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ABSTRACT

A subgrid-scale form for mesoscale eddy mixing on isopycnal surfaces is proposed for use in non-eddy-
resolving ocean circulation models. The mixing is applied in isopycnal coordinates to isopycnal laygr thickness,
or inverse density gradient, as well as to passive scalars, temperature and salinity. The transformation of these

mixing forms to physical coordinates is also presented.

1. Introduction

It is now half a century since Iselin (1939) and _
Montgomery ( 1940) suggested that mixing of material
properties by eddies in the stably stratified parts of the
oceans occurs mostly along surfaces of constant density
or isopycnal surfaces. The most energetic component
of the eddy field is on the mesoscale, and mesoscale
eddies dominate the isopycnal mixing of material
properties.

1t is presently common practice to model mesoscale
eddies and their interaction with the wind-driven gen-
eral circulation with an adiabatic approximation; that
is, density is assumed to be conserved following fluid
parcels, and all of the dissipative processes are confined
to the momentum equations. The resulting numerical
solutions (e.g., Holland 1978) are self-consistent in that
the density fields are spatially smooth and surfaces of
constant density do not undergo overturning and
breaking motions. Of course, if we could obtain a com-
plete solution of the Navier-Stokes equations, we
would expect some degree of turbulent cascade from
the planetary scale, through the mesoscale, to the

. smaller scales where breaking and'molecular dissipa-
tion will act on the density field. However, we cannot
yet demonstrate that this pathway is essential in this
wind-driven circulation problem, even though it is es-
sential to achieving an equilibrium state in the presence
of buoyancy fluxes through the boundaries, the so-
called diabatic problem.
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In a fine-resolution numerical solution for the adi-
abatic, wind-driven general circulation, an analysis of
the density equation shows that, in a statistical steady
state, the three-dimensional divergence of the flux of
the mean (large-scale) density field by the mean ve-
locity is balanced by the divergence of a mean density
flux due to mesoscale eddies. In a sufficiently coarse-
resolution model of this situation, mesoscale eddies
are not present. So, in order to mimic a fine-resolution
model, the eddy density flux divergence must be rep-
resented by a subgrid-scale parameterization in order
to have a sensible resolved-scale density balance.
Therefore the coarse-resolution model must have a
nonconservative term in the density equation. Thus,
the mean or large-scale density equation is not point-
wise adiabatic, but our parameterization of eddy mix-
ing will retain the integral properties of the density field
in adiabatic flow, and so we call it quasi-adiabatic (see
below). Thus, our coarse-resolution model should be
thought of as an approximate model that preserves the
important properties of adiabatic evolution. Even in a
more complete general circulation model, with surface
buoyancy forcing and diapycnal (perpendicular to iso-
pycnal) mixing by eddies on scales smaller than me-
soscale, the mesoscale eddy isopycnal density fluxes
will still be an important contributor to the steady-
state density balance, and so they still must be param-
eterized in a coarse-resolution model, together with
whatever diapycnal subgrid-scale fluxes are appropriate.

Analogous considerations apply to the transport of
passive tracers. In contrast to the density field, however,
mean and mesoscale advection cause a vigorous cas-
cade of tracer variance to small scales, so that its dis-
sipation rate will become significant no matter how
small the tracer diffusivity. In an adiabatic model of a
stratified fluid, tracer mixing can only occur along iso-
pycnal surfaces. So the behavior of the fine-resolution

_solutions that we wish to mimic in coarse-resolution
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solutions is conservation of mean tracer concentration
on isopycnals and decay of all higher moments of the
concentration. This, too, is part of our quasi- adiabatic
parameterization proposal.

Previous proposals for isopycnal mixing in ocean
models (Kirwan 1969; Solomon 1971; Redi 1982; Cox
1987) have been eddy diffusion laws for passive scalars
with the flux vector rotated to a coordinate frame lo-
cally tangent to an isopycnal surface, and with different
eddy diffusivities for the isopycnal and diapycnal com-
ponents. McDougall (1987a,b) has extended this pro-
posal to neutral surfaces rather than isopycnals. How-
ever, when such a law is applied to density, the iso-
pycnal flux is zero. Thus, these proposals fail to satisfy
the requirements of the mean density balance as dis-
cussed above.

We propose forms for isopycnal eddy mixing that
overcome this deficiency in a way which permits qual-
itative correspondence between adiabatic eddy-resolv-
ing solutions and coarse-resolution solutions in a quasi-
adiabatic, approximate model. The proposal is to mix
isopycnal layer thickness, or inverse density gradient,
along isopycnal surfaces and to mix passive scalars with
an additional term compared to previous proposals.
In addition, diapycnal diffusion may be included, as it
must be for diabatic problems, but we will mostly ne-
glect this aspect in our discussion here. We also note
here that we will not discuss horizontal eddy motions,
which contribute to horizontal Reynolds stresses. Sec-
tion 2 contains the proposed forms for isopycnal mix-
ing, which are natural in isopycnal coordinates. In sec-
tion 3, these forms are transformed into physical, or
height, coordinates. Finally, section 4 is a discussion
that includes the generalization of our proposal to the
equation of state for sea water.

2. Mixing in isopycnal coordinates
a. Eddy-resolving models

In isopycnal coordinates, the adiabatic density con-
servation and incompressible continuity equations are
combined to give an equation for the thickness, 4/
dp, where p is density and A(x, y, p, t) is the physical
height of a density surface. The equation is

2
Ty, (Z) -0
otdp ap
where u is the horizontal velocity vector and V, is the
horizontal gradient operator applied at constant p.
If the diffusion of a passive scalar, 7, is assumed to

occur only along, and not across, isopycnal surfaces,
then the equation for 7 is

Dr oh oh
—_— V . —_— -V —_— =
Dt I3 (I‘ ap J pT)/ap R(1),

where p is the tracer diffusivity. The adiabatic sub-
stantial derivative in isopycnal coordinates is given by

(1)

(2)
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D d
Z=Z4tuv 3
D a e (3)
and
1 1+ h? —hh
J="""75773 g L@
1+ hZ + b2 | —heh, 1+ 5

J is not the identity matrix because isopycnal coordi-
nates are not orthogonal. In the ocean the slopes of the
isopycnals are generally very small and, in the limit
that horizontal density gradients are much smaller than
vertical gradients, J reduces to the identity matrix. In
this limit, Eq. (2) reduces to the simple flux form in
isopycnal coordinates.

In an adiabatic eddy-resolving model, Egs. (1) and
(2) have the following important properties:

A) All domain-averaged moments of p are con-
served, and the volume between any two isopycnals is
conserved.

B) With insulating boundary conditions, the do-
main-average of 7 is conserved between any two iso-
pycnals, and higher moments of = decrease in time if
7 has gradients on the isopycnals.

C) Since R(p) is zero, Eq. (2) for a passive tracer,
7, is satisfied identically by the density, p (see the dis-
cussion in section 4).

If an eddy-resolving, adiabatic, isopycnal model is
run to a statistical steady state, then the approximate
balance in Eq. (1) will be

vp.("_”.—l) +v,,.(%..') ~0.
dp adp

Here the thickness and velocity are divided into large-
scale, time-mean () and eddy components (u’), and
the overbar represents an average over the eddy scales.
The second term of Eq. (5) is the isopycnal mixing
contribution due to eddies, and it appears as a source
term in the thickness equation for the large-scale vari-
ables.

(5)

b. Non-eddy-resolving models

Therefore, the eddy mixing can be represented in
approximate non-eddy-resolving models by the equa-
tion

9%h oh
2 iv (E V -F=0.
313p . (6,0 u) +V,-F=0

Now that there is a nonconservative term in the thick-
ness equation (6), there is a choice to be made as to
whether it corresponds to a term in the adiabatic density
or incompressible continuity equations. If the flow is
considered strictly adiabatic, then there must be an
extra term in the continuity equation and the flow is
not incompressible. To us, this is an unfamiliar and
conceptually uncomfortable ocean model because the

(6)



152

flow will have mass sources and sinks. We prefer the
alternative which is to consider the flow as strictly in-
compressible and to have a nonconservative term in
the density equation.

Thus, our non-eddy-resolving model is not adiabatic,
and so particles do not preserve their density, i.e.,

Dp
Dt_Q’

where Q 1s related to the nonconservative term in Eq.
(6) by

(7)

oh ?

8—sz V,-Fdp. (8)
p

From its definition and by Eq. (7), the diabatic sub-

stantial derivative in isopycnal coordinates for the non-

eddy-resolving model is given by

(9)

The Q term in the substantial derivative (9) may be
unfamiliar. However, the coarse-resolution model is
diabatic, and in isopycnal coordinates this is repre-
sented by the Q term in the substantial derivative.

Despite the fact that the non-eddy-resolving model
is locally diabatic, we will ensure that the three im-
portant properties of the adiabatic, eddy-resolving
model listed in section 2a are still retained by the non-
eddy-resolving model. Thus, we refer to our non-eddy-
resolving model as having quasi-adiabatic evolution.
The first property A is assured by the boundary con-
ditions that F - n is zero on all boundaries, where n is
the normal horizontal vector, and Q is zero on the
vertical boundaries of the domain.

We consider now the equation for passive scalars in
the non-eddy-resolving model. Guided by Eq. (2), but
allowing for a nonconservative term, E, we write the
equation for r as

Dr

Dt (10)

R(T)+E(T)/g—::.

In order to satisfy the 7 conservation properties B from
section 2a, it is easy to show that the source term E
must be of the form

oh

E(T)=5(9;(_ QT)+V,,-G(T). (ll)‘

dp

To satisfy C from section 2a, that o satisfies Eq. (10)
identically, requires that

oh

3 Q= E(p). (12)
el

Using equations (8)and (11), Eq. (12) can be written

in the form

V,-[pF + G(p)] = 0. (13)
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Using the simplest solution of Eq. (13) results in the
following form for the passive scalar equation (10)

d oh
(5-1- + u-V,,)‘r + F-V,,T/gl; = R(7). (14)
Comparing Egs. (2) and (14) shows that there is a
single extra term in the passive scalar equation in the
non-eddy-resolving model, which has the form of an
additional horizontal advection of 7 by the isopycnal
thickness flux. In addition, the value of x used in Eq.
(14) will be much larger than in the eddy-resolving
model equation (2).

¢. A simple choice for F

A simple choice for F is

F=— 2 («V,h), (15)
dp

with F zero on the boundaries. The thickness diffusiv-
ity, k, can be spatially varying, but, if it is a constant,
Eq. (6) has the familiar form of Laplacian mixing act-
ing upon the equation variable. The mixing of isopyc-
nal thickness, or the inverse of the density gradient,
seems to us the simplest, nontrivial mixing formulation
in isopycnal coordinates. The other reason why we like
the choice (15) is that it makes Q, given by Eq. (8), a
local function. In fact, Q is given by

?Q: _Vp'(’(vph)’ (16)
0
with Q zero on the vertical boundaries of the domain.

The choice for F in (15) has certain implications for
the structure of the resulting flow field that are most
easily illustrated in a simplified geometry. The Appen-
dix contains the analysis for flow in a zonally uniform
channel in the geostrophic limit of small Rossby num-
ber. It shows that, when « is positive, there is down-
gradient vertical diffusion of mean (large-scale) mo-
mentum and there is a conversion of mean potential
energy to eddy (subgrid-scale) potential energy. The
former process is often referred to as isopycnal or in-
terfacial form drag. The latter exchange simulates the
potential energy conversion due to baroclinic instabil-
ity, a process which dominates energy conversion in
broad, midlatitude zonal currents in eddy-resolving
ocean circulation models, see McWilliams and Chow
(1981).

In ocean models it is desirable to have positive ver-
tical momentum diffusion and potential energy con-
version from mean to eddy in the global domain
average, but this does not always occur locally. In eddy-
resolving solutions the largest discrepancy usually oc-
curs in western boundary currents where momentum
diffusion and potential energy conversion are the op-
posite of those described above, see McWilliams et al.
(1989). Thus, it remains an issue for implementation
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whether inclusion of these effects by making « a func-
tion of space and time (e.g., with either reduction, or
sign reversal, of x in western boundary currents) is im-
portant or needed.

3. Transformation to physical coordinates
a. General equations

Transforming Egs. (7) and (8) to physical coordi-
nates gives the density equation with a nonconservative
term in the form

Dp

—=Q, 17
= =0 (17)
where D/ Dt is the familiar substantial derivative in
physical coordinates, and Q is given by

JF

a
9 =V F -V, L
6z(Q/pZ) p:V:-F zP 9z’ (18)

and V, is the horizontal gradient operator applied at
constant z. The passive scalar equation (14) for =
transforms into the advective form

D
Dt FV,r — [F-V.p + 0/p:] 2 = R(r). (19)
Dt 0z

Using Eq. (18), Eg. (19) can also be written in flux
form. The transformation of R from Eq. (2) takes the
form

R(7)=V «(uK-V7), (20)

where V is the 3-D gradient operator applied at constant
z, and K has the following form, see Redi (1982):

1
sz + Py2 + ﬂzz

py’ + pt “pxpy | TPsb:
X1 —pxpy pxt ps —pyp: (21)
T PxpPz ~PyPz px2 + Py2

In the limit that horizontal density gradients are much
smaller than vertical gradients, there is an approxi-
mation to K which preserves the isopycnal form of
mixing; i.e., R(p) is still identically zero. It is the exact
transformation of approximating J in (4) by the iden-
tity matrix, and is given by .

1 0 —0x/ P
K' = 0 1 —py/ Pz (22)
—Px/ Pz _py/pz (sz + .Dyz)/pz2

Cox (personal communication) changed to this form
for isopycnal mixing rather than the form given in Cox
(1987).
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b. A simple choice for F
With this choice for F, Eq. (15), Q takes the form

a
Q = Vz'(KVzp) - 5; (szp * Vzp/pz)~ (23)

It can be shown that the form (23) preserves all mo-
ments of p in domain average. Substituting this choice
for F into Eq. (19) gives the following flux form for
the passive scalar equation

Dr

d
7)7 + vz' l:T 52 (szp/pz)]

= L (9. (Vanf )] = R (24)
zZ

Comparing Egs. (2) and (19) or (24) again shows that
the extra terms in the non-eddy-resolving model take
the form of additional advections or fluxes of 7.

4. Discussion

We now discuss implementation of our mixing pa-
rameterization. If compressibility effects are ignored
and density is assumed to be a linear function of tem-
perature and salinity, then

dp/po = B6S — adT, (25)
where « and 8 are the coefficients of thermal expansion
and saline contraction, assumed to be constants. Any
other, linearly independent combination of 67 and S
can be considered as a passive scalar, 67, on an iso-
pycnal surface. These equations can be inverted to give
6T and 6S as linear combinations of ép and é7. How-
ever, property C from section 2a, that p satisfies the
scalar equation identically, was retained in the non-
eddy-resolving model so that the active tracers 7" and
S also satisfy the passive scalar equation in both the
non-eddy-resolving and eddy-resolving models. Thus,
the density equation (17) can be replaced by passive
scalar equations for 7'and .S, with the density gradients
in Eq. (19) or (24) evaluated from Eq. (25).

In reality, the density of sea water is a very compli-
cated function of pressure, p, T, and S. This function
is used in the most comprehensive ocean circulation
models. In this situation the eddy mixing should be
along local potential density, ¢, or local neutral surfaces
rather than isopycnal surfaces. These surfaces are de-
fined by

da/a = 6p/p — yop = B6S — adl, (26)
where v is the compressibility and 8 is the potential
temperature. Thus, in our formulation, isopycnal mix-
ing is automatically changed to neutral mixing merely
by using 8 instead of T and letting a and 3 be functions
of p, 8 and S. Thus, with the general equation of state,
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we propose the passive scalar equation (14), (19), or
(24) for 8 and S with the local gradients of the mixing
surface evaluated by the right hand side of equa-
tion (26).

Global potential density surfaces depend upon the
depth of the reference pressure, and McDougall and
Jackett (1988) shows that neutral surfaces are not
globally unique. In addition, McDougall (1987b) dis-
cusses two other effects that can occur when « and 8
are functions of p, § and S. These are cabbeling and
the very small thermobaric effect. Cabbeling occurs
when two water masses at the same density mix their
8 and S values which produces denser water. Thus,
cabbeling and thermobaricity can produce diapycnal
or dianeutral fluxes. For these reasons, we think it in-
appropriate to use the full equation of state for seawater
in adiabatic or quasi-adiabatic models. It should only
be used in diabatic models that have diapycnal or di-
aneutral fluxes in addition to isopycnal mixing.
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APPENDIX

Quasi-geostrophic Flow in a Zonally Uniform
Channel: Momentum Flux and Energy
Conversion in Isopycnal Coordinates

The primitive equations in isopycnal coordinates are
Du

=u 1
otk XutV,0=0, (A1)
3%h oh
— . — — 2
3t6p+Vp (ap u) 0, (A2)
n+2 o, (A3)
dp

where k is the unit vertical vector and ¢ is the Mont-
gomery potential. These -equations are satisfied by a
zonally and time independent mean flow of the form

h="h(p,y), ¢= ¢, ),
u=1iu(p,y), v=0, (A4)

where the overbar represents an average over x and ¢.
The full four-dimensional flow can be written as

h=h+h,
p=¢+¢,
u = il + Rit, + ',

v= RD, + v, (AS)
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where the x and ¢ independent flow has been split into
geostrophic and ageostrophic components denoted by
subscripts g and a, respectively. By the usual midlati-
tude scaling argument, the ageostrophic component is
only order R times as large as the geostrophic com-
ponent where R is the Rossby number of the flow. The
continuity equation (A2) averaged over x and ¢ using

(A5) gives
9 foh U, + o v =0
dyldp ° dp )
Integrating (A6) and using the boundary condition of
no normal flow at the channel boundaries yields

(A6)

oh _ dh d ( ah), (AT)

Egva———a;l) _ap Ka

where the second equality uses our parameterization
given in Eq. (15). Using the geostrophic relations gives,
to leading order in R,

oh_ 8 ( 96\ _9d/(  di 5
A . R
(A8)

where fj is the average value of the Coriolis frequency
f in the channel. Equations (Al) and (A2) can be
combined to give

(3 {2) 2
ot \ dp dp dp

Taking the x and ¢ average of (A9) yields

9 (oh
5(5“)“’

9¢
b — &). (A9)

==V, (ah )+fo 7, + O(R?),
dp
(A10)
(Y 2 P
=-V,: (6puu)+6p(Kfo 8p)
+ O(R?%), (All)

using (A8). Thus, when « is positive, our parameter-
ization (15) acts as a downgradient vertical diffusion
of mean (large-scale) momentum.

We now consider the rate of change of potential en-

ergY7

O [ i = [ [ [ 6 22 ai.

Averaging over x and ¢ and using the continuity equa-
tion (A2) in its averaged form (A6) gives

(Alz)
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9 [[1p
il [ 37 -

|
o

It

ffd; [ +3—hv]dydp,

(A13)
oh _ !
= fffoug[ +%h— v ]dydp
+ O(R?), (Al14)

by an integration by parts and using the geostrophic
relation. In an x and ¢ average the energy conversion
from mean kinetic energy to mean potential energy is
equal to the conversion from mean potential energy
to perturbation potential energy. This latter conversion
is given to leading order by

on’ _ 9 ( oh
_”fouga—vdydp = ”fougéz(xa—y)dydp,
(A15)

using our parameterization (15). An integration by
parts and use of the geostrophic relation gives the con-
version from mean to perturbation potential energy as

[

fffo x( )dydp+O(R ). (Al6)

v'dydp
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Thus, when « is positive, our parameterization (15)
leads to a conversion of mean potential energy to eddy
(subgrid-scale) potential energy.
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