
CESM2 development simulations: Are we there yet ?

Cécile Hannay CAM science liaison

Julio Bacmeister, David Bailey, Pete Bogenschutz, Gokhan Danabasoglu, Andrew Gettelman, Jim Edwards, Marika Holland, Jean-Francois Lamarque, David Lawrence, Keith Lindsay, Rich Neale, Keith Oleson, Bill Sacks, Joe Tribbia, John Truesdale, Mariana Vertenstein, and gazillions of others.

CESM 2 development at a glance

- Huge team effort started in Mid November 2015
- 2 co-chair meetings/week

CESM 2 development simulations

http://www.cesm.ucar.edu/working_groups/Atmosphere/development/cesm1_5/

Nov 2015: First coupled

• First coupled simulation

Feb 2016: Winter Working Group Meeting

- 34 experiments ("cases")
- I300⁺ years of simulations + diagnostics

June 2016: Breckenridge workshop

- 94 experiments ("cases")
- 2890⁺ years of simulations + diagnostics

Feb 2017: Winter Working Group Meeting

- I 50 experiments ("cases")
- Thousands of simulated years + diagnostics

And also

 Many standalone simulations in individual working groups

N				.1			1 1' 7'
Ü		l	eari	th •	m	100	deling • <i>clima</i>
CA	M1_5 Development						Coogle option
• U	ESM1.5 simulations (go to most recent simulation) st of bugs and features ust: assessing dust change seen in cesm1.5						
CESM diags	1.5 SIMULATIONS						
ID	Case Description	ATM	OCN	ICE	LND	CVDP	comments
01	1st simulation IC: Levitus	atm diags	ocn diags	ice diags	lnd diags	cvdp diags	Known bug and bugfixes: Problem with cooling and salnity diff in the coupled runs due to an inconsistency in sea (se related fluxes between the ice and ocean models => fixed in 05 Land group looked at river discharg and found a bug (a missing term in the runoff being set from CLM to the river model) => fixed in 03 Double counting for glacier melt => fixed in 08 On heat budget.imbalance in the
	same as 01						short wave (SW) heat Fluxes of ~ 0.0 W/m^2 (due to code change in solal zenith angle) For reference, the LENS control shows a total heat flux imbalance of order 0.0005 W/m^2.
03	+ cice4 + clm bugfix (missing term when sending run-off to the river model). IC: Levitus	atm diags	ocn diags	ice diags	lnd diags	cvdp diags	Bugfix for missing term in the runol being sent from CLM to the river model
04	same as 03 + spinup ocean IC: camclubb_B1850CN_f09g16_n27_cam5_3_77_159 at yr 150	atm diags	ocn diags	ice diags	lnd diags	cvdp diags	Stabilizes faster than Levitus start u
05	same as 02 + clce\$ + sea-ice bugfix IC: Levitus	atm diags	ocn diags	ice diags	lnd diags	cvdp diags	Bugfix for inconsistency in seaice related fluxes between the ice and ocean models Ocn heat budget: imbalance in the short wave (SW) heat fluxes of – 0.0 W/m ² (due to code change in solar Zenith angle) Dust twice as big as in the LENS or i Pet's previous run (see: experiments below to assess origin of dust differences)
06	same as 05 + new mapping RTM->OCN (no masked runoff cells) IC- Levitus	atm diags	ocn diags	ice diags	lnd diags	cvdp diags	Stabilizes after 30 years SSTs about 0.2K colder than LENS SSTs about 0.2K colder than previou CAMS.5 (despite positive RESTOM). Dust twice as big as in the LENS or in Pete's previous run (see: experiments below to assess origin of dust differences) Pete run: zmcony. c0. Ind = 0.0075D0

CESM 2 development simulations 28 32 36 Are you lost in translation? 64 22 LOST 66 19 97 **Simplified terminology for this talk**

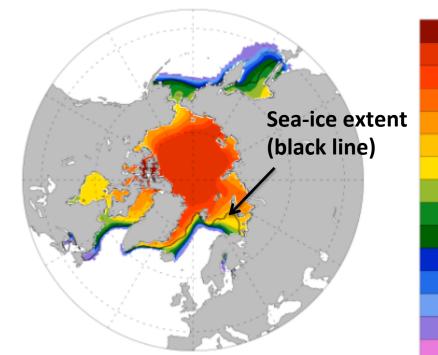
CESM1	Large Ensemble (2013)	LENS
CESM1.5	Winter Working Group (Feb 2016)	28 or 36
CESM2_dev	Breckenridge (June 2016)	63, 64, 66, 79
CESM2	Winter Working Group (Feb 2017)	125

Caveat: 125 is not the "final" version of CESM2 but no major change in climate.

What happened since Breckenridge ?

At Breckenridge: we had a preliminary version of CESM2

FAQ: "I thought CESM2 was almost ready at Breckenridge, what happened since then ? "

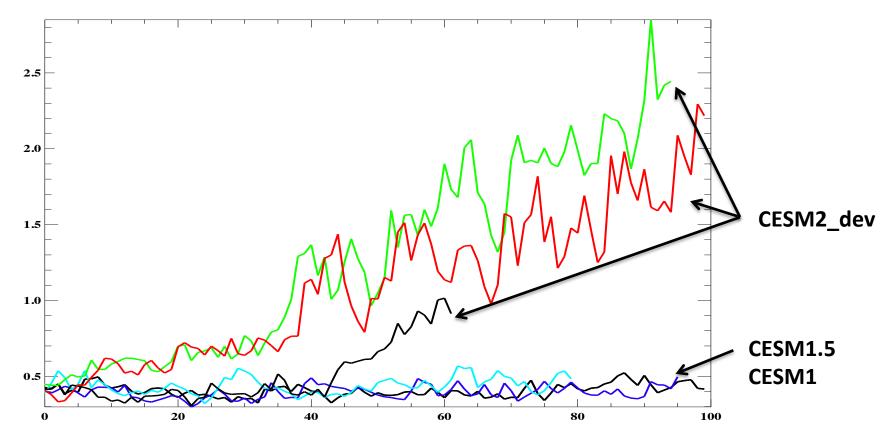

Can you spot the difference ? The word "Almost"

Houston, we have a problem: The Labrador Sea is freezing

Sea-ice extent (ANN)

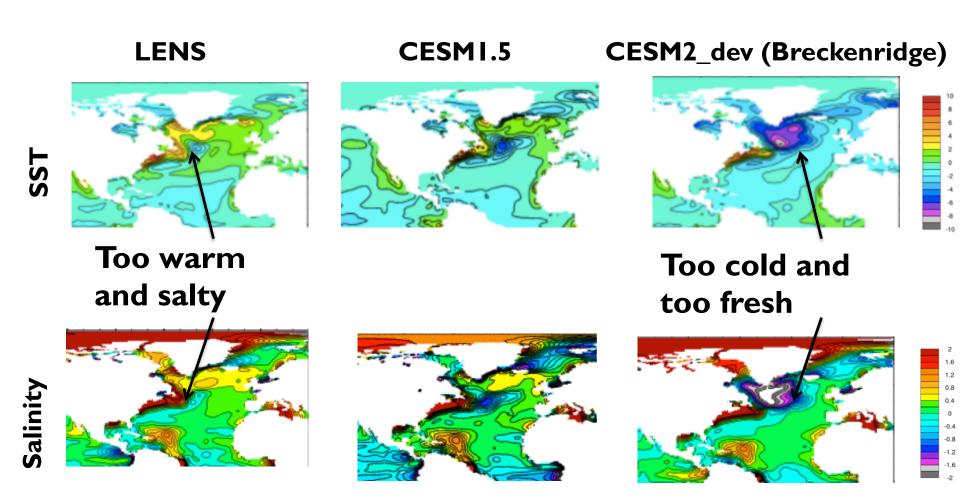
CESMI.5

CESM2_dev (Breckenridge)


Sea-ice extent is close to obs Labrador sea is ice free (This is also true for LENS)

99 90 80 70 Labrador sea 60 50 40 30 20 15 10 5 1

Extensive sea-ice cover Labrador sea is ice covered


Trouble in the Labrador Sea

Timeseries of sea ice thickness in Labrador sea

Sea ice is building up in Labrador sea This can happen after 1 yr, 40 yr, 100⁺ yr

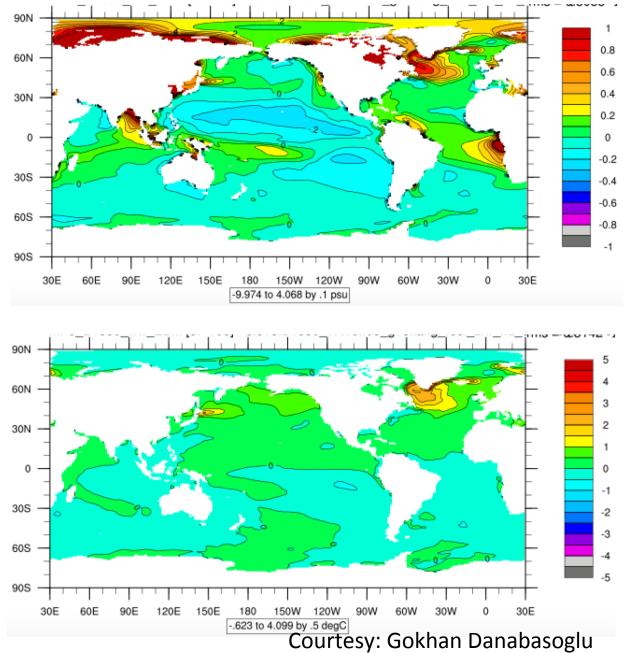
SST and salinity bias

CESM2_dev:Too cold and too fresh South of Greenland. Fresh water pool prevent further mixing

Solving the Labrador Sea problem

After Breckenridge, multiple attempts to solve the issue

We found out it is a very robust feature in CESM2_dev


Estuary Box Model (EBM) to the rescue!

EBM – CONTROL (COUPLED) Sea surface salinity

Sea surface temperature

EBM - CONTROL (COUPLED)

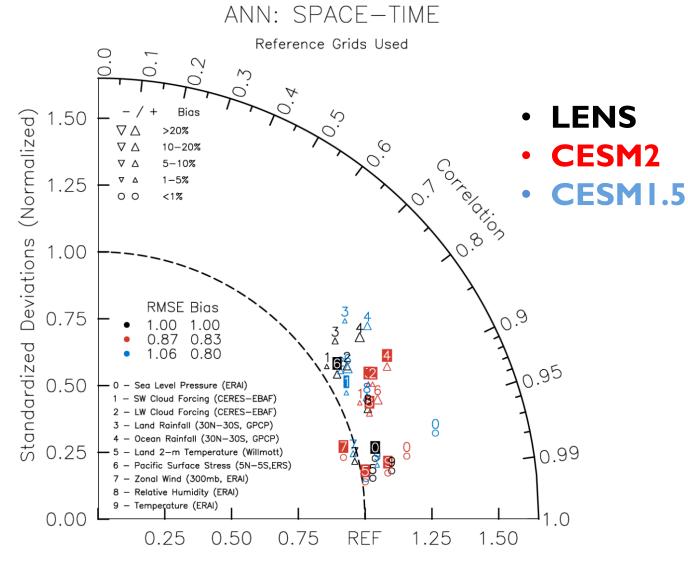
Quick glance at CESM milestones

The rest of the talk will highlight some differences between:

Taylor Diagram

RMSE Bias

1.00

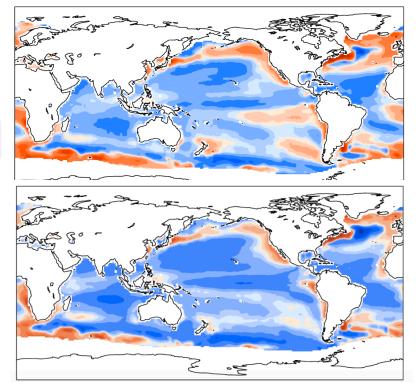

0.83

0.80

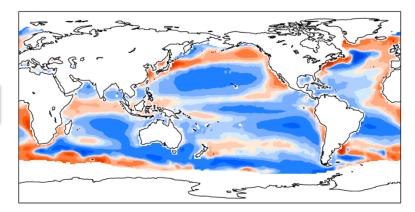
1.00

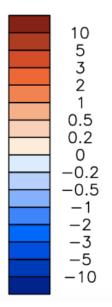
0.87

1.06

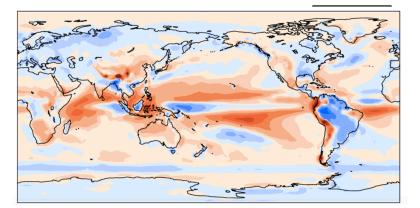


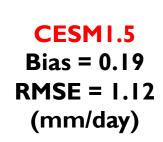
Taylor score was degraded in CESMI.5 CESM2 is better than LENS

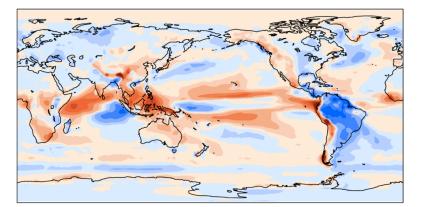

Sea Surface Temperature (SST) bias (ANN)

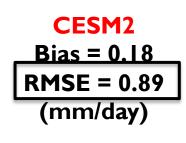

LENS Bias = -0.24K RMSE = 0.91

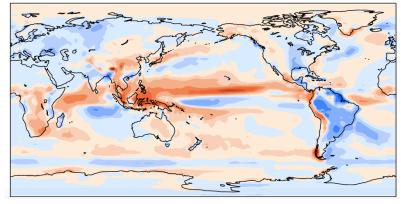
CESMI.5 Bias = -0.62K RMSE = 1.12

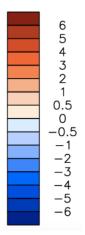

CESM2 Bias = -0.32K RMSE = 0.98



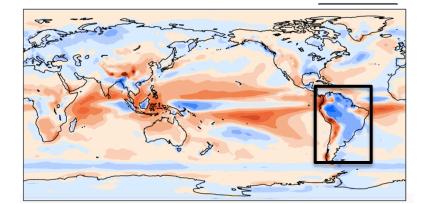


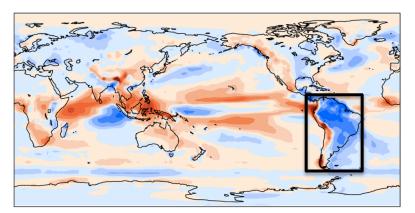

RMSE improves in CESM2 compared to CESM1.5 but not as good as in LENS


LENS Bias = 0.37 RMSE = 1.13 (mm/day)

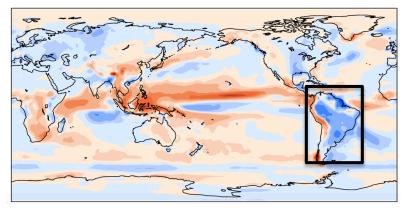


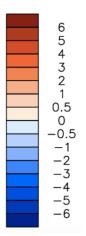
Improved precip **RMSE**

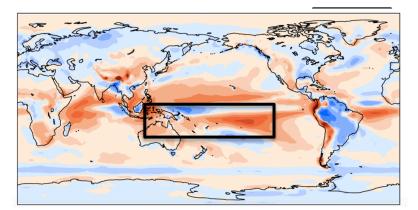

LENS Bias = 0.37 RMSE = 1.13 (mm/day)

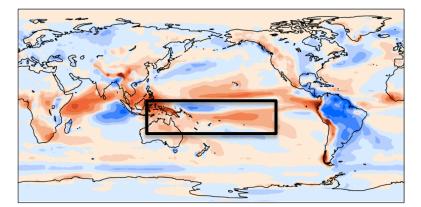

CESMI.5


Bias = 0.19

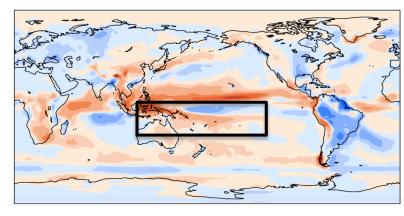

RMSE = 1.12

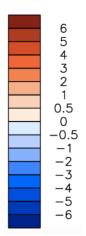

(mm/day)

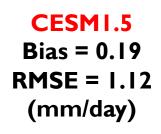


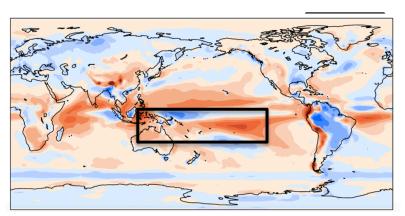


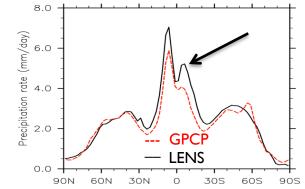
Improved precip RMSE Better precip over Amazon

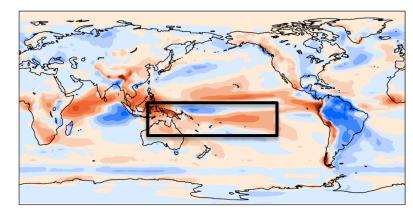

LENS Bias = 0.37 RMSE = 1.13 (mm/day)

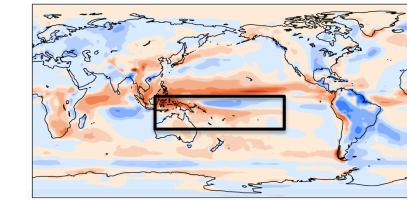

CESMI.5 Bias = 0.19 RMSE = 1.12 (mm/day)

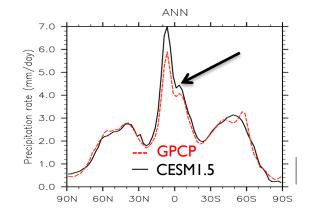

CESM2 Bias = 0.18 RMSE = 0.89 (mm/day)

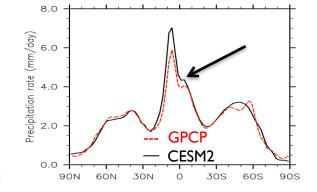





Improved precip RMSE Better precip over Amazon Improved tropical precip

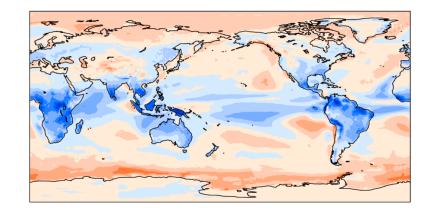

LENS Bias = 0.37 RMSE = 1.13 (mm/day)

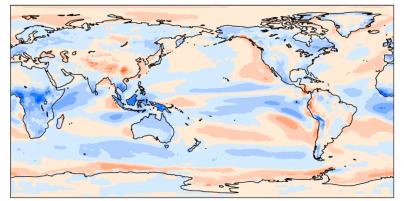


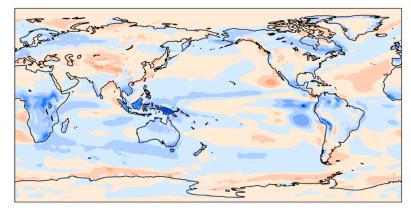


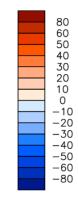
CESM2 Bias = 0.18 RMSE = 0.89 (mm/day)

SWCF bias versus **CERES-EBAF** (ANN)

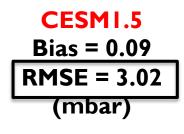

LENS


Bias = -1.18 RMSE = 13.7 (W/m2)

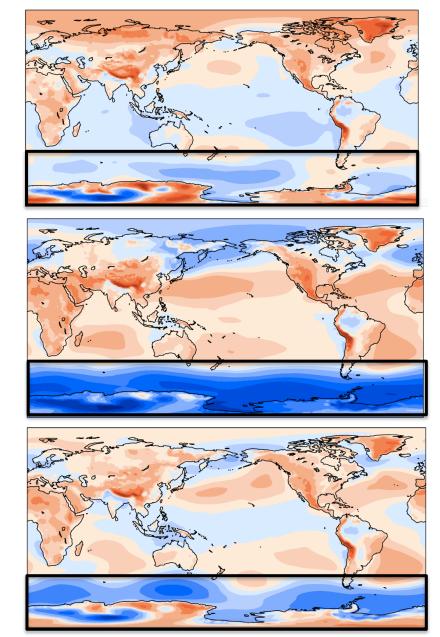

CESMI.5 Bias = -0.98 RMSE = 10.9 (W/m2)

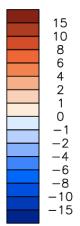

CESM2

Bias = -1.43 RMSE = 8.97 (W/m2)



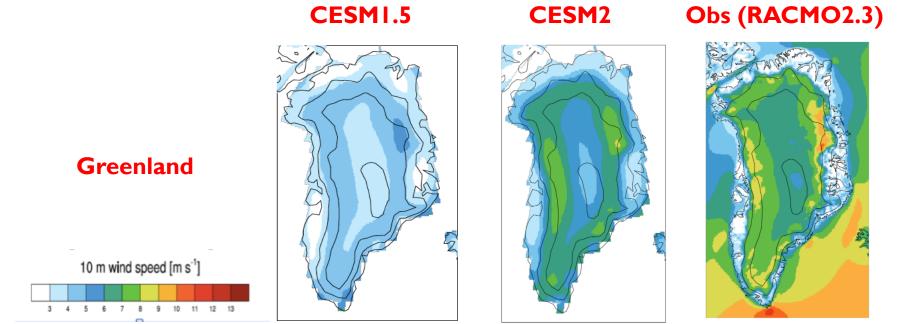
CESMI.5: improved SWCF

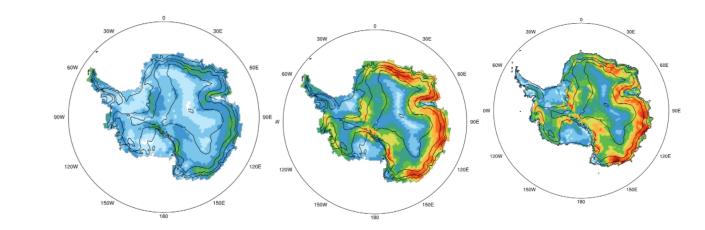

CESM2: even better


Sea-level pressure versus MERRA (ANN)

LENS Bias = 0.29 RMSE = 1.61 (mbar)

CESM2 Bias = 0.29 RMSE = 1.86 (mbar)

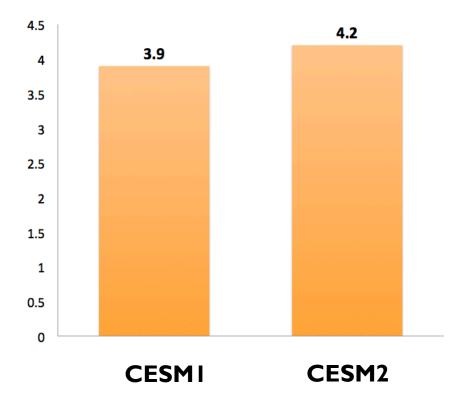




Improved SLP in Southern Ocean

RMSE improves in CESM2 compared to CESM1.5 but not as good as in LENS

Greenland and Antarctica surface winds



Antarctica

Courtesy Lenaerts

Climate sensitivity

- Climate sensitivity in Slab Ocean Model experiments
- Qfluxes computed from 1850 control
- CS = $T_{equilibrium}$ (2xco2) $T_{equilibrium}$ (1xco2)

Aerosol indirect effect

	Direct (W/m2)	Indirect (W/m2)
IPCC values	-0.5 [-0.9 to -0.1]	-0.7 [-1.8 to -0.3]
LENS	-0.2	-1.4
CESM1.5	-0.4	-1.8
CESM2	-0.3	-1.6

CESMI.5: aerosol indirect effect were too strong CESM2: New autoconversion reduced indirect effect

20th century warming

CESMI.5

CESM2

- not enough warming over 20thC
 - too much cooling during dimming period
- warmer 20th century
 - aerosol effect reduced during dimming period

Are we there yet ? Yes, we are

This has been 15 months of intense work

We had good days

We had bad days

We always found the cause of our problems

Extra slides

Beyond I25

Changes for final version:

- Subgrid-scale topography representation around Greenland (different scale due to very strong winds)
- Caspian sea: from ocean model to land model (lake)
- Update to land vegetation parameters (little climate impact, mostly for carbon-cycle improvements)
- Crop improvement
- CMIP6 emissions
- Robert Filter
- I hour coupling atm ⇔ ocn
- Ocean initial conditions from LENS
- Dust tuning
- Ocean biogeochemisty