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ABSTRACT

The concepts of residual-mean circulation, transformed Eulerian-mean equations, and Eliassen—Palm fluxes
are generalized when the averaging is a low-pass operator in time and space rather than a zonal average. Thus,
the eddy motions being considered are ocean eddies on short time and small space scales rather than either
purely transient eddies or steady, zonally averaged, standing eddies as commonly considered for the atmosphere.

The generalized Eliassen—Palm fluxes are then parameterized as downgradient momentum diffusion plus the
appropriate Coriolis term. This gives a momentum equation for use in non-eddy-resolving ocean circulation
models. The resulting potential vorticity equation is then analyzed and the quasigeostrophic limit taken. When
the adiabatic tracer parameterization of Gent and McWilliams is also used, this equation is close to showing that
quasigeostrophic potential vorticity is advected by the geostrophic velocity and diffused by a Laplacian operator.

A discussion of the Antarctic Circumpolar Current and the meridional-plane circulation, the Deacon cell, in
the Southern Hemisphere ocean follows. In an eddy-resolving model with nearly adiabatic interior dynamics,
the Deacon cell essentially does not appear when the zonal averaging of the meridional velocity is taken along
a constant density surface. This result has a counterpart in non-eddy-resolving ocean model simulations in that
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the Deacon cell is partially cancelled by the parameterized eddy-induced mass transport.

1. Introduction

The expression Eliassen—Palm fluxes has been used
since Andrews and MclIntyre (1976) based their theory
on the pioneering work of Eliassen and Palm (1961).
This theory describes the interaction between standing
waves and the zonal mean flow especially in the strato-
sphere where transience, forcing, and dissipation are
relatively weak. The theory also generalizes the pio-
neering work of Charney and Drazin (1961) by show-
ing when the nonacceleration theorem is valid. Then
eddy effects on the mean circulation can be completely
described by the transformed Eulerian-mean equations
defined in terms of the residual-mean circulation. A
lucid account of these concepts is in the book by An-
drews et al. (1987).

Gent and McWilliams (1990) and Gent et al. (1995)
propose an adiabatic parameterization (GM) for the ef-
fects of mesoscale eddies on the transport of tracers in
a non-eddy-resolving ocean circulation model. The pa-
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rameterization consists of an additional advection of
tracers by the eddy-induced transport velocity and the
diffusion of tracers along surfaces of constant potential
density. A form for the eddy-induced velocity is pro-
posed in Gent and McWilliams (1990). The results of
this parameterization in non-eddy-resolving ocean
models have been shown to be generally beneficial for
tracer distributions and their fluxes; see Danabasoglu
et al. (1994), Boning et al. (1995), Danabasoglu and
McWilliams (1995), Robitaille and Weaver (1995),
England (1995), Hirst and McDougall (1996a,b, man-
uscript submitted to J. Phys. Oceanogr.), and Visbeck
et al. (1996, manuscript submitted to J. Phys. Ocean-
ogr.). The conventional momentum equation was used
in these studies; should a differently parameterized
equation be used in non-eddy-resolving models?

In this note, we bring these two lines of work to-
gether. In section 2 we define a residual-mean circu-
lation and transformed Eulerian-mean equations that
have zonal and temporal variations. The GM parame-
terization can then be interpreted as a statement about
the density equation in this set as well as a prescription
of the residual-mean circulation. In section 3 we par-
ameterize the resulting Eliassen—Palm momentum
fluxes in terms of the mean fields to obtain the form of
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the momentum equation for non-eddy-resolving mod-
els. Then the consequences of this parameterization for
the kinetic energy and potential vorticity budgets are
explored. Section 4 is a discussion of the Antarctic Cir-
cumpolar Current and the Deacon cell in the Southern
Hemisphere ocean, as well as the relation between
these phenomena in eddy-resolving and non-eddy-re-
solving ocean circulation models. Our conclusions are
presented in section 5.

There has been much recent independent work in
these same areas. Lee and Leach (1996) propose Elias-
sen—Palm fluxes appropriate for time mean, rather than
zonal mean, flows in isopycnal coordinates. They then
show that the divergence of these fluxes is close to the
eddy fluxes of a linearized potential vorticity, which
generalizes the well-known quasigeostrophic result.
McDougall and McIntosh (1996a,b, manuscripts sub-
mitted to J. Phys. Oceanogr.) propose a temporal re-
sidual-mean velocity suitable for the time-averaged,
rather than zonally averaged, tracer equation in a non-
eddy-resolving ocean circulation model. This is a gen-
eralization of the GM parameterization. Tandon and
Garrett (1996) analyze a two-dimensional jet and show
that the mean meridional circulation should disappear.
They show that it cannot disappear without a parame-
terization such as GM. How the present work relates
to these independent contributions will be explained in
the later sections.

2. Generalized Eliassen—Palm fluxes

Consider incompressible, Boussinesq, hydrostatic,
and adiabatic flow in Cartesian coordinates. The gov-
erning equations are

D
—u+fkXu+ Vp=9,

Dr ()
D

P~ 0, (2)

P+ 8p/po =0, (3)

V-u+w,=0, 4)

where D/ Dt is the substantial derivative, which advects
with the horizontal and vertical velocities (u, w); V is
the horizontal gradient operator, p is the density that is
assumed here to be the same as the potential density,
and p is the pressure divided by a reference density po;
9 is a small-scale smoothing operator without which
these equations cannot be integrated because enstrophy
accumulates on the grid scale, no matter how fine. The
generalization of the issues we discuss below to the
more complex thermodynamics of seawater is ad-
dressed in Gent and McWilliams (1990) and Gent et
al. (1995).

The variables are now decomposed into low-pass
components, denoted by an overbar, and eddy com-
ponents by a low-pass filtering operator in time and

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 26

space. We will not define this operator explicitly, and
will use the notation ab to denote the filtered residual
quantity ab — ab. As opposed to an average over a
coordinate, a filtered quantity does not exclude quad-
ratic interactions between filtered and unfiltered com-
ponents. Thus, its parameterization is considerably
more subtle and difficult. In this paper the eddy terms
play an essentially symbolic role until they are given
specific parameterization forms in the next section.
Some discussion below does pertain to averages over
a coordinate, but the appropriate overbar definition is
then explicitly given. The filtered equations (1) and (2)
have eddy terms: for example, the filtered zonal com-
ponent of (1) is

Doy V-(uu) + (wu), - fo+ p, =0,

Dt (5)

where 9D has, for convenience, been absorbed into the
eddy terms. Now define velocities

U=i- (up/B.)., (6)

W=w+ V-(up/p,), (7)

and the modified substantial derivative, D*/Dt, which
advects with (U, W). Then the filtered equations (1)
and (2) can be written in the form

E4—fv+— = V*®-E (8)
Dt Px= ’
D* _ ~ 3D
T)_I_v+fU+py=V -F, (9)
D*
-—p = -G, 10
Dr P (10)
where V°P is the 3D gradient operator, and
E = [Zup/p, — un, Gpp/p, — i, —auplp,
+ (f— it,)0p/p, — wul, (11)
F = (5ap/p. — uv, 50p/p, — W,
—(f + B)uplp. — 4,op/p. — wvl, (12)
G = puiplp. + pyoplp. + wp.  (13)
In addition,
p.+ gp/po =0, (14)
V-U+W,=0. (15)

The velocities defined in (6) and (7) extend the
usual definition of the residual-mean meridional cir-
culation [see Andrews et al. (1987), p. 128] to three
dimensions and to including zonal variations instead of
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being defined as a zonal average. Equations (8)—(10)
similarly extend the usual definition of the transformed
Eulerian-mean set. Equations (11)—(13) extend the
usual definition of Eliassen—~Palm fluxes to both com-
ponents of the momentum equation rather than just the
zonal component and add x terms to these fluxes.

We now assume that mesoscale eddy density fluxes
are aligned along the mean isopycnals and do not have
a component perpendicular to them. This assumption
has been made in our previous work, is discussed in
full in Gent and McWilliams (1990), and means that
G, defined in (13), is zero. Alternatively, McDougall
and Mclntosh (1996b, manuscript submitted to J. Phys.
Oceanogr.) have recently shown how G can be made
very small when the filtering operator is the familiar
time average at constant z. They define

Up=u'p ~zip /B, (16)

N |-

where here the overbar and prime mean a time average
and deviation from it. McDougall and Mclntosh call
the velocity, defined by substituting (16) into Egs. (6)
and (7), the temporal residual-mean velocity. They
then show that

D*1_ 1 ,=3,= - 3

Dr [p 5 (p /pz)z] O(a”), (17)
where « is the disturbance amplitude, which is assumed
to be small. Further analysis and interpretation of Eqgs.
(16)and (17) is in McDougall and MclIntosh (1996a,b,
manuscripts submitted to J. Phys. Oceanogr.).

The GM parameterization gives a form for the tracer
equation to be used in non-eddy-resolving ocean cir-
culation models. When the flow is adiabatic and poten-
tial density is a simple function of potential temperature
and salinity, this reduces to parameterizing the density
equation. Gent et al. (1995) assume that eddy density
fluxes act along, and not perpendicular to, isopycnal
surfaces. This means that G in Eq. (13) is set to zero
by assumption, in contrast to the generalization of this
assumption due to McDougall and McIntosh described
above. Thus, Gent et al. (1995) write the density equa-
tion in the form

D*

D’ 0.
where (U, W) is the mass-weighted filtered velocity,
filtered at constant density rather than at constant depth.
Gent et al. (1995) call (U, W) the effective transport
velocity after Plumb and Mahlman (1987), but it can
also be interpreted as the extended residual-mean merid-
ional circulation defined in (6) and (7). Further discus-
sion and interpretation of these three velocities is in An-
drews et al. (1987) and McDougall and MclIntosh
(1996a,b, manuscripts submitted to J. Phys. Oceanogr.).

There have been previous generalizations of the re-
sidual-mean circulation and Eliassen—Palm fluxes to

(18)
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three dimensions. Hoskins (1983) and Plumb (1986)
consider quasigeostrophic three-dimensional flows and
define a horizontal residual-mean circulation that has
more terms than that in Eq. (6). The additional terms
are included so that the Eliassen—Palm flux diver-
gences are precisely the eddy fluxes of the quasigeo-
strophic potential vorticity. This is based on the idea of
potential vorticity mixing applied to the transformed
Eulerian equations. However, quasigeostrophy is a spe-
cial case in that potential vorticity is linear and so has
simple quadratic flux terms, and advection in the sub-
stantial derivative is by the geostrophic velocity. It is
very difficult, if not impossible, to generalize this idea
to the 3D primitive equations, because potential vortic-
ity is a nonlinear quantity and the substantial derivative
has advection by the full velocity. We prefer our sim-
pler definition of the residual-mean circulation because
of the simple form of Eqs. (8)~(13). The implications
of our assumptions on the full primitive equation po-
tential vorticity are discussed in the next section. This
3D quasigeostrophic work is extended by Plumb
(1990) and Andrews (1990).

Trenberth (1986) generalized the Hoskins and
Plumb ideas to the 3D primitive equations. However,
his definition of the residual-mean circulation is dif-
ferent than both the Hoskins and Plumb form and Eq.
(6). He defines the transformed Eulerian-mean equa-
tions using the usual substantial derivative, D/Ds,
rather than the modified form, D*/Dt, as in (8)-
(10). We prefer our simpler definition of the resid-
ual-mean circulation, and having advection in the
transformed Eulerian-mean equations by (U, W), in
part because of the resulting representation of non-
acceleration relations, see section 4.

If Eqs. (8) and (9) are transformed to isopycnal co-
ordinates, they are the same as the momentum equation
(2.14) in the independent work of Lee and Leach (1996).
These authors define their filtering operator to be a time
mean, so their (U, W) is the mass-weighted time-mean
velocity and time derivatives drop out. The equivalent of
the extended Eliassen—Palm fluxes (11) and (12) is their
Eq. (2.10), which also contributes to both components
of the momentum equation and has added x components.
Lee and Leach (1996) analyze the results from an eddy-
resolving numerical model that uses isopycnal coordi-
nates and has five layers. They simulate the eddies that
form on a free jet over a period of 5 years and analyze
the results from the second model layer. It is clear from
their Figs. 11 and 12 that the pointwise Eliassen—Palm
flux divergences on the right-hand side of their Eq. (2.14)
are not small in the time-mean balance of the momentum
equation. This will also be true in Egs. (8) and (9), so
now we address the question of how to parameterize these
equations.

3. Parameterizing the momentum equation

The traditional parameterization of the eddy mo-
mentum terms in Eq. (5) in z-coordinate numerical
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models is downgradient diffusion in the horizontal and
vertical directions. In the horizontal either Laplacian or
biharmonic operators are mostly used with a coefficient
much larger than would be used in an eddy-resolving
calculation, as required for computational stability on
a coarser grid. The vertical viscosity used in non-eddy-
resolving models is usually only a little larger, or the
same, as in eddy-resolving calculations because it is
believed to be primarily associated with turbulent mo-
tions on scales even smaller than the mesoscale. How-
ever, we think that the momentum equation parame-
terization should be guided by the Eliassen—Palm flux
forms presented in the previous section. All three equa-
tions (8) — (10) use the modified substantial derivative
D*/Dt. The GM parameterization retains this advec-
tion in the tracer equation (18), so it is much more
consistent to retain this advection in the momentum
equation. Doing so presumes a principle of momentum
conservation on mean Lagrangian trajectories, apart
from the additional effects of Coriolis, pressure, and
turbulent forces in (8) and (9).

Therefore, we propose to parameterize the E—-P flux
divergences in z-coordinate models as almost down-
gradient horizontal and vertical momentum diffusion
plus the appropriate Coriolis term; an isopycnal coor-
dinate alternative is described in the appendix. Thus,
we propose in Egs. (11) and (12)

E = [vy(@G, ~ 3,), va(if, + 5.), vyil, + fop/B.], -
(19)

F = [vx(T, + &@,), vu(T, — @), 1T, — fuplp.).
(20)

The resulting parameterized non-eddy-resolving mo-
mentum equation is

*

—%t-u +fkXu+ Vp=V-(vy,Vu)

+ Jo(vg, K X u) + (vyw,), = P(u), (21)

where J is the Jacobian operator and, for convenience,
overbars have been dropped. Equation (21) has two
changes from the traditional equation. The first change
is that advection in the substantial derivative is by the
residual-mean velocity. This is equivalent to parame-
terizing the eddy momentum terms in Eq. (5) as an
additional advection by the eddy-induced velocity as
well as almost downgradient diffusion. The second
change is the Jacobian term on the right-hand side,
which involves spatial gradients of vy. Wajsowicz
(1993) has shown that, with the shallow-fluid approx-
imation used with hydrostatic balance, this term is nec-
essary to ensure that no stress is generated as a result
of uniform rotation.

The kinetic energy density equation from (21) takes
the form
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D* fu-u
Dt (—2—> + VP-H + gpwlpy = —val (v, + ,)*

(22)

where H has components from the pressure gradient
and diffusively parameterized terms. Equation (22) has
divergence terms that integrate to zero globally, the
usual transfer to potential energy term, and two terms
on the right-hand side that are sinks of kinetic energy.
These terms mimic the effect of barotropic instability
in an eddy-resolving calculation, which transfers mean
kinetic energy to eddy kinetic energy. It is shown in
Gent et al. (1995) that, with the GM choice of eddy-
induced velocity, the potential energy density equation
has the same energy transfer term as in (22), plus a
sink of potential energy. This last term mimics the ef-
fect of baroclinic instability in an eddy-resolving cal-
culation, which transfers mean potential energy to eddy
potential energy.

The equation for filtered potential vorticity can be
formed from Egs. (8), (9), and (18) and takes the form

+ (ux - Uy)z] — vyl;tu,,

D*
E [pz(f+ Uy — uy) = P + pyuz] = v3D,(pK)’

(23)
where the vector K is defined by
—(VP-F), + J,(u, u*) + J (v, v*)
K= (VBD'E)Z _sz(uy u*) - sz(v’ U*) .
B (V3D'F)x—(V3D'E)y ’
+ Sy (u, u*) + J,(v, v¥)
(24)

E and F are defined in (19) and (20), and u* = U
— u is the eddy-induced transport velocity. Equation
(24) shows how the flux terms in the potential vorticity
equation depend on the Eliassen—Palm fluxes in the
momentum equation. It can be shown from Eq. (23)
that potential vorticity is conserved both on isopycnal
surfaces and in the total volume, except for possible
boundary sources. :

If the quasigeostrophic limit is taken in (23), by as-
suming that the Rossby number is small, the equation
takes the form (for constant v, and vy)

Dg
o U+ Vplfy + fopN).] = (V*°-F%),

— (V-E®), = P(V?p)/fy + V- (fu*),

where the superscript g indicates a geostrophic approx-
imation and N is the buoyancy frequency. Here D#/Dt
can include horizontal advection by a geostrophic com-
ponent of u*, which is defined such that its horizontal
divergence is zero. However, the horizontal divergence
of fu* on the right-hand side of Eq. (25) cannot be

(25)
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omitted because it is leading order in Rossby number
(see below). Equation (25) extends the usual relation-
ship between quasigeostrophic potential vorticity and
the Eliassen—Palm fluxes to the situation where there
are x variations.

The GM choice of the eddy-induced velocity is

u* = («kVp/p,).. (26)

We can make a geostrophic scaling estimate of its mag-
nitude as u* ~ «V/fR3%, where Vis a typical horizontal
velocity, R, = NH/f is the baroclinic deformation ra-
dius, and H is a characteristic vertical scale. A common
estimate for « is ~VR,, based upon the baroclinic in-
stability process, for example, Visbeck et al. (1996,
manuscript submitted to J. Phys. Oceanogr.), in which
case u*/V ~ V/fR,, which is a Rossby number. This
estimate justifies the ordering assumption behind Eq.
(25). Note also that this choice for the eddy-induced
velocity has comparably large horizontal divergence
and vertical vorticity. Thus, it is appropriate to interpret
it as contributing to the dynamics more as an ageo-
strophic velocity than a geostrophic velocity. It is of
primary importance in the zonally averaged dynamics,
where ageostrophic advection is dominant, but its larg-
est contribution to 3D pointwise dynamics is as an ad-
ditional vortex stretching effect, and not as a significant
advection velocity, as in Eq. (25).

By setting « constant and using the quasigeostrophic
approximation in (26), the quasigeostrophic potential
vorticity equation (25) becomes

D#
o L+ VpUS + PN

= V-[wuV(V?p)Ifo + ([fIN? + 10/ 61V ). ).
(27)

Therefore, if vy = k and if v, and diffusion of the
Coriolis term are neglected, Eq. (27) shows that qua-
sigeostrophic potential vorticity is advected by the geo-
strophic velocity and diffused by a Laplacian operator.
An assumption of this form is the basis for the potential
vorticity homogenization theory of Rhines and Young
(1982). This is also the basis for the concept of poten-
tial vorticity mixing that led to the Hoskins (1983) and
Plumb (1986) choice for the residual-mean meridional
circulation. Their choice automatically gives a quasi-
geostrophic potential vorticity equation of the Rhines
and Young form. Our momentum equation parameter-
ization does not assure that quasigeostrophic potential
vorticity is diffused exactly. However, we have shown
here that a rather similar equation results from our sim-
pler choice of the residual-mean meridional circulation
and the GM parameterization.

4. The Antarctic Circumpolar Current and the
Deacon cell

Andrews et al. (1987, pp. 131 and 132) shows that
atmospheric application of Eliassen—Palm fluxes based
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on zonal averaging led to generalized Eliassen—Palm
and nonacceleration relations. When these relations are
satisfied, eddy effects on the mean circulation can be
completely described by the transformed Eulerian-
mean equations, which have a steady solution with zero
residual-mean circulation and zero zonally integrated
Eliassen—Palm flux divergence. Necessary conditions
for these relations to hold are that the dynamics are
adiabatic and inviscid and the pressure gradient term is
zero, which occurs in the zonal momentum equation
for zonal averaging and a periodic domain.

The only region of the World Ocean that has strong
currents and is zonally periodic is the Antarctic Cir-
cumpolar Current (ACC). Therefore, we can anticipate
that nonacceleration relations will apply to the ACC, at
least to some degree. The ACC has large zonally stand-
ing meanders, and northward and southward excursions
at the same density can occur at considerably different
depths. A consequence of this is that the standard me-
ridional overturning streamfunction shows quite a
strong overturning cell near the ACC. The streamfunc-
tion is defined by

0
iy, 2) = f U(x,y, 2" )dz’, (28)
z
where the overbar here indicates a zonal and time av-
erage, and the cell is usually called the Deacon cell. If
the interior motions below the surface boundary layer
are assumed to be almost adiabatic on long timescales,
then a zonal and time average of the thickness equation
in isopycnal coordinates, which expresses mass balance
in isopycnal layers, gives

(Ro)y =~ 0. (29)

Here the overbar is a zonal and time average at constant
p, h, is the thickness of a density layer, and subscripts
X and Y indicate differentiation at constant density
rather than at constant 7. Equation (29) expresses the
absence of any net meridional mass flux within an iso-
pycnal layer. A consequence of this is that if the me-
ridional overturning streamfunction in (28) is calcu-
lated down to a constant density surface rather than to
a constant depth, then the strong Deacon cell disap-
pears. This has been shown recently by D66s and Webb
(1994) who analyzed results from the Fine Resolution
Antarctic Model (FRAM). For subsurface layers that
have no significant diabatic mass fluxes, (29) can be
integrated to obtain

V=v+hu'lh,~0, (30)
where a decomposition into a mean meridional velocity
and an eddy mass flux term has been made, so that the
prime here denotes departures from the zonal and time
average. If the zonal momentum equation in isopycnal

coordinates is averaged in the same way, then it takes
the form

—fhV =€ + 8 + P, (31)
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Here D is the mean zonal viscous term and

&Y = —huv, €% = Mhy, (32)

where M is the Montgomery potential. The nonlinear
flux terms in (32) are the Eliassen—Palm fluxes appro-
priate to this averaging operator; they are the lateral
Reynolds stress and the diapycnal form stress acting on
isopycnal surfaces, respectively. Note the mathematical
similarity between Eqs. (31) and (32) and the zonally
integrated forms of Eqs. (8) and (11). For nearly adi-
abatic motions, (30) implies that the left-hand side of
(31) is approximately zero. So, for small DX the
Eliassen—Palm flux divergence must also be approxi-
mately zero. Thus, the nonacceleration conditions will
apply to the interior parts of the ACC with almost con-
servative dynamics.

Products of the mean fields do not contribute signif-
icantly to the nonlinear fluxes in (32) because is ageo-
strophic and hy is zero, so that the & are primarily due
to eddy fluxes. It has long been believed that a signif-
icant part of the eddy fluxes in the ACC come from the
large-scale standing meanders, as well as from smaller-
scale standing and transient eddies; see Gill and Bryan
(1971), McWilliams et al. (1978), McWilliams and
Chow (1981), Treguier and McWilliams (1990),
Wolffetal. (1991), D66s and Webb (1994 ), Killworth
and Nanneh (1994), and McIntosh and McDougall
(1996). Here & contains both classes of eddies. In any
3D ocean model calculation, some fraction of the eddy
transports will be on large enough scales to be part of
the calculated solution, and the remaining small-scale
contributions must be parameterized. The partition be-
tween these two classes will shift with the model grid
resolution, especially between models that resolve
mesoscale eddies and those that do not.

We now discuss these balances in non-eddy-resolv-
ing solutions using the GM parameterization. The
equivalent to (29) is just Vy = 0, where V is now the
thickness-weighted velocity defined in (30) (see Gent
et al. 1995). Therefore, the zonally and time-averaged
meridional overturning streamfunction calculated
down to a density surface,

0
Vo0 = [ Paa, 69
P
will be very close to zero in conservative regions of the
ACC. Hirst and McDougall (1996b, manuscript sub-
mitted to J. Phys. Oceanogr.) show that this stream-
function is indeed almost zero in the interior in non-
eddy-resolving solutions using GM. This is consistent
with the D36s and Webb (1994) result that the Deacon
cell disappears when the streamfunction integration is
down to a constant density surface. The Deacon cell is
present if the streamfunction in (33) is calculated using
the zonally and time-averaged Eulerian-mean velocity,
v, instead of V. It remains to discuss the more usual
meridional overturning streamfunction in non-eddy-re-
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solving models where the integration is down to a con-
stant depth, rather than to a constant p. This stream-
function will include the effects of the parameterized
small-scale standing and transient eddies, but not those
of the resolved standing meanders of the ACC. Thus,
only partial cancellation of the Deacon cell is to be
expected. However, in the non-eddy-resolving solution
using GM of Danabasoglu et al. (1994), it was found
that the Deacon cell virtually disappeared in the inte-
rior, even though only the parameterized eddy contri-
bution is included. Subsequent solutions of Danaba-
soglu and McWilliams (1995) and Hirst and McDou-
gall (1996a,b, manuscript submitted to J. Phys.
Oceanogr.) have shown that the cancellation is not ex-
act and the Deacon cell is only partially cancelled. The
precise degree of cancellation varies with the parame-
ters of the calculation, the model topography, and other
factors, although it surprisingly seems that the majority
of the Deacon cell is cancelled in the ocean interior.

Many assumptions are invoked in the preceding ar-
guments, including conservative dynamics, similar
properties of different averaging operators, and positive
reinforcement between resolved and parameterized ed-
dies in the ACC. More refined assessments of the de-
gree of validity of these assumptions are needed. Nev-
ertheless, these arguments lead to the conclusion that
approximate nonacceleration relations are occurring in
both eddy-resolving and non-eddy-resolving model so-
lutions in the zonally periodic, interior regions of the
ACC. These relations include a weak residual-mean
meridional circulation, with partial cancellation of the
Deacon cell, and nearly nondivergent Eliassen—Palm
fluxes. The GM tracer parameterization and the mo-
mentum equation parameterization proposed in section
3 provide integrally consistent representations for the
role of unresolved eddies in these relations.

5. Conclusions

The relevant averaging operator when considering
ocean eddies is a low-pass filter in time and space rather
than time or zonal averaging. We have shown that the
concepts of residual-mean circulation, transformed Eu-
lerian-mean equations, and Eliassen—Palm fluxes can
be generalized to include x and ¢ variations and both
components of the momentum equation. This comple-
ments the recent work of Lee and Leach (1996) who
considered the effects of time averaging on the mo-
mentum equation in isopycnal coordinates. They also
show Eliassen—Palm fluxes with x variations in both
components of the momentum equation.

We then make a proposal to parameterize the Elias-
sen—Palm fluxes in z-coordinate models as almost
downgradient diffusion of the filtered velocity plus the
appropriate Coriolis term. This results in a momentum
equation (21) for non-eddy-resolving ocean models
that differs in two ways from the traditional momentum
equation. The first is that advection is by the residual-
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mean velocity rather than by the filtered velocity. The
second is a term proportional to horizontal gradients of
vy that Wajsowicz (1993) showed is required so that
uniform rotation does not produce a stress. Use of mo-
mentum equation (21) and tracer equation (18) is con-
sistent because advection in both equations is by the
residual-mean velocity. Using the GM choice for the
eddy-induced transport velocity, the equation set gives
a total energy budget that has sinks of kinetic and po-
tential energy that mimic the effects of barotropic and
baroclinic instability, respectively, in an eddy-resolv-
ing model.

The potential vorticity budget for the non-eddy-re-
solving model is formed and the dependence on the
Eliassen—Palm fluxes is made explicit. The quasigeo-
strophic limit is taken and the equation presented with
the GM choice of eddy-induced transport velocity. This
equation is close to showing that quasigeostrophic po-
tential vorticity is advected by the geostrophic velocity
and diffused by a Laplacian operator. An assumption
of this form is the basis for the potential vorticity ho-
mogenization theory of Rhines and Young (1982). The
quasigeostrophic potential vorticity equation in isopyc-
nal coordinates is given in the Appendix.

D66s and Webb (1994 ) analyzed the eddy-resolving
FRAM calculation. They show that the Deacon cell,
which appears in the usual meridional overturning
streamfunction, disappears when v is integrated down
to a constant density surface rather than a constant
depth. The non-eddy-resolving equivalent of this result
in models with GM is that the mean meridional over-
turning streamfunction, calculated by integrating V
down to a constant density disappears (see Hirst and
McDougall 1996b, manuscript submitted to J. Phys.
Oceanogr.). The overturning streamfunction calcu-
lated from the Eulerian-mean velocity, v, shows the
usual Deacon cell. However, it is partially cancelled if
V is integrated down to a constant depth; see Danaba-
soglu et al. (1994) and Danabasoglu and McWilliams
(1995). The partial cancellation of the Deacon cell in
non-eddy-resolving ocean models is equivalent to the
nonacceleration relations for zonally averaged atmo-
spheric flow, described in Andrews et al. (1987) for
example. This extends the recent work of Tandon and
Garrett (1996), who showed the same result in purely
2D flow, which is simpler because there are no standing
eddies.

We expect that the proposed momentum equation
(21) will make little difference to coarsely resolved
global ocean model solutions with uniform vy, such
as those of Danabasoglu et al. (1994), Danabasoglu
and McWilliams (1995), and Hirst and McDougall
(1996a,b, manuscript submitted to J. Phys. Ocean-
ogr.). The reason is that the only difference would be
in the inertial term, which is mostly small when the
major boundary currents have a primarily diffusive bal-
ance. Of course, the eddy-induced momentum advec-
tion term can become larger when the ocean model has
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finer resolution and the major currents have inertially
dominated dynamics. Nevertheless, we think it is much
more consistent that non-eddy-resolving ocean models
in z coordinates use the momentum equation (21),
rather than the usual form with advection by the Eu-
lerian mean velocity.

Finally, we think that the nearly downgradient pa-
rameterization forms in (19) and (20), and in the GM
tracer parameterization, are undoubtedly too simple to
represent eddy effects realistically. Alternatives should
be considered in the near future, probably based upon
eddy-resolving model solutions. However, we believe
that momentum and tracer eddy flux divergences from
these solutions must be analyzed in a way that allows
for an additional eddy-induced advection term.
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APPENDIX
Isopycnal Coordinates

If the potential vorticity equation (23) is transformed
to isopycnal coordinates, then it takes the simpler form

D* [f+ Uy — Uy

D1 Y ] =[(VZ-F)x = (V7E)y

P
+ Jxy(u, u*) + Jy(v, v*)1/h,, (A1)

where 4, is the filtered thickness and subscripts X, Y
indicate differentiation at constant density rather than
constant z. Equation (A1) generalizes Eq. (3.10) of
Lee and Leach (1996). They show that when the flow
is quasigeostrophic, then the divergence terms of the
extended Eliassen—Palm fluxes act like eddy terms for
a linear approximation to the exact potential vorticity.
Their equation is a generalization of the usual quasi-
geostrophic result.

In ocean models that are formulated in isopycnal co-
ordinates, the momentum diffusion used has been ori-
ented along and normal to isopycnal surfaces using the
small slope approximation. This is much simpler to im-
plement, and it is assumed that the orientation of the
dissipation does not greatly affect the solutions. This
dissipation form should be extended to include the
terms suggested by Wajsowicz (1993), as in Eqgs. (19)
and (20), so that uniform rotation does not generate a
stress. If the quasigeostrophic limit is taken and the GM
eddy-induced transport velocity is used, then the po-
tential vorticity equation (Al) becomes (for vy and k
constant and neglecting the vy term)
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D*
Dr [f+ V*M/fy + foSM,,]

=V -[vaV (V2 M)/ fy + kfSVM,,], (A2)
where the Montgomery potential M and S are given by

S =(poNIg)*.  (A3)

Equation (A2) is the isopycnal coordinate form of
equation (27), with vy set to zero. It again shows that,
if vy = « and diffusion of the Coriolis term is neglected,
quasigeostrophic potential vorticity is advected by the
geostrophic velocity and diffused by a Laplacian op-
erator.

M = p + gph/po,
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