APRIL 1995

Parameterizing Eddy-Induced Tracer Transports in Ocean Circulation Models

GENT ET AL.

PETER R. GENT

National Center for Atmospheric Research, Boulder, Colorado

JURGEN WILLEBRAND

Institut fiir Meereskunde an der Universitdt Kiel, Kiel, Germany

TREVOR J. MCDOUGALL
CSIRO Division of Oceanography, Hobart, Australia

JAMES C. MCWILLIAMS
National Center for Atmospheric Research, Boulder, Colorado

(Manuscript received 23 August 1993, in final form 20 January 1994)

ABSTRACT

It is shown that the effects of mesoscale eddies on tracer transports can be parameterized in a large-scale
model by additional advection and diffusion of tracers. Thus, tracers are advected by the effective transport
velocity, which is the sum of the large-scale velocity and the eddy-induced transport velocity. The density and
continuity equations are the familiar equations for adiabatic, Boussinesq, and incompressible flow with the
effective transport velocity replacing the large-scale velocity. One of the main points of this paper is to show
how simple the parameterization of Gent and McWilliams appears when interpreted in terms of the effective
transport velocity. This was not done in their original 1990 paper. It is also shown that, with the Gent and
McWilliams parameterization, potential vorticity in the planetary geostrophic model satisfies an equation close
to that for tracers. The analogy of this parameterization with vertical mixing of momentum is then described.

The effect of the Gent and McWilliams parameterization is illustrated by applying it to a strong, sloping two-
dimensional front. The final state is that the front is flat, corresponding to a state of minimum potential energy.
However, the amount of water of a given density has not been changed and there has been no flow across
isopycnals. These properties are not preserved with horizontal diffusion of tracer. Finally, the Levitus dataset
is used to estimate the effects of the Gent and McWilliams parameterization. The zonal mean meridional
overturning streamfunction for the eddy-induced transport velocity has a maximum of 18 Sverdrups near the
Antarctic Circumpolar Current. The associated poleward heat transport is 0.4 petawatts. The maximum poleward
heat transport in the Northern Hemisphere is 0.15 petawatts at 40°N. These values are the same order of
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magnitude as estimates from observations and regional eddy-resolving ocean models.

1. Introduction and rationale in isopycnal
coordinates

Increasing computing power has meant that eddy-
resolving ocean general circulation calculations that
integrate for several decades are now quite feasible.
However, the deep ocean takes at least several hundred
years to come into equilibrium, and many calculations
that thoroughly explore parameter space are desirable.
This means that, at the present time, most ocean com-
ponents of climate models use a coarse resolution that
does not resolve ocean eddies. Thus, the effects of eddies
need to be parameterized in these models and it has
proved difficult to accomplish this satisfactorily.
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One reason is that the most obvious and simplest
parameterization, downgradient Fickian diffusion,
has been demonstrated to be inadequate. A major
reason for this inadequacy is that a purely diffusive
parameterization means that advection in the large-
scale model is by the large-scale velocity. Observa-
tional and numerical model studies, especially of the
stratosphere as well as the ocean, have clearly shown
that, on average, tracers are not advected by the
large-scale velocity. This can be demonstrated as
follows.

Consider incompressible, Boussinesq, and adiabatic
flow in isopycnal coordinates. We will also assume that
the equation of state for seawater is a linear function
of potential temperature and salinity with constant
coefficients. The density and continuity equations are
combined to give an equation for the thickness 4,,
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where p is the density and /(x, y, p, t) is the physical
height of a density surface. The equation is
a
gth,,+V,,-(hpu)=0 (1)
where u is the horizontal velocity vector and V,, is the
horizontal gradient operator applied at constant p. The
equation for the conservation of a tracer 7 is
0
a—t(h,,‘r)+Vp-(hpur):0 (2)
If the variables are decomposed into large-scale
components denoted by an overbar and eddy com-
ponents denoted by primes by a low-pass projection

operator in time and space at constant density, then
the thickness equation (1) becomes

9 — _ -
S;hp+Vﬂ-(hpﬁ+h,’,u’)=O (3)
and the tracer equation (2) becomes
a%(ﬁ,} +h,7)+ V,-(ha7 + h,u'7)
==V, - [(hu)r']. (4)
Using (3), Eq. (4) can be written in the form
9 -T- ;—(h"r') + [a + (hju')/h,]-V,7
h, ot
= -V, -[(hu)7'l/h,. (5)

Equations (3) and (5) are for the large-scale thickness
and large-scale tracer, which involves eddy-correlation
terms.

Equations for the large-scale model are now for-
mulated based on these equations and insight into the
form and parameterization of the eddy terms. It is as-
sumed that the eddy components of thickness and
tracer are uncorrelated so that the second term in Eq.
(5) is neglected in the large-scale model tracer equation.
Another fundamental assumption is that ocean eddies
mix tracers along isopycnals and not across them so
that the right-hand side of (5) can be parameterized
as Fickian diffusion along isopycnals with coefficient
u. Thus, we choose the large-scale model tracer equa-
tion, based on (5), to be

d
—7+U-V,7 =V, (uhV,7)/h,,

ot (6)

where overbars have been dropped because the quan-
tities in Eq. (6) are large-scale model variables. Note
that the mixing along isopycnals term on the right-
hand side of (6) involves the approximation of small
isopycnal slopes (see page 151 of Gent and McWilliams
1990). Equation (6) says that model tracers are ad-
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vected along isopycnals by a velocity U, and there is
a formal identification between Egs. (5) and (6) with

U=+ (hu')/h, (7)

The large-scale model thickness equation, based on (3),
can also be written in terms of U as

3
—h, +V,-(hU)=0

a1 (8)

A specification of U in terms of large-scale model vari-
ables, based on a parameterization of the eddy-corre-
lation term in (7), is made in section 3.

De Szoeke and Bennett (1993) also address the
question of averaging the equations of motion. They
average over microscopic scales and then transform
into coordinates relative to the microscopically aver-
aged isopycnals. They address parameterization of the
microstructure fluxes that arise in this averaging pro-
cess. We do not address this issue, and the coordinates
in this section should be thought of as the microscop-
ically averaged coordinates of de Szoeke and Bennett
(1993). They do not address the parameterization of
mesoscale eddy fluxes, which is the subject of this work.
They propose that the equations of motion be for-
mulated in terms of U defined in (7) above, which
they call the thickness-weighted average horizontal ve-
locity. However, this requires parameterization of
Reynolds stress terms in the momentum equation, and
we restrict our attention to tracer and density fluxes.
Nevertheless, in section 4 we formulate the planetary
geostrophic momentum equation in terms of U in or-
der to show an analogy with vertical mixing of mo-
mentum.

The fact that the large-scale model tracers in (6) are
not advected by the large-scale velocity alone has been
well documented in the atmospheric science literature,
especially in connection with tracer transports in the
stratosphere. The atmospheric scientists have defined
several different two-dimensional circulations in the
meridional and vertical plane that apply to zonally av-
eraged quantities. They are clearly and thoroughly dis-
cussed in the book on middle atmosphere dynamics
by Andrews et al. (1987). Plumb and Mahlman (1987)
diagnosed the zonally averaged tracer transports in the
GFDL general circulation /transport model and used
the name “‘effective transport velocity” for the velocity
advecting the tracers. As noted by Plumb and Mahl-
man, the effective transport velocity is not, in general,
the ‘“Lagrangian-mean velocity” of Andrews and
Mclntyre (1978) when the diffusivity is spatially in-
homogeneous. When this occurs, as it should in ocean
circulation models, then the Lagrangian-mean and ef-
fective transport velocities differ by the gradient of the
diffusivity. Plumb and Mahlman also note that the ef-
fective transport velocity satisfies the usual continuity
equation, whereas the Lagrangian-mean velocity does
not. The large-scale model formulated above is three-
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dimensional, and the concept of effective transport ve-
locity is valid in this situation as well. Contributions
in this vein have been made by Plumb (1986, 1990)
and Andrews (1990). There have been at least two
names used for the eddy-correlation term in Eq. (7)
in the oceanographic literature. Rhines (1982) and
McDougall (1991) used bolus velocity, while Csanady
(1989) used peristaltic pumping velocity. We prefer
“eddy-induced transport velocity.”

The eddy contribution to the tracer equation can be
written quite generally as a 3 X 3 tensor operating on
the gradient of the tracer. This tensor can be written
as the sum of a symmetric component and a skew-
symmetric component that is antisymmetric about the
diagonal. The symmetric component is a diffusion op-
erator, which can be written in purely diagonal form
in some coordinate system. We have assumed above
that this symmetric component is diagonal in coordi-
nates lying along and normal to isopycnal surfaces.
The skew-symmetric component can alternatively be
written as an advection, which we have assumed is
along isopycnals and not normal to them. This view
of eddy effects on tracers has been discussed previously
by Middleton and Loder (1989) and recently by Davis
(1994).

2. Transformation to height coordinates

In section 1 it was assumed that the large-scale model
tracer fields are advected along isopycnals by U and
there is no advection across isopycnals. In height co-
ordinates this is achieved by defining the three-dimen-
sional effective transport velocity (U, W) such that

D* d

—p=7p+U-Vp+ Wp,=0,

Dt ot ©)

where D*/ Dt is the substantial derivative that advects
with the effective transport velocity, and V is the two-
dimensional gradient operator at constant height. The
eddy-induced transport velocity (u*, w*) is defined by

W=w+ w* (10)

where (u, w) is the large-scale velocity. Other large-
scale model equations can be written in terms of (u,
w), which is the Eulerian velocity of the large-scale
model. Based on the analogy in section 1, this velocity
represents an observed velocity that has been filtered
by a low-pass projection operator in time and space at
constant density. The transformed tracer equation (6)
takes the form

U=1u+u*

*

D
- 7 = Rlw, 1),

Dt (1D

where R(u, 7) is the transformation of the right-hand
side of (6), namely

R(u, 7) = V3P [uKV3P1]. (12)
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The 3 X 3 tensor K and the two-dimensional slope
vector L are given by

I L
K:
(}L L-L

)  L=—Ve/p,  (13)
and | is the 2 X 2 identity matrix. Here K is the small
slope form for isopycnal mixing given in Cox (1987)
and Eq. (22) of Gent and McWilliams (1990). It is
now easy to deduce from (8) and (9) that the effective
transport velocity and, hence, the eddy-induced trans-
port velocity both satisfy the usual continuity equation,
namely

V- U+ W,=V.g*+wk=0. (14)
In the ocean the eddy fluxes are zero at closed bound-
aries, so that the normal component of the eddy-in-
duced transport velocity is zero on closed boundaries.
Thus,

(U+ Wk)-n=(u*+w*k)-n=0, (15)
where k is the unit vertical vector and n is the unit
vector normal to the boundaries.

Equations (9), (11), (14), and (15) are the familiar
equations for adiabatic, Boussinesq, incompressible
flow but with the effective transport velocity replacing
the large-scale velocity. The three properties listed by
Gent and McWilliams (1990) as important to retain
in any parameterization can be deduced from these
equations immediately. The properties are

1) all domain-averaged moments of p are conserved
and the volume between any two isopycnals is con-
served;

2) with insulating boundary conditions, the do-
main-average of 7 is conserved between any two iso-
pycnals, and higher moments of 7 decrease in time if
7 has gradients on the isopycnals;

3) the tracer equation ( 11) is satisfied identically by
the density, p.

One of the main points of this paper is to show how
simple the formulas in Gent and McWilliams (1990)
appear when interpreted as above in terms of the ef-
fective transport velocity. Equations (9) and (11) show
that there is no movement of tracers across isopycnal
surfaces, and there is no diapycnal velocity in this pa-
rameterization. It is clear that any diapycnal velocity
should be calculated with respect to the effective trans-
port velocity (U, W) and not with respect to the large-
scale velocity (u, w). Gent and McWilliams (1990)
wrote the density and tracer equations, (17) and (19)
respectively in their paper, in terms of the large-scale
velocity. From their Eq. (19) the eddy-induced trans-
port velocity can be written in their notation as

u® = p.F,

w* =~F-Vp—Q/p..  (16)
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Substitution of (16 ) into the density equation (9) gives
the large-scale velocity form of the density equation,
Eq. (17) of Gent and McWilliams (1990), namely
D a

P y;et e Vo + wp, = Q.
De Szoeke and Bennett (1993) interpret Gent and
McWilliams (1990) as a parameterization of diffusion
and say “that downgradient flux of density cannot be
guaranteed.” As stated above, one of the main points
of this paper is to show that the Gent and McWilliams
(1990) parameterization should be interpreted as a
quasi-adiabatic advection.

So far, a parameterization choice for the eddy-in-
duced transport velocity has not been made, Any choice
that satisfies the boundary condition (15) will satisfy
the three properties listed above. This choice could be
based on analysis of eddy-resolving calculations, al-
though this has not been attempted here.

(17)

3. The Gent and McWilliams (GM90)
parameterization

Gent and McWilliams (1990) proposed the follow-
ing parameterization for the eddy-induced transport
velocity:

* = —(kL),, w* =V-(«L), (18)

where « is the thickness diffusivity, and the vector slope
L is defined in (13). The form for a general vertical
coordinate is given in the appendix. This choice is based
on the mechanism of nearly downgradient Fickian dif-
fusion of thickness in isopycnal coordinates. The nearly
Fickian form was chosen so that w* can be evaluated
as a local function of p and, more importantly, because
it results in a sign-definite sink of domain-averaged
potential energy. This can be seen from the equation
for potential energy goz,

Ve (19
4
McWilliams and Gent (1994) chose to satisfy the
boundary condition (15) by setting the normal com-
ponent of «L to zero on side boundaries and « to zero
on the top and bottom boundaries. Note that this side
boundary condition is to be interpreted not as an extra
condition on p but as a constraint on the discrete form
of (18). This side boundary condition also assures that
if Eq. (19) is integrated over the domain, the first term
on the right-hand side integrates to zefo so that it can-
not be a source of potential energy. Then the domain-
averaged potential energy has the usual transfer to ki-
netic energy term plus a sign-definite internal sink. This
sink of potential energy mimics the domain-averaged
effect of baroclinic instability in an eddy-resolving
model. This effect is discussed in McDougall and
Church (1986) and maintains the properties listed i in
section 2.

D* Vo
E(ng) =V.(gpkL)+gpw+ gk
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If a model boundary is an open ocean boundary
rather than a closed boundary, however, then an al-
ternative specification of (15) may well be more ap-
propriate. This could be to specify a nonzero normal
component of kL. on the boundary, which is equivalent
to specifying a nonzero normal component of the eddy-
induced transport velocity there. In this case, the first
term on the right-hand side of (19) can be a source of
potential energy, and this possibility is discussed further
in section 7.

We now consider potential vorticity in the planetary
geostrophic model, which is also often called the ther-
mocline equations in oceanography. The inviscid mo-
mentum equation in this model is just a balance be-
tween the Coriolis force and the pressure gradient, that
is,

kau'+ Vp/po =0 (20)

The potential vorticity in this model is fp,, which is
that component of the primitive equation potential
vorticity that does not involve velocities. With the
GMO90 parameterization, the potential vorticity equa-
tion can be written as

D* v
B oo = RO p2) + V- (V) - (ﬁcz b ”)

Pz
(21)

Equation (21) shows that the potential vorticity
is being advected by the effective transport velocity
and has mixing of p, along isopycnals with a coeffi-
cient «f. The other terms on the right-hand side of
(21) are proportional to «, and redistribute poten-
tial vorticity within the fluid. Boundary condition
(15) cannot assure zero boundary fluxes in these
terms.

A slightly different parameterization for the eddy-
induced transport velocity could be based on exact
Fickian diffusion of thickness in isopycnal coordinates.
This gives

u* = —«L,, (22)

rather than the GM90 parameterization given in
(18). It is interesting to note that with the parame-
terization (22), the last two terms on the right-hand
side of (21) are not present. Then the potential vor-
ticity in the planetary geostrophic model would obey
an equation close to that for a tracer (11). The im-
portant differences are that (i) the mixing coeflicient
is proportional to « rather than to ux and, in general,
these two coefficients can have different values and
(ii) the mixing acts on p. with fin the coefficient
tather than on the potential vorticity. This last fea-
ture is desirable because it allows Eq. (21) to have a
steady, motionless solution with p independent of
the horizontal coordinates, whereas mixing of po-
tential vorticity with mixing coefficient x does not.
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Thus, the assumption of exact Fickian diffusion of
thickness means that the equation for potential vor-
ticity in the planetary geostrophic model is close to
that for tracers.

4. The analogy with vertical mixing of momentum

With the GM90 parameterization, the planetary
geostrophic momentum equation (20), including
forcing by the wind stress X, can be written in the form

Vp

kaU+Vp/p0=(kaX ) + X./p0. (23)

z

If the approximation that Vp in (23) is replaced by its
geostrophic balance form — py f'k X u,/g is made, then
Eq. (23) can be written in the form

2
Sk XU+ Vp/py = —(5’;j’—f

b4

“z) + Xz/po.  (24)

Equation (24) shows the analogy between the GM90
parameterization and vertical mixing of momentum
with a coefficient of kf?/N?, where N is the buoyancy
frequency. This analogy has been discussed previously
in Olbers et al. (1985), Greatbatch and Lamb (1990),
and McWilliams and Gent (1994 ). The analogy is not
exact because of the approximation made above. If, in
addition, wu, is replaced by U, in the first term on the
right-hand side of (24), then the kinetic energy and
potential energy budgets take the forms

272
V-(pU)+<pW)z+(@‘¥f—U-UZ)
gp: .
22
=—ng+xz-U+"”°f U,-U, (25)
2.
and
D*
= = goW. 2
Dt (gpz) = gp (26)

Comparing (26) with (19) shows that, when using the
effective transport velocity, potential energy appears to
be conserved except for the exchange with kinetic en-
ergy. However, the kinetic energy due to the wind forc-
ing, X, - U, is balanced by exchange with potential en-
ergy and a negative definite kinetic energy sink due to
the vertical friction. Note that the kinetic energy sink
in (25) is the same as the potential energy sink in (19)
within the two approximations made in deriving (25)
from (23). This shows that the GM90 parameterization
will give very similar solutions to an adiabatic model
using vertical mixing of momentum with coefhicient
kf2/N?. We now test this conjecture.

McWilliams and Gent (1994 ) used these two models
to solve for double-gyre wind-forced solutions in a rec-
tangular domain. The discussion above says that the
velocity in the vertical momentum mixing model
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should be interpreted as the effective transport velocity,
whereas the velocity in the model with the GM90 pa-
rameterization is the large-scale velocity. Both of these
models had additional substantial derivative and bi-
harmonic dissipation terms in the momentum equa-
tion. However, the solutions obtained in McWilliams
and Gent (1994) are steady, and the momentum ad-
vection terms are quite small except in the western
boundary layers. This suggests that differences between
solutions of the two models will show quantitatively
the validity of the approximations made in deriving
Eq. (25). Figure 5 of McWilliams and Gent (1994)
shows the meridional overturning streamfunction for
the large-scale velocity from the model with the GM90
parameterization. Their Fig. 13 shows the same
streamfunction from the vertical momentum mixing
model, which is to be interpreted as the meridional
overturning streamfunction for the effective transport
velocity. We have calculated the difference between
these two streamfunctions, and it is shown in Fig. 1.
If our hypothesis is correct, this should be very similar
to the meridional overturning streamfunction for the
eddy-induced transport velocity (u*, w*) from the
model with the GM90 parameterization. This is [ p,/
p:dx, and it is shown in Fig. 2. Comparison of the
figures shows that they are close and the maximum
difference between them is about 5% of the range of
values in both figures. Thus, the approximations made
in deriving (25) are valid to within 5% at most. One

5KM

305 4xi0° 5xI0°

KM

o T2i0°  2xI0°

FIG. 1. Zonally averaged meridional overturning streamfunction
from the vertical momentum mixing model minus the zonally av-
eraged meridional overturning streamfunction from the model with
the GM90 parameterization. The individual streamfunctions are
shown in Figs. 13 and 5, respectively, of McWilliams and Gent (1994).
Contour intervals are plus and minus 1/33, V¢, /8, Y4, /2, and 1
in units of 5 X 10* m?s™".
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FIG. 2. Zonally averaged meridional overturning streamfunction
for the eddy-induced transport velocity, f kpy/p.dx, from the model
with the GM90 parameterization described in McWilliams and Gent
(1994). Contour intervals and units are the same as Fig. 1.

reason that the streamfunctions are so close is that the
kinetic energy input from the wind in the two different
calculations in McWilliams and Gent (1994 ) is almost
identical. This can only occur if the velocities in the
upper layer are very close. We are unsure whether this
is fortuitous in this case, and, in general, perhaps the
vertical friction should act on the difference between
the total and the Ekman velocities in order to ensure
comparable upper-layer velocities and hence compa-
rable kinetic energy input by the wind.

5. Implementation in comprehensive ocean
circulation models

Comprehensive ocean circulation models, such as
the Cox-Bryan model, usually solve the primitive
equations with the Boussinesq approximation. They
have prognostic equations for potential temperature ¢
and salinity .S, and both the in situ and potential den-
sities are calculated diagnostically from the equation
of state for seawater. Decomposing these variables into
low-pass projected large-scale and eddy components
gives an equation for large-scale potential temperature
of the form

D _ — - _
— @+ V-(u'8')+ (w'8'), = Dy
Dt
likewise for salinity. In (27) D, represents diapycnal
processes such as mixing across isopycnals, surface
forcing, etc. As discussed at the end of section 1, the
eddy flux terms give rise to an advective term due to
the skew-symmetric component and a mixing along

(27)
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isopycnals term due to the symmetric tensor compo-
nent. Thus, the large-scale model equations for § and
S, based on the projection equation (27) and its com-
panion for salinity, are

D*
EG—R(“’ 0) + Dy, (28)

D* ‘
'D—ZS=R(;¢, S) + Ds, (29)
where D*/ Dt and R aré defined in (9) and (12), re-
spectively. Calculations of R and the GM90 parame-
terization for u* from (18) require evaluating the slope
vector L. In comprehensive models this could be the
slope of the in situ density, the global potential density,
or the local potential density surfaces. The latter two
are defined using a global or local reference pressure,
respectively. We think that L should be the slope of
the local potential density, or neutral, surface. The rea-
son is that the constraint of no buoyancy change along
neutral surfaces is more fundamental than adiabaticity,
which would be preserved if the slope of the global
potential density surface were used. We note that, al-
though the GM90 parameterization was strongly
guided by quasi adiabaticity and the three properties
listed in section 2, these properties are not retained in
comprehensive ocean circulation models. The reason
is that neutral surfaces are not globally uniquely defined
because of the complexities of the equation of state for
seawater (see McDougall 1987). Thus, the integrals
involved in the properties listed in section 2 are not
well defined when they involve neutral surfaces.

Thus, in comprehensive ocean models L should be
evaluated as

L - (B a) el
8BS, — af, NZ

(30)

Here « and B are the coefficients of thermal expansion
and saline contraction, respectively, which are them-
selves functions of pressure, 8, and S: L and R are
already implemented in the Cox-Bryan model (see
Redi 1982; Cox 1987), so that only an additional ad-
vection is required to implement Eqgs. (28) and (29).
This advection can be done with a similar discretization
as already in the model for the large-scale velocity, and
numerical conservation properties are retained. In the
Cox-Bryan model there is a cutoff in the maximum
slope used to evaluate R and a similar cutoff should
probably be retained when evaluating the effective
transport velocity so that the velocity does not become
too large. The Cox-Bryan model uses a second-order
accurate leapfrog time differencing scheme, with the
advective terms evaluated at the central time level.
Computations described in the following section have
shown that the GM90 parameterization is numerically
unstable if the eddy-induced transport velocity given
by (18)is evaluated at the central time level. However,
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lagging u* one time step so that it is evaluated at the
previous time level overcomes this problem. Of course,
other time stepping schemes could be used.

6. Relaxation of a sloping two-dimensional front

We now illustrate the effect of the GM90 parame-
terization by applying it to a strong, sloping two-di-
mensional front. The front is defined by the initial fields
of temperature and salinity that are shown in Fig. 3.
The upper right of the front has warm, salty water, and
the lower left has cold, fresh water. The initial distri-
butions are of the form

ao=—§y(x, z) + 8(x, z), (31)

BS = = 3 ¥(x, 2) + b(x, 2), (32)
where v is a tanh function in z about a center line
described by a tanh function in x and 4§ is a tanh func-
tion in x at the upper surface and is very small at the
lower surface. Thus, the temperature and salinity par-
tially compensate and the initial density field 1s given
by

(33)

with a and @ constants. This front has a jet in the
meridional direction associated with it, but this plays
no part in the evolution because all fields are assumed
to be independent of y. Thus, the large-scale velocity
in the (x, z) plane is identically zero and the only ad-
vective component is the eddy-induced transport ve-
locity due to the GM90 parameterization. We have
also assumed that there is no mixing of tracers along
isopycnals, that is, R in (11) is zero, in order to isolate
the advective effect of the parameterization. Then 6
and S evolve according to equations

p/pO = ﬁS_ a0 = ’Y(Xa Z)a

d
Z 0+ (u*0), + (w*d), = 0,

% (34)
i)
aS—i—(u*S)x-*-(w*S)z:O, (35)
where
u* = (KE')‘C) , w*= “(K &> ; (36)
P/, p-/,

x is taken to be a constant except on the boundaries
where it is set to zero. This is to satisfy the boundary
condition (15). Equations (34) and (35) are solved
on a mesh of 40 X 30 gridpoints as indicated on Fig.
3 using second-order central space and time differenc-
ing. As mentioned at the end of section 5, the scheme
is unstable if #* and w* are evaluated at the central
time level, but it is stable when the velocities are eval-
uated at the previous time level.
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FiG. 3. Initial states of (a) temperature and (b) salt {contour interval
one-quarter that of (a)]. Both panels also show the streamfunction
kpy/p; for the parameterized eddy-induced transport velocity.

The streamfunction for the velocities defined in (36)
is kpx/p., and it is plotted at the initial time by the
dotted lines in Fig. 3. It shows that the highest velocities
are not at the center of the front but surround it and
will produce an anticlockwise circulation that will tend
to flatten out the front. Figure 4 shows the temperature
and salinity fields at a time of 20As?/«, where As is
the grid spacing in x and z. Again the dotted lines are
the streamfunction for the velocities in (36), with the
same contour interval as in Fig. 3. It is clear that the
strength of the anticlockwise circulation has decreased
significantly by this time because the horizontal density
gradient has also decreased. The temperature and sa-
linity distributions above the front now have consid-
erable vertical structure, so that local casts of § and S
have changed considerably compared to their initial
distributions. However, the §-S curves remain smooth
all through the integration because the properties of
individual parcels are conserved. The 8-S curves from
vertical casts in the ocean do show evidence of mutual
lateral intrusions of water masses from opposite hori-
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F1G. 4. Distributions of (a) temperature and (b) salt after an in-
tegration time of 20As%/«. Both panels also show the streamfunction
kp./p- for the parameterized eddy-induced transport velocity. Contour
intervals are the same as in Fig. 3.

zontal directions as the thickness along isopycnals is
made more uniform by lateral advections of fluid and
tracer.

The integration has been continued to equilibrium.
Figure 5 shows the initial density field, the density at
time 20As?/«x corresponding to Fig. 4 and at time
1000As?/k when it has reached equilibrium. It is clear
that the GM90 parameterization acts to flatten the
front, and the final state is that the front is horizontal.
This corresponds to a state of minimum potential en-
ergy as is expected from (19). However, the vertical
stratification has remained intact, so that the amount
of water of a given density is unchanged to within nu-
merical discretization accuracy. This is to be expected
from the quasi-adiabatic character of the parameter-
ization, but it is encouraging that this conservative be-
havior is maintained in a calculation on a coarse
Cartesian grid with its unavoidable numerical disper-
sion errors. These properties are certainly not retained
if the parameterization of eddy effects is just horizontal
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diffusion of tracers rather than (34) and (35). We cal-
culated the effect of horizontal diffusion on the initial
front shown in Fig. 5, and the equilibrium state is much
more diffuse in the vertical than that shown in Fig. 5.
Using the GM90 parameterization in ocean general
circulation models enables the coefficient of horizontal
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F1G. 5. Density distribution at various times of the integration.
(a) Initial, (b) 20As%/«, and (c) 1000As%/x.
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diffusion of tracers to be set to zero, as in McWilliams
and Gent (1994).

7. Estimates using ocean data

We now illustrate the effects of the GM90 parame-
terization by some estimates using the Levitus (1982)
dataset. This dataset is very frequently used to initialize
and validate ocean numerical models. The zonal mean
meridional overturning streamfunction for the eddy-
induced transport velocity is the zonal integral of «
times the meridional component of the slope vector
L, calculated from (30). This streamfunction is shown
in Fig. 6 using a constant value for the thickness dif-
fusivity « of 10> m? s™! and imposing zero values of
the streamfunction on the boundaries. It has been cal-
culated over all the ocean basins with a resolution of
4° 1in latitude and 200 m in depth. The value chosen
for « is a standard value for horizontal tracer mixing
in the Cox-Bryan model.

The strongest cell in the Northern Hemisphere is
centered at 40°N between 200 and 400 m and corre-
sponds to a transport of 4 Sv (Sv = 10° m? s™!). This
cell is fairly equally divided between the North Atlantic
and North Pacific Oceans. By far the largest signal is
in the region of the Antarctic Circumpolar Current
where there is a transport of 18 Sv in an overturning
cell between depths of 0.5 and 2.5 km. The implied
circulation is around this depth range between 52°S
and 56°S. The meridional velocities are confined to
above 500 m and below 2.5 km. Between these two
depths, the isopycnals do have a significant slope, but
the slope is constant with depth so that the meridional
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velocity is zero. In fact, the isopycnals have the same
slope right to the surface in this latitude range, so it is
the imposition of the boundary condition w* = ( at
the surface that forces the meridional velocity to be
surface intensified. To a degree the same thing occurs
in the deep ocean but, because there is a range of ocean
depths, the intensification is less apparent in Fig. 6.
The vertical velocity in the overturning cell is mostly
confined to 40°-48°S and 60°-64°S on both sides of
the average latitude of the Antarctic Circumpolar Cur-
rent.

This discussion leads to the following thought ex-
periment. Consider a situation where the isopycnals
have a constant slope throughout a rectangular domain.
Then a parameterization for the eddy-induced trans-
port velocity based on the downgradient flux of thick-
ness will have no effect at all, providing the constant
isopycnal slope is imposed at all boundaries. Then the
first and third terms on the right-hand side of the po-
tential energy budget (19) cancel exactly and this con-
figuration will persist indefinitely. However, if the
McWilliams and Gent (1994 ) boundary condition im-
plementation, described below Eq. (19), is used, then
there will be an eddy-induced circulation near the
boundaries that will eventually flatten the isopycnals.
In this case the internal sink term in (19) will reduce
the potential energy to its minimum value when the
isopycnals are flat. This emphasizes that, at an open
boundary, the appropriate boundary condition is to
specify a nonzero normal component of «L. In a gen-
eral situation, isopycnals will have slopes at closed
boundaries even with the McWilliams and Gent (1994 )
implementation of the boundary conditions. This will

Depth (km)

- 0 ‘ 20
LATITUDE Cl=1 SVERDRUP

FiG. 6. Zonally averaged meridional overturning streamfunction f kpy/p-dx in Sverdrups cal-
culated from Levitus (1982) data where the average is over all ocean basins: k = 10* m?s™' and is

constant,



472

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 25

Depth (km})

-60 -40 -20

T T

0 20 40 60

LATITUDE Cl=1 SVERDRUP

FiG. 7. Zonally averaged meridional overturning streamfunction in Sverdrups
as in Fig. 6 but for « with a first baroclinic mode profile.

occur when either large-scale advection or diabatic
processes counterbalance the effects of the eddy-in-
duced transport velocity at the boundary.

In some of their solutions McWilliams and Gent
(1994) used profiles of x that were tapered to zero over
several horizontal grid points near side boundaries. This
was to diminish the intensification of velocities at side
boundaries due to the GM90 parameterization. Ta-
pering the vertical profile of « to zero at the top and
bottom boundaries has a similar benefit. Here we ex-
amine the effects of choosing a vertical profile for «
based on the vertical velocity profile of the first baro-
clinic mode for the Antartic Circumpolar Current re-
gion. It is zero at the upper and lower boundaries and
has a maximum of one at 0.3 of the ocean depth. This
profile was used globally and the meridional overturn-
ing streamfunction recalculated from the Levitus
(1982) data. It is shown in Fig. 7. Compared to Fig.
6, the maximum in the streamfunction in the Antartic
Circumpolar Current is only reduced slightly, but its
vertical and horizontal extent is reduced so that the
circulation is much less boundary intensified.

The largest effect of using a tapered vertical profile
for « is on the heat transport implied by the eddy-in-
duced transport velocity. This has been calculated using
the temperatures from the Levitus data and is shown
in Fig. 8 when « is constant at 103 m? s™'. The heat
transport when « has a tapered vertical profile is very
similar in shape but has almost exactly one-half the
values shown in Fig. 8. This is to be expected as the
constant k case forces the circulation to be shallow and
deep in the ocean and so maximizes the heat transport.
Figure 8 shows the northward heat transport in peta-
watts plotted as a function of latitude calculated for

the total ocean and also shows the contributions by
the Atlantic and Pacific Oceans individually. All three
curves show the same general features of equatorward
heat transport between 25°N and 20°S and poleward
heat transport north of 32°N and south of 28°S. The
direction and magnitude of this heat transport is con-
sistent with the effect of eddies estimated from obser-
vations and calculated in regional models of ocean cir-
culation. Near the equator 20-30-day waves are ob-
served in all oceans, especially in the eastern Pacific.
They transport heat equatorward down the mean tem-

0.1 1

ATLANTIC — J<5-.
0.0 = ! e

-0.1

-0.2 4

-0.3 1

NORTHWARD HEAT TRANSPORT (pW)

-0.4 —T T T T T T T
-60 -40 -20 0 20 40 60
LATITUDE

HG. 8. Northward heat transport in petawatts due to the stream-
function shown in Fig. 6 calculated from Levitus (1982) data. The
heat transports in the Atlantic, Pacific, and all ocean basins are shown.
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perature gradient (see Bryden and Brady 1989; Brady
and Gent 1994). In the North Atlantic eddies transport
heat polewards (see Bryan and Holland 1989; Beck-
mann et al. 1994). In Fig. 8 the maximum transport
in the Northern Hemisphere is 0.15 petawatts at 40°N,
which is consistent in magnitude with the regional
model eddy heat transports. The maximum in the
Southern Hemisphere in Fig. 8 is 0.4 petawatts at 44°S,
consistent with the effect of eddies estimated from ob-
servations (see Bryden 1979; de Szoeke and Levine
1981) and the FRAM model (see Webb 1993). This
value is reduced to 0.2 petawatts when « has the smooth
first baroclinic mode profile.

Further detailed comparison of Fig. 8 with obser-
vations and models is not warranted. Suffice it to say
that the GM90 parameterization with x of order 103
m? s~! can provide an ocean heat transport by eddies
that is the same order of magnitude and has the correct
distribution with latitude as estimates from observa-
tions and regional eddy-resolving models. The detailed
structure of this heat transport will depend on the hor-
izontal and vertical structure chosen for «. The best
choice for « as a function of x, y, and z is a research
question beyond the scope of this manuscript.

8. Summary and conclusions

Section 2 shows how the effect of eddies can be pa-
rameterized in a large-scale numerical ocean model.
This is accomplished by mixing tracers along local po-
tential density, or neutral, surfaces and advecting them
by the effective transport velocity. This velocity is the
sum of the large-scale velocity plus the parameterized
eddy-induced transport velocity. Any choice can be
made for this eddy-induced transport velocity provid-
ing it satisfies the usual continuity equation and
boundary condition of no normal flow. This choice
could be based on analyses of eddy-resolving calcula-
tions. Section 3 discusses the GM90 parameterization
for the eddy-induced transport velocity based on nearly
downgradient diffusion of thickness. This parameter-
ization mimics the domain-averaged effect of baroclinic
instability in that it provides a negative definite sink
of large-scale potential energy. Thus, a consistent way
to estimate the thickness diffusivity « is by comparison
to the large-scale potential energy loss to eddy potential
energy in adiabatic eddy-resolving calculations. We
have used a value of 103 m?s™! in this paper; Mc-
Williams and Gent (1994) used 1.5 X 103 m?s™}.
There is an additional coefficient u in the mixing along
neutral surfaces term and this need not be equal to «.
Instead it represents the amount of stirring done by
eddies and so it could be estimated by a mixing length
argument as an eddy velocity scale times an eddy length
scale. Alternatively, it could be proportional to eddy
kinetic energy divided by a mixing time estimated from
observations or from eddy-resolving models.

In section 4 the planetary geostrophic momentum
equation is formulated in terms of the effective trans-
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port velocity. The conclusion is that the effective trans-
port velocity using the GM90 parameterization is very
similar to the large-scale velocity from an adiabatic
model using vertical mixing of momentum with a coef-
ficient of kf2/N2. Section 5 is a discussion of how to
implement the eddy-induced transport velocity in
comprehensive primitive equation models, such as the
Cox-Bryan model. The additional advection should
be implemented in a similar manner to the large-scale
velocity advection. If central time differencing is used,
however, then the eddy-induced transport velocity
must be evaluated at the previous, not central, time
level.

Application of the GM90 parameterization to a two-
dimensional sloping front is presented in section 6. It
shows that the conservative properties of the parame-
terization are well-maintained on a Cartesian grid and
that the parameterization works very much better than
horizontal diffusion in maintaining the amount of wa-
ter with a given density. Section 7 shows estimates from
Levitus (1982) data of the meridional overturning
streamfunction and associated heat transport due to
the eddy-induced transport velocity. The conclusion is
that, with « of order 10° m?s™!, the parameterized
eddy ocean heat transport is the same order of mag-
nitude and has the correct distribution with latitude as
estimates from observations and regional eddy-resolv-
ing models.

Further evaluation of the GM90 parameterization
will only come from implementing it in ocean nu-
merical models, and early results are described in
Danabasoglu et al. (1994) and Boning et al. (1995).
The optimal form of « as a function of position is a
question to be addressed during this implementation.
Other parameterizations should also be tried, but the
way to formulate them in terms of the eddy-induced
transport velocity presented in this paper is the natural
method to follow.
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APPENDIX
General Vertical Coordinate

With the GM90 parameterization, the tracer equa-
tion (11) in any vertical coordinate s can be written
in the form

*

D
— 7 =R(p, 1),

D1 (Al)
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where D*/ Dt is defined by
D* 9 d
—=—+(utu*)Vi+(o+ ; 2
i (u+u*)- (w w)as, (A2)
D*/ Dt can also be written in the form
D* D*t d  D*x D*s 9
: .V, dl A3
Dt Dt 3[ Dt Dt ds ( )
The eddy-induced transport velocity (u*, «*) is defined
by
hsu* == [K(Vsh + hss )]S’ hsw* = Vs ° [K(Vsh + hss)],
(A4)

where 4 is the physical height of an s surface, and S is
defined by

S = _pr/ps- (AS)

The continuity equation for the eddy-inducéd transport
velocity is

Ve (hu*) + (hw*); = 0. (A6)
In the s vertical coordinate, R(u, 7) takes the form
R(u, 7) = V3P - [uhKVIP1]/ ks, (A7)

where
I S e]
K= 7=V, —]|.
(S S-S)’ ( Bs) (A8)
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