and inter-annual cli-

mate forecasting: The new tool for increasing preparedness to

climate variability and change in agricultural planning and

operations. Climatic Change, 70, 221–253, https://doi.org/

10.1007/s10584-005-5948-6.

Mo,K.C., andR.W.Higgins, 1998: Tropical influences onCalifornia

precipitation. J. Climate, 11, 412–430, https://doi.org/10.1175/

1520-0442(1998)011,0412:TIOCP.2.0.CO;2.

——, and J. E. Schemm, 2008: Relationships between ENSO and

drought over the southeastern United States. Geophys. Res.

Lett., 35, L15701, https://doi.org/10.1029/2008GL034656.

Namias, J., 1976: Some statistical and synoptic characteristics

associated with El Niño. J. Phys. Oceanogr., 6, 130–138,

https://doi.org/10.1175/1520-0485(1976)006,0130:SSASCA.
2.0.CO;2.

Okumura,Y.M., andC.Deser, 2010: Asymmetry in the duration of

El Niño andLaNiña. J. Climate, 23, 5826–5843, https://doi.org/

10.1175/2010JCLI3592.1.

Palmer, T. N., and D. L. T. Anderson, 1994: The prospects for

seasonal forecasting—A review paper. Quart. J. Roy. Meteor.

Soc., 120, 755–793, https://doi.org/10.1002/qj.49712051802.

Papineau, J. M., 2001: Wintertime temperature anomalies in

Alaska correlated with ENSO and PDO. Int. J. Climatol., 21,

1577–1592, https://doi.org/10.1002/joc.686.

Peng, P., A. Kumar, and W. Wang, 2011: An analysis of seasonal

predictability in coupled model forecasts. Climate Dyn., 36,

637–648, https://doi.org/10.1007/s00382-009-0711-8.

Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric re-

analysis of the twentieth century. J. Climate, 29, 4083–4097,

https://doi.org/10.1175/JCLI-D-15-0556.1.

Rohde, R., and Coauthors, 2013: A new estimate of the average

Earth surface land temperature spanning 1753 to 2011.

Geoinfor. Geostat. Overview, 1 (1), https://doi.org/10.4172/

2327-4581.1000101.

Ropelewski, C. F., and M. S. Halpert, 1986: North American pre-

cipitation and temperature patterns associated with the El

Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114,

2352–2362, https://doi.org/10.1175/1520-0493(1986)114,2352:

NAPATP.2.0.CO;2.

Rowell, D. P., 1998: Assessing potential seasonal predictability

with an ensemble of multidecadal GCM simulations. J. Climate,

11, 109–120, https://doi.org/10.1175/1520-0442(1998)011,0109:

APSPWA.2.0.CO;2.

Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of

global rotational flow by steady idealized tropical divergence.

J. Atmos. Sci., 45, 1228–1251, https://doi.org/10.1175/1520-

0469(1988)045,1228:TGOGRF.2.0.CO;2.

Schmidt, N., E. K. Lipp, J. B. Rose, andM. E. Luther, 2001: ENSO

influences on seasonal rainfall and river discharge in Florida.

J. Climate, 14, 615–628, https://doi.org/10.1175/1520-0442(2001)

014,0615:EIOSRA.2.0.CO;2.

Schneider, U., A. Becker, P. Finger, A.Meyer-Christoffer, M. Ziese,

and B. Rudolf, 2014: GPCC’s new land surface precipitation

climatology based on quality-controlled in situ data and its role

in quantifying the global water cycle. Theor. Appl. Climatol.,

115, 15–40, https://doi.org/10.1007/s00704-013-0860-x.

Schubert, S. D., Y. Chang, M. J. Suarez, and P. J. Pegion, 2008:

ENSO and wintertime extreme precipitation events over the

contiguousUnited States. J. Climate, 21, 22–39, https://doi.org/

10.1175/2007JCLI1705.1.

Shukla, J., 1981: Dynamical predictability of monthly means.

J. Atmos. Sci., 38, 2547–2572, https://doi.org/10.1175/1520-

0469(1981)038,2547:DPOMM.2.0.CO;2.

Simmons,A. J., J.M.Wallace, andG.W.Branstator, 1983: Barotropic

wave propagation and instability, and atmospheric teleconnec-

tion patterns. J. Atmos. Sci., 40, 1363–1392, https://doi.org/

10.1175/1520-0469(1983)040,1363:BWPAIA.2.0.CO;2.

Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore,

2008: Improvements to NOAA’s historical merged land–

ocean surface temperature analysis (1880–2006). J. Climate,

21, 2283–2296, https://doi.org/10.1175/2007JCLI2100.1.

Spencer, H., and J. M. Slingo, 2003: The simulation of peak and de-

layed ENSO teleconnections. J. Climate, 16, 1757–1774, https://

doi.org/10.1175/1520-0442(2003)016,1757:TSOPAD.2.0.CO;2.

Stockdale, T. N., D. L. T. Anderson, J. O. S. Alves, and M. A.

Balmaseda, 1998: Global seasonal rainfall forecasts using a

coupled ocean–atmosphere model. Nature, 392, 370–373,

https://doi.org/10.1038/32861.

1 DECEMBER 2020 CHEN ET AL . 10001

Brought to you by University of Colorado Libraries | Unauthenticated | Downloaded 03/11/21 03:11 PM UTC

https://doi.org/10.1175/BAMS-D-13-00255.1
https://doi.org/10.1175/1520-0442(2004)017<3666:TCCSMV>2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017<3666:TCCSMV>2.0.CO;2
https://doi.org/10.1007/s00382-017-3598-9
https://doi.org/10.1038/nature12534
https://doi.org/10.1002/met.167
https://doi.org/10.1002/met.167
https://doi.org/10.1175/1520-0442(1998)011<3295:ACOPNA>2.0.CO;2
https://doi.org/10.1175/1520-0442(1998)011<3295:ACOPNA>2.0.CO;2
https://doi.org/10.1175/1520-0477(2000)081<0255:AOACMO>2.3.CO;2
https://doi.org/10.1175/1520-0477(2000)081<0255:AOACMO>2.3.CO;2
https://doi.org/10.1175/1520-0442(2001)014<1671:SPPVAE>2.0.CO;2
https://doi.org/10.1175/1520-0442(2001)014<1671:SPPVAE>2.0.CO;2
https://doi.org/10.1175/1520-0442(1994)007<1184:AMSOTR>2.0.CO;2
https://doi.org/10.1175/1520-0442(1994)007<1184:AMSOTR>2.0.CO;2
https://doi.org/10.1002/2013GL059137
https://doi.org/10.3152/030234207X190964
https://doi.org/10.1175/JCLI-D-13-00337.1
https://doi.org/10.1175/JCLI-D-13-00337.1
https://doi.org/10.1175/1520-0477(1996)077<0507:SFSSAP>2.0.CO;2
https://doi.org/10.1175/1520-0477(1996)077<0507:SFSSAP>2.0.CO;2
https://doi.org/10.1007/s10584-005-5948-6
https://doi.org/10.1007/s10584-005-5948-6
https://doi.org/10.1175/1520-0442(1998)011<0412:TIOCP>2.0.CO;2
https://doi.org/10.1175/1520-0442(1998)011<0412:TIOCP>2.0.CO;2
https://doi.org/10.1029/2008GL034656
https://doi.org/10.1175/1520-0485(1976)006<0130:SSASCA>2.0.CO;2
https://doi.org/10.1175/1520-0485(1976)006<0130:SSASCA>2.0.CO;2
https://doi.org/10.1175/2010JCLI3592.1
https://doi.org/10.1175/2010JCLI3592.1
https://doi.org/10.1002/qj.49712051802
https://doi.org/10.1002/joc.686
https://doi.org/10.1007/s00382-009-0711-8
https://doi.org/10.1175/JCLI-D-15-0556.1
https://doi.org/10.4172/2327-4581.1000101
https://doi.org/10.4172/2327-4581.1000101
https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2
https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2
https://doi.org/10.1175/1520-0442(1998)011<0109:APSPWA>2.0.CO;2
https://doi.org/10.1175/1520-0442(1998)011<0109:APSPWA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2
https://doi.org/10.1175/1520-0442(2001)014<0615:EIOSRA>2.0.CO;2
https://doi.org/10.1175/1520-0442(2001)014<0615:EIOSRA>2.0.CO;2
https://doi.org/10.1007/s00704-013-0860-x
https://doi.org/10.1175/2007JCLI1705.1
https://doi.org/10.1175/2007JCLI1705.1
https://doi.org/10.1175/1520-0469(1981)038<2547:DPOMM>2.0.CO;2
https://doi.org/10.1175/1520-0469(1981)038<2547:DPOMM>2.0.CO;2
https://doi.org/10.1175/1520-0469(1983)040<1363:BWPAIA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1983)040<1363:BWPAIA>2.0.CO;2
https://doi.org/10.1175/2007JCLI2100.1
https://doi.org/10.1175/1520-0442(2003)016<1757:TSOPAD>2.0.CO;2
https://doi.org/10.1175/1520-0442(2003)016<1757:TSOPAD>2.0.CO;2
https://doi.org/10.1038/32861


Stoner, A. M. K., K. Hayhoe, and D. J. Wuebbles, 2009: Assessing

general circulation model simulations of atmospheric tele-

connection patterns. J. Climate, 22, 4348–4372, https://doi.org/

10.1175/2009JCLI2577.1.

Ting, M., and P. D. Sardeshmukh, 1993: Factors determining the

extratropical response to equatorial diabatic heating anoma-

lies. J. Atmos. Sci., 50, 907–918, https://doi.org/10.1175/1520-

0469(1993)050,0907:FDTERT.2.0.CO;2.

Titchner, H. A., and N. A. Rayner, 2014: The Met Office Hadley

Centre sea ice and sea surface temperature data set, version 2:

1. Sea ice concentrations. J. Geophys. Res. Atmos., 119, 2864–

2889, https://doi.org/10.1002/2013JD020316.

Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere–

ocean variations in the Pacific. Climate Dyn., 9, 303–319,

https://doi.org/10.1007/BF00204745.

——, G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and

C.Ropelewski, 1998: Progress during TOGA in understanding

and modeling global teleconnections associated with tropical

sea surface temperatures. J. Geophys. Res., 103, 14 291–14 324,

https://doi.org/10.1029/97JC01444.

Webster, P. J., 1981: Mechanisms determining the atmospheric

response to sea surface temperature anomalies. J. Atmos. Sci.,

38, 554–571, https://doi.org/10.1175/1520-0469(1981)038,0554:

MDTART.2.0.CO;2.

Wolter, K., R. M. Dole, and C. A. Smith, 1999: Short-term climate

extremes over the continental United States and ENSO. Part I:

Seasonal temperatures. J. Climate, 12, 3255–3272, https://doi.org/

10.1175/1520-0442(1999)012,3255:STCEOT.2.0.CO;2.

Yang, X., and T. DelSole, 2012: Systematic comparison of ENSO

teleconnection patterns between models and observations.

J. Climate, 25, 425–446, https://doi.org/10.1175/JCLI-D-11-

00175.1.

Zhang, T., J. Perlwitz, and M. P. Hoerling, 2014: What is respon-

sible for the strong observed asymmetry in teleconnections

between El Niño and La Niña?Geophys. Res. Lett., 41, 1019–

1025, https://doi.org/10.1002/2013GL058964.

10002 JOURNAL OF CL IMATE VOLUME 33

Brought to you by University of Colorado Libraries | Unauthenticated | Downloaded 03/11/21 03:11 PM UTC

https://doi.org/10.1175/2009JCLI2577.1
https://doi.org/10.1175/2009JCLI2577.1
https://doi.org/10.1175/1520-0469(1993)050<0907:FDTERT>2.0.CO;2
https://doi.org/10.1175/1520-0469(1993)050<0907:FDTERT>2.0.CO;2
https://doi.org/10.1002/2013JD020316
https://doi.org/10.1007/BF00204745
https://doi.org/10.1029/97JC01444
https://doi.org/10.1175/1520-0469(1981)038<0554:MDTART>2.0.CO;2
https://doi.org/10.1175/1520-0469(1981)038<0554:MDTART>2.0.CO;2
https://doi.org/10.1175/1520-0442(1999)012<3255:STCEOT>2.0.CO;2
https://doi.org/10.1175/1520-0442(1999)012<3255:STCEOT>2.0.CO;2
https://doi.org/10.1175/JCLI-D-11-00175.1
https://doi.org/10.1175/JCLI-D-11-00175.1
https://doi.org/10.1002/2013GL058964

