How do we estimate the Aerosol Indirect Effect in CAM ?

Cécile Hannay, CAM Science Liaison Atmospheric Modeling and Predictability (AMP)

Outline

- Aerosol Indirect Effect: Whatsdat ?
- How do we estimate the Aerosol Indirect Effect ?
- Putting an error bar on our estimation.

Disclaimer: I will not say a single word about CESM2

Nada. Non, rien du tout. Gar nichts.

How to explain "Aerosol Effect" to your Mom or Dad?

Aerosol Direct Effect => Not for today talk !

Aerosols scatter and absorb solar and infrared radiation

Aerosol Indirect Effect

Cloud droplets form on aerosols (Cloud Condensation Nuclei=CCN). More aerosols => more smaller cloud droplets

Pristine air (few CCN)

Polluted air (many CCN)

Few big droplets

Many small droplets

=> 2 indirect effects on climate

First Aerosol Indirect Effect: Cloud albedo effect

Polluted air (many CCN)

Second Aerosol Indirect Effect: Cloud lifetime effect

Polluted air (many CCN)

Outline

- Aerosol Indirect Effect: Whatsdat ?
- How do we estimate the Aerosol Indirect Effect ?
- Putting an error bar on our estimation.

How do we estimate the indirect effect in CAM ?

Two 5-year simulations with prescribed climatological SSTs for year 2000 (F2000) with present day aerosol (2000) and with pre-industrial aerosol (1850).

Aerosol Optical Depth

1850

Look difference between 2 runs:

2000

- ΔRESTOM => Aerosol total effect
- **ΔSWCF** => Cloud albedo effect (1st)
- **ΔLWP** => Cloud lifetime effect (2nd)

Example: Suite of simulations to assess indirect effect

Recently, we looked at a table with 18 x 2 simulations (2000 and 1850 aerosols) Δ RESTOM varies between -1.6W/m2 and and -1.2 W/m2.

Configuration	ΔRESTOM	ΔSWCF	ΔLWCF	ΔLWP
001	-1.6	-1.8	0.28	4.6
002	-1.3	-1.7	0.35	4.1
003	-1.2	-1.6	0.41	4.2
004	-1.7	-1.9	0.35	5.3
005	-1.6	-1.7	0.27	4.7
006	-1.4	-1.6	0.27	4.1
007	-1.3	-1.6	0.26	4.0
008	-1.4	-1.5	0.28	3.9
009	-1.4	-1.6	0.31	3.9
010	-1.4	-1.5	0.27	3.6
011	-1.6	-1.7	0.27	4.6
012	-1.2	-1.4	0.24	3.9
013	-1.4	-1.6	0.35	4.0
014	-1.4	-1.7	0.27	4.1
016	-1.3	-1.6	0.35	4.0
017	-1.5	-1.8	0.38	4.4
018	-1.6	-1.5	0.18	4.1

We tried to determine which configuration has the most desirable indirect effect. However, results seemed somewhat "all over the place".

For full description of experiments:

http://www.cesm.ucar.edu/working_groups/Atmosphere/development/cam6_dev/index_autoconversion_190.html

Outline

- Aerosol Indirect Effect: Whatsdat ?
- How do we estimate the Aerosol Indirect Effect ?
- Putting an error bar on our estimation.

Timeseries of RESTOM

We extent the run from 5 years to 30 years

Bootstrap analysis

Original sample: 30 years

Create 5-year subsamples from original sample.

Pdf of RESTOM for 3, 5, 10, 20-year samples

3 years

5 years

Putting an error bar

yrs	Mean	Std
3	-1.26	0.20
5	-1.26	0.16
10	-1.26	0.11
20	-1.26	0.08
30	-1.26	0.06

The making of a research report

Thanks to Vincent