

The dependence of Aerosol-Cloud Indirect Effects on the representation of the autoconversion: Formulation and sensitivity experiments in CESM

Cécile Hannay, Andrew Gettelman, Julio Bacmeister, Jean-Francois Lamarque, Rich Neale, Phil Rasch, Steve Ghan, Leo Donner, Rob Wood, Vincent Larson, and Peter Caldwell.

Aerosol Effects on Clouds

Polluted air (many CCN)

Aerosol – Cloud – Interactions (ACI) Smaller drops => brighter clouds (S.Twomey 1977) => delay in precipitation (B.Albrecht, 1989)

Climate Forcing

Greenhouse gases 3.0 ± 0.8 Wm⁻²

Aerosols -0.8 ± 1.2 Wm⁻²

IPCC, 2013, SPM.5

Community Earth System Model (CESM)

- CESM is a fully-coupled, global climate model that provides state-of-the-art simulations of the Earth's climate (developed at NCAR)
- explicitly simulates Aerosol-Cloud Interactions making it possible to simulate aerosol indirect effects

Aerosol Cloud Interactions in CESM2

I. Activation (CCN) = f(RH,w) W at cloud scale is critical

- 2. Autoconversion (loss process) is a function of N_c (=ACI)
- **3. Accretion depends on q**_r

Autoconversion parameterization

Khairoutdinov and Kogan scheme (KK2000)

$$\boldsymbol{A} = \boldsymbol{k} \boldsymbol{q}_{c}^{a} \boldsymbol{N}_{c}^{-b}$$

A = autoconversion rate q_c= cloud liquid (kg/kg) N_c= droplet number (#/kg)

Obs: Holuhraun eruption, Iceland (2014-2015)

Holuhraun eruption: Model versus obs anomalies

Malavelle et al 2017, Nature

CESMI overestimates the change in LWP

Autoconversion parameterization

Khairoutdinov and Kogan scheme (KK2000)

$$\boldsymbol{A} = \boldsymbol{k} \boldsymbol{q}_{c}^{a} \boldsymbol{N}_{c}^{-b}$$

A = autoconversion rate q_c= cloud liquid (kg/kg) N_c= droplet number (#/kg)

Autoconversion parameterization

Khairoutdinov and Kogan scheme (KK2000)

$$\boldsymbol{A} = \boldsymbol{k} \boldsymbol{q}_{c}^{a} \boldsymbol{N}_{c}^{-b}$$

A = autoconversion rate q_c= cloud liquid (kg/kg) N_c= droplet number (#/kg)

Sensitivity experiments: Varying exponent b

b	
1.79	KK2000
1.1	Wood, personal communication
0.5	Extreme value

+ adjust k to produce the same autoconversion rate

Sensitivity Experiments

$$\boldsymbol{A} = \boldsymbol{k} \boldsymbol{q}_{c}^{a} \boldsymbol{N}_{c}^{-b}$$

5-year runs with prescribed climatological present-day SSTs Similar climate after retuning (k and Dcs)

exp b	k/1350	SWCF W/m2	LWCF W/m2	LWP	Dcs microns
0.5	0.002	-47.4	24.1	68.I	540
1.1	0.01	-48.4	24.8	68.4	540
1.79	0.06	-48.7	24.3	66.4	300

SWCF bias compared to **CERES-EBAF**: Similar bias

80 60 50 40 30 20 10 -10 -20 -30 -30 -50 -60 -80

Estimation of the aerosol indirect effect

Compare two simulations < present day aerosol (2000) pre-industrial aerosol (1850)

Aerosol Optical Depth

2000

1850

2000 - 1850

Look difference between 2 runs: ΔRESTOM => Aerosol total effect ΔSWCF => Cloud albedo effect (1st indirect effect) ΔLWP => Cloud lifetime effect (2nd indirect effect)

Estimation of the aerosol indirect effect

present day aerosol (2000) Compare two simulations < pre-industrial aerosol (1850)

Aerosol Optical Depth

1850

	b = 1.79	b = 1.1	b = 0.5	
∆RESTOM (W/m2)	-1.56	-1.27	-1.18	Total effect
∆SWCF (W/m2)	-1.29	-1.17	-1.11	l st indirect effect
Δ LWP (%)	7.3%	4.72%	2.35%	2 nd indirect effect

Difference in SWCF and LWP in 2000-1850 aerosol

Impact on 20th century surface temperature

Has a large impact on the period 1940-1960

20th century variability

Impact is not within the variability range

Summary

Malvelle, 2017: the Holuhraun eruption reduced the size of liquid cloud droplets had no discernible effect on other cloud properties like LWP.

Autoconversion KK 2000: $A = k q_c^a N_c^{-b}$

Sensitivity tests with b = 0.5, 1.1, 1.79 impacts indirect effects (change in SWCF and LWP)

Change in b has a direct impact on the period 1940-60