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ABSTRACT

It is shown that the very frequently used form of the viscous, diabatic shallow-water equations are energetically
inconsistent compared to the primitive equations. An energetically consistent form of the shallow-water equations
is then given and justified in terms of isopycnal coordinates. Examples are given of the energetically inconsistent
shallow-water equations used in low-order dynamical systems and simplified coupled models of tropical air-
sea interaction and the El Nifio-Southern Oscillation phenomena.

1. Introduction

The shallow-water equations (SWE) are used very
frequently as an analogue of atmospheric and oceanic
flows governed by the primitive equations (PRE). The
reason is that the SWE contain several phenomena,
such as gravity waves, that are present in the PRE but
are simplified compared to the PRE in that they are
two-dimensional, not three-dimensional. Often ideas
and techniques are tried on the SWE before they are
applied to the PRE. Good examples are nonlinear nor-
mal-mode initialization, low-order models and dy-
namical systems, and simplified coupled atmosphere-
ocean models.

It is shown that the very frequently used form of the
viscous, diabatic (i.e., mass source or sink) SWE are
energetically inconsistent compared to the PRE. The
inconsistencies are that the viscous term is not negative
definite in the kinetic energy (KE) budget, and the
diabatic term affects both the KE and potential energy
(PE) budgets, whereas in the PRE it only affects the
PE budget. The energy budgets in the PRE are reviewed
briefly in section 2. In section 3 an energetically con-
sistent form of the SWE is given and is justified by an
analogy to the PRE transformed into isopycnal coor-
dinates. Section 4 contains some examples of the use
of the energetically inconsistent SWE in low-order dy-
namical systems and in simplified coupled models of
tropical air-sea interaction and the El Nifio—Southern
Oscillation (ENSO) phenomena.

2. The primitive equations

The hydrostatic, Boussinesq primitive equations in
physical coordinates for large-scale atmosphere and
ocean circulations are frequently written as
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For the ocean z, p, and p represent depth measured
downwards, pressure, and density, respectively. For the
atmosphere they represent a modified pressure coor-
dinate, geopotential, and potential temperature, re-
spectively [ see Hoskins and Bretherton (1972)]. A La-
placian form for momentum dissipation has been as-
sumed, and the momentum forcing term, F, and the
diabatic term in the density equation, Q, are left un-
specified. These equations have a KE density of u-u
and a PE density of —gzp/pg, and Egs. (1) and (4)
give
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Integrating over a rectangular volume using the kine-
matic boundary conditions of u-n = 0 at horizontal
boundaries and w = 0 at vertical boundaries gives
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where angle brackets denote a volume integral. Im-
posing a viscous momentum boundary condition of
no slip (u-s = 0) or free slip [d(u-s)/dn = 0] gives

—‘,Z KE=% {pw) + {u+F) —»{(Vu:Vu). (10)
at Po

Equations (9) and (10) explicitly show three well-
known and desirable properties of the energy forms.
They are

(1) The conversion terms in the two equations are
identical, so that the sum of KE and PE is conserved
in adiabatic, inviscid flow.

(ii) The viscous term in the momentum equation
only affects KE and the dissipation term is negative
definite in the KE budget.

(iii) The diabatic term only affects PE.

It might be asked why the properties listed above
only involve energy and not other quantities of interest
to the PRE, such as momentum or potential vorticity.
The momentum diffusion term in (1) is in the form
of the divergence of a stress tensor, which should be
retained in the SWE, see Schidr and Smith (1993).
However, the momentum budget is influenced by the
Coriolis term, the pressure gradient term as well as the
nonconservative term in (1), so it is less easy to inter-
pret than the energy budget, which is not influenced
by the Coriolis or pressure gradient terms. The potential
vorticity conservation from (1)-(5) is influenced by
the nonconservative terms in both (1) and (4). How-
ever, it is a Lagrangian conservation principle and its
pointwise nonconservative terms will be difficult to
mimic exactly in the SWE.

3. The shallow-water equations
The SWE are frequently used in the form
du

—5+(u-V)u+ fXu+gVh=F/h+ W, (1)
%il-+v-(hu)=Q, (12)

see, for example, Lorenz (1980). However, there are
numerous other papers that could be cited, and some
will be discussed in the next section. In (11) and (12)
A is the fluid depth and Q is a mass source or sink that
is analogous to the diabatic term in the PRE. The KE
density of the SWE is 3 Au - u, so that the KE equation
is formed by adding the scalar product of /u and Eq.
(11)to Lu-utimes Eq. (12). It is immediately apparent
that, using either no-slip or free-slip boundary condi-
tions to eliminate the boundary term, the dissipation
term in the KE budget cannot be written in a form
which ensures that it is negative definite. This is in-
consistent with property (ii) of the PRE discussed
above.
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Gustafsson and Sundstrom (1978) used the mo-
mentum dissipation form

vV« (hVu)/h, (13)

and this is also mentioned as a possible form by Bernard
and Pironneau (1991). These papers are concerned
with the existence of solutions to the SWE using the
energy'method. The form (13) has several justifications.
The term inside the brackets is a parameterization of
the turbulent momentum flux and so should be pro-
portional to the fluid depth. Equation (13) ensures that
the diffusion of momentum is in the form of the di-
vergence of a stress tensor as suggested by Schir and
Smith (1993). Finally the form (13) has a negative
definite effect on the KE budget if the viscous boundary
condition is either no slip or free slip. However, the
form (13) has been criticized by Schir and Smith
(1993) because it does not have the same symmetries
as the dissipation term in the PRE in (1). They propose
an alternative, somewhat more complicated, form than
(13) that has the symmetries and still has the form of
divergence of a stress tensor for momentum and a neg-
ative definite effect on the KE budget. Note that the
dissipation form (13) is the analogue of that used by
Bleck and Boudra (1981) for the PRE in isopycnal
coordinates where the thickness of the isopycnal layers
replaces 4. In fact, the inviscid SWE can be derived as
a onermode model from the inviscid PRE in isopycnal
coordinates.

In ‘addition, it is also immediately apparent from
forming the SWE KE equation from (11) and (12)
that the diabatic term, Q, will affect the KE budget,
which is inconsistent with property (iii) of the PRE
discussed above. Again the resolution of this inconsis-
tency comes from the PRE in isopycnal coordinates.
Transforming the diabatic PRE given in (1)-(5) to
isopycnal coordinates will result in a substantial deriv-
ative of the form

D 4 d
—=—+u-V+Q0—,
dp

14
Dt ot (14)

where the differentiation by ¢, x, and y is now with
respect to constant p surfaces. Thus, the momentum
equat‘ion will have a term Qu, that combines with the
Q term from the thickness equation so that () does not
affect the momentum or KE budgets. This suggests
that a term proportional to Q should be added to the
SWE velocity equation (11), which represents the
changes to momentum or KE as mass is added to the
system.

It turns out that for the SWE, a single term cannot
be found such that Q does not affect both momentum
and KE. If uQ/  is added to the left-hand side of (11)
then Q does not affect momentum, whereas uQ/2h
needs to be added so that Q does not affect KE. Thus,
a choice has to be made whether the mass source or
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sink should not affect either momentum or KE. If Q
is meant to represent a diabatic term in analogy to the
PRE, then for the reasons discussed at the end of section
2, the choice should probably be not to affect the KE.
The form of the SWE that is energetically consistent
with properties (i)—(iii) of the PRE listed above is

aEl;—+(u-V)u + fXu+gVh+uQ/2h
=F/h+vV-(hAVu)/h, (15)
%?-&-V-(hu):Q. (16)

The KE and PE densities associated with (15) and (16)
are 4 hu-uand { gh?, and the equations for the energy
budgets are

;id—tKE= ~g(hu-Vh) +{u-F)

—v(hVu:Vu), (17)

d
7 PE = g(hu-Vh) + g(hQ),
where angle brackets now indicate a horizontal integral.
These should be compared to the PRE energy budgets
given in (9) and (10).

(18)

4. Discussion and conclusions

The form of the SWE given in (11) and (12) can
be traced back to the seminal paper by Lorenz (1980).
In Lorenz’ equations F is zero and the forcing is in the
diabatic, or mass source or sink, term Q. Lorenz used
a low-order truncation of the SWE that gave a set of
nine ordinary differential equations, which contain
strange attractors, limit cycles, period doubling bifur-
cations, and other interesting phenomena. The Lorenz
paper has inspired many further papers, for example,
Gent and McWilliams (1982 ) and Curry and Winsand
(1986). Most, if not all, of these subsequent papers
have used the same form of the SWE. Following the
argument given in section 3, all these papers use a form
of the SWE inconsistent with properties (ii) and (iii)
of the PRE given in section 2.

The consistent form of the SWE, (15)and (16), can
be written as prognostic equations for the momentum,
hu and the PE density, P = 4 gh®. They are

0
5;(hu)+V-(uhu)+ fX ha+VP—-uQ/2

=F + »V-(hVu), (19)

opP

—5+V-(uP)+PV-u = ghQ.

These equations can be compared to those of Anderson
and McCreary (1985). Setting the temperature to be

(20)
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constant in the Anderson and McCreary equations
yields the SWE, but the dissipation term is of a different
form, and the term involving Q is omitted, compared
to (19). Thus, the equations of Anderson and Mc-
Creary (1985) have Q not affecting momentum but
are also inconsistent with properties (ii) and (iii) of
the PRE given in section 2. Again these equations have
been used by several subsequent investigators, for ex-
ample, Budin and Davey (1990) and Masumoto and
Yamagata (1990, 1991), as the ocean component of
simplified coupled models of tropical air-sea interac-
tion and ENSO.

The SWE are only an analogue of the PRE. Nev-
ertheless, they should be as consistent as possible. The
KE and PE budgets in the two equation sets can be
made consistent by using the form of the SWE pre-
sented in (15) and (16). The form of the dissipation
term in (15) is not new. What is new is the proposal
that if there is a diabatic, or a mass source or sink,
term Q in (16), then there should be a corresponding
term in the momentum equation (15) so that Q does
not influence the KE budget.
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