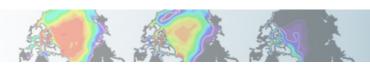


The Community Land Model (CLM)

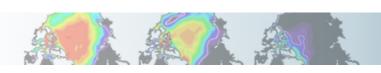
Cecile Hannay, CAM Science Liaison Atmospheric Modeling and Predictability Section Climate and Global Dynamics Division



Outline

- CESM: workflow reminder
- Archiving results/long term and short term archive
- Create a clone
- Runtype: initial, branch, hybrid
- Exercises solutions

Basic workflow to run CESM


The set of 4 commands you need to create and run a case

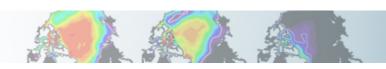
- Create a New Case
- Configure the Case case name and path

 Go into the case directory you just created (in the previous step):

 cd ~/mycase.01/

 configure –case
- Build the Executable mycase.01.mapache.build
- Run the Model qsub mycase.01.mapache.run

Some instructions for the lab


1. We will use the CESM code located locally on mapache, no need to checkout or download any input data.

CESM code: /usr/projects/cesm/cesm1_0_2

- 2. We will run at coarse resolution (T31_T31 or T31_g37).
- 3. Because of space issue on scratch1, the scripts are configured to put your run directories into: /scratch2/\$logname/CESM (instead of /scratch1/\$logname/CESM)
- 4. Exercises solutions are at the end of the tutorial. Try to use hints and documentation before looking at solutions.
- 5. Be curious (explore the CESM directories/files).
- 6. Have fun

Archiving history files

- Archiving is a phase of a CESM model run where the generated output data is moved from your directory to a local disk area (*short-term archiving*) and subsequently to a long-term storage system (*long-term archiving*).
- Clean up disk space and help manage user quotas (no impact on the production run).
- Short-term archive is performed by the script "*mycase.01.mapache.run*" (at the end of CESM run). Typically, the output files (not necessary to for restart) are moved to /scratch2/\$username/CESM/archive
- Long-term archive is performed by the script "mycase.01.mapache.l_archive". This script is created by the configure command (only if long-term archiving is available on the machine).

Archiving history files

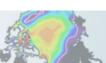
The archiving is controlled by variables in env_run.xml. Some useful variables are:


DOUT_S: If TRUE, short term archiving will be turned on (default = TRUE)

DOUT_S_ROOT: Root directory for short term archiving

DOUT_L_MS: If TRUE, perform long-term archiving on the output data (default = FALSE)

DOUT_L_MSROOT: Root directory on mass store system for long-term data archives.


Create a clone

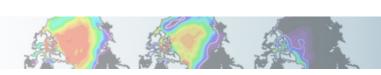
The *create_clone* utility creates an exact copy of a previously created case.

The *create_clone* utility is very handy when the user wishes to run a slightly modified version of a previous experiment.

- Invoke *create_clone* to create an exact copy of an old case by typing the following on the command line: *create_clone -clone <case to clone> -case <new case>*
- Implement desired modifications before building and running .

Exercise 7: clone and archiving

Exercise 7: Clone the "case07" from the "case05". Turn on the short-term archiving. Build and run. When the run is done, compare the rundir directory of case05 and case07. Where are your history files in each case?


Hints:

- If you haven't run case05, do it NOW!
- Edit env_run.xml

to turn on short-term archiving

Set the variable DOUT_S to TRUE using the xmlchange command

CESM initialization types

A CESM run can be initialized in one of three ways; *startup, branch, or hybrid.* The initialization type is set by the variable *RUN_TYPE* in the file *env_conf.xml*

Startup (default when *create_newcase* is invoked)

In a startup run, all components are initialized using baseline states.

Branch

In a branch run, all components are initialized using a consistent set of restart files from a previous run. Branch runs are typically used when sensitivity or parameter studies are required, or when settings for history file output streams need to be modified. In a branch: exact bit-for-bit restart in the same manner as a continuation

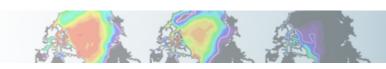
Hybrid

A hybrid run indicates that CESM will be initialized more like a startup, but will use initialization datasets from a previous case. This is somewhat analogous to a branch run with relaxed restart constraints. In an hybrid run, the model does not continue in a bit-for-bit fashion with respect to the reference case. The resulting climate, however, should be continuous

CESM initialization types

Useful variables in env conf.xml:

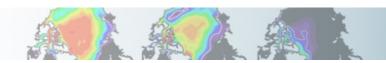
RUN_TYPE: startup, hybrid, branch


RUN_REFCASE: if branch/hybrid, case name you are starting from

RUN_REFDATE: reference date for branch/hybrid date

A branch run is useful if you have an experiment which only slightly differs from your control, but you want to initialize with the spun-up basic state of your control.

Example: You are running a present day control and have completed 200 years of steady-state (i.e. unchanging) forcing. You want to run a 2xCO2 experiment off the end of your control. You accomplish this by creating a new case, configuring your model to run as a BRANCH case



CESM initialization types: restart files

All models use restart files to perform this type of run.

To set up a branch/hybrid run, locate the restart directory for \$RUN_REFCASE and \$RUN_REFDATE from a previous run, then place those files in the \$RUNDIR directory.

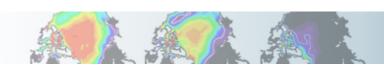
You will find this file in the short-term archive directory: /scratch2/\$USER/CESM/archive/case08/rest/0001-02-01-00000

Exercise 8-9: Initial and branch run

Exercise 8: Create, configure, and build an out-of-the-box set of scripts called "case08" that runs an fully coupled 1850 control (B_1850) at the resolution: T31_g37. Run 1 month.

Exercise 9: Create a branch run called "case09" from the end of "case08". Run a fully coupled 1850 control (B_1850) at the resolution: T31_g37. Double the CO2 value. Run 1 month

Hints:


- Edit env conf.xml:

Change the variables RUN_REFCASE and

to set a branch run RUN_REFDATE using the xmlchange command

to change the CO2 value Change the variable CCSM_CO2_PPMV

using the xmlchange command

Customizing your run script

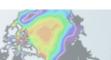
When you submit a job on mapache using: *case09.mapache.submit*, the #MSUB directives will read into the script *case09.mapache.run*

```
By default the #MSUB directive are:
```

```
#MSUB -N case09

#MSUB -I nodes=2:ppn=8 (=> use 2 nodes with 8 processors each)

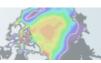
#MSUB -I walltime=00:59:00 (=> set the wall clock time limit for this job)


##MSUB -A S11_CESM (=> your account number; please modify after tutorial)

#MSUB -o /users/hannay/case09/log.o (=> your output log)

#MSUB -e /users/hannay/case09/log.e (=> your error log)
```

You can customize the MSUB directives as needed.



Outline

- CESM: workflow reminder
- Archiving results/long term and short term archive
- Create a clone
- Runtype: initial, branch, hybrid
- Exercises solutions

Exercise 7: Solutions

Exercise 7: Clone the "case07" from the "case05". Turn on the short-term archiving. Build and run. When the run is done, compare the run directory of case05 and case07.

Where are your history files in each case?

Solution:

- Go the the scripts directory and create a new case in your home directory cd /usr/projects/cesm/cesm1_0_2/scripts
 ./create clone -clone ~/case05 -case ~/case07
- 2. Configure the case cd ~/case07
 ./configure –case
- 3. Edit the variable DOUT_S

 ./xmlchange -file env_run.xml -id DOUT_S -val TRUE
- 4. Build the model ./case07.mapache.build
- 5. Submit your job ./case07.mapache.submit

Exercise 7: Solutions

6. Where are history files ? cd /scratch2/\${USER}/CESM/archive/case07

Exercise 8: Solutions

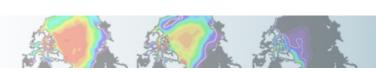
Exercise 8: Create, configure, and build an out-of-the-box set of scripts called "case08" that runs a fully coupled 1850 control (B_1850) at the resolution: T31_g37. Run 1 month.

Solution:

- Go the the scripts directory and create a new case in your home directory
 cd /usr/projects/cesm/cesm1_0_2/scripts
 /create newcase -res T31 g37 -compset B 1850 -case ~/case08 -mach mapache
- 2. Configure the case

cd ~/case08 ./configure –case

3. Build the model


./case08.mapache.build

4. Change the length of the run

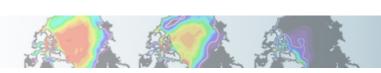
./xmlchange -file env_run.xml -id STOP_N -val 1
./xmlchange -file env_run.xml -id STOP_OPTION -val nmonths

5. Submit your job

./case08.mapache.submit

Exercise 9: Solutions

Exercise 9: Create a branch run called "case09" from the end of "case08". Run an fully coupled 1850 control (B_1850) at the resolution: T31 g37. Double the CO2 value. Run 1 month


Solution:

- Go the the scripts directory and create a new case in your home directory
 cd /usr/projects/cesm/cesm1_0_2/scripts
 /create newcase -res T31 g37 -compset B 1850 -case ~/case09 -mach mapache
- 2. Set the run as an branch run and change the value of CO2

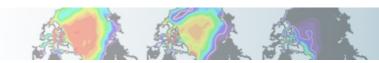
```
./xmlchange -file env_conf.xml -id RUN_REFCASE -val case08
./xmlchange -file env_conf.xml -id RUN_REFDATE -val 0001-02-01
./xmlchange -file env_conf.xml -id CCSM_CO2_PPMV -val 569.4
```

- 3. Configure the case cd ~/case09
 ./configure –case
- 4. Build the model

./case09.mapache.build

Exercise 9: Solutions

5. Change the length of the run


./xmlchange -file env_run.xml -id STOP_N -val 1
./xmlchange -file env_run.xml -id STOP_OPTION -val nmonths

6. Locate your restart files. Copy the restart files into your run directory: cd /scratch2/\${USER}/CESM/archive/case08/rest/0001-02-01-00000/cp */scratch2/\${USER}/CESM/case09/run

7. Submit your job

cd ~/case09

./case09.mapache.submit

