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a b s t r a c t

It is now over 40 years since a closure for the effects of mesoscale eddies in terms of Ertel potential vor-
ticity was first proposed. The consequences of the closure that treats potential vorticity exactly the same
as a passive tracer in isopycnal coordinates are explored in this paper. This leads to a momentum equa-
tion to predict the mean velocity. While the momentum equation is not unique due to the presence of an
undefined potential function, the total energy equation is used to constrain its functional form. The invis-
cid form of the proposed eddy closure nearly conserves total energy; the error in conservation of total
energy is proportional to the time derivative of the bolus velocity. The proposed eddy closure retains Kel-
vin’s circulation theorem with mean potential vorticity conserved along particle trajectories following
the transport (mean + bolus) velocity field. The relative vorticity component of the potential vorticity
being diffused along isopycnals leads to terms that look like viscous stress, but these terms do not satisfy
two important conditions of standard viscous closures. A numerical model based on this closure is devel-
oped, and idealized simulations in a re-entrant zonal channel are conducted to evaluate the merit of the
proposed closure. When comparing various eddy closures to an eddy-resolving reference solution, the
closure that both transports and diffuses potential vorticity performs marginally better than its peers,
particularly with respect to the core zonal jet structure and position. However, these favorable results
are obtained only if a potential vorticity diffusion coefficient is used that is smaller than the coefficient
used to compute the bolus velocity. Based on these results, we conjecture that extending eddy-closures
to include potential vorticity dynamics is possible, but will require the use of a closure parameter that
varies temporally and spatially.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The most widely used closure for the effects of ocean mesoscale
eddies on the mean flow was proposed in Gent and McWilliams
(1990); GM hereafter. GM changes the equations for potential tem-
perature and salinity in z-coordinates, or the layer thickness and
tracer equations in isopycnal coordinates. In virtually all ocean
models and ocean components of climate models, the momentum
equation used is just the usual primitive equation form for the
mean velocity.

However, an idea that predates GM is that the eddy closure
should be based on the Ertel potential vorticity (PV), as it is often
considered the most fundamental dynamical variable because it
satisfies the same conservation equation as a passive tracer. If an
invertability principle is assumed, then all the other dynamical
variables can be determined if the PV distribution is known. A PV
closure was first discussed by Green (1970), Welander (1973),
Marshall (1981), and in the homogenization theory of Rhines and
ll rights reserved.
Young (1982). More recently, it has been proposed in many papers,
such as Killworth (1997), Greatbatch (1998), Smith (1999), Wardle
and Marshall (2000), Plumb and Ferrari (2005), Eden (2010), and
Marshall and Adcroft (2010). However, in most of these papers
either the quasigeostrophic approximation is used, or the PV in
the mixing term is approximated by its dominant term, the Coriolis
parameter divided by the layer thickness. We think this second
approximation is not justified because it is the full Ertel PV that
satisfies the passive tracer equation, whereas the dominant PV
term does not. This approximation eliminates the terms due to
the relative vorticity in PV, which look like viscous terms in the
momentum equation. In this paper, the consequences of an eddy
closure based on the full Ertel PV are explored in detail. One con-
sequence is that the eddy closure changes the vorticity equation
and, hence, the momentum equation of the model.

Proposals based on PV have also been made for the form of the
bolus, or eddy-induced, velocity that also advects tracers in the GM
closure. For a constant coefficient, the Gent and McWilliams (1990)
bolus velocity is based on the gradient of the layer thickness. Treg-
uier et al. (1997) and Marshall et al. (1999) both propose instead to
use the gradient of layer thickness divided by the Coriolis parame-
ter, which is the inverse of the PV dominant term. Consequences of
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this form are that the GM property of an assured domain-averaged
sink of potential energy is lost, and an additional term becomes
very large near the equator and needs to be regularized.

In this paper, the closure that we develop assumes that mean
Ertel PV should obey the same conservation equation as a passive
tracer, which requires that it is a function of the mean velocity.
Then the momentum equation must solve for the mean velocity,
not the transport velocity which is the sum of the mean and bolus
velocities. We propose a momentum equation that results in Ertel
PV being conserved along particle trajectories defined by the trans-
port velocity, just like a passive tracer. This proposal can be used
with any chosen form for the bolus velocity. There have been pre-
vious proposals to use a different momentum equation in non-
eddy-resolving models. Gent and McWilliams (1996) suggest that
momentum advection should be by the transport velocity, not
the mean velocity, to be consistent with the tracer advection.
Smith (1999) proposed a different momentum equation for the
mean velocity based on stochastic turbulence theory, but we are
not aware that either form has been implemented in any ocean
model. McDougall and McIntosh (1996) and Greatbatch (1998)
both propose a more radical change; namely that the momentum
equation should be written entirely in terms of the transport veloc-
ity. Numerical models using this form of momentum equation have
been implemented, and used to obtain global solutions by Ferreira
and Marshall (2006) and midlatitude solutions by Zhao and Vallis
(2008). With this form of the momentum equation a mean PV is
conserved, but it is a function of the transport velocity rather than
the mean velocity, which cannot be justified theoretically.

Section 2 shows the new closure in terms of PV, Section 3 con-
tains an analysis of energetics, and Section 4 is an analysis of the
momentum equation that results from this PV closure. A set of
re-entrant zonal channel simulations is discussed in Section 5 to
compare and contrast some of the various eddy-closure
approaches.
2. Potential vorticity mixing in isopycnal coordinates

2.1. The inviscid, adiabatic system

This analysis is done in isopycnal coordinates, because it is
important to average along isopycnal surfaces of constant potential
density, q, and use the incompressible, Bousinesq, adiabatic and
hydrostatic equations of motion. The isopycnal layer thickness
equation is

@h
@t
þr � ðhuÞ ¼ 0; ð1Þ

where the isopycnal layer thickness, h, is defined as h = �oz/@q and
z is the height of constant density surfaces. h is transported by the
horizontal velocity u. The along-isopycnal inviscid momentum
equation can be written in the form

@u
@t
þ ðf þ fÞk� uþr/þrK ¼ 0; ð2Þ

where f is the relative vorticity defined as f = k � r � u, k is the ver-
tical unit vector, f is the Coriolis parameter, / is the Montgomery
potential, and K is the kinetic energy defined as 1

2 j u � u j :/ ¼
ðpþ gqzÞ=q0, where p is the pressure, g gravity, and q0 a reference
density. The absolute vorticity equation results from applying the
k � r � operator to (2) to obtain

@x
@t
þr � ðxuÞ ¼ 0; ð3Þ

where the absolute vorticity is defined as x = f + f. In isopycnal
coordinates, Ertel PV is defined as q = x/h and using (1) and (3), it
satifies the equation
Dq
Dt
� @q
@t
þ u � rq ¼ 0: ð4Þ

Eq. (4) shows that, in the inviscid and adiabatic system, PV is con-
served along particle trajectories following the horizontal velocity
u, just like a passive tracer.

2.2. Defining an eddy closure on PV

The work in this subsection follows very closely that in Section
1 of Gent et al. (1995). If the variables are decomposed into large-
scale components denoted by an overbar and eddy components
denoted by primes by a low-pass projection operator in time and
space at constant density, then the thickness Eq. (1) becomes

@�h
@t
þr � �h�uþ h0u0

� �
� @

�h
@t
þr � ð�hUÞ ¼ 0: ð5Þ

Thus, the layer thickness is transported by the horizontal velocity
U ¼ �uþ u�, where u� ¼ h0u0=�h is commonly referred to as the bolus,
or eddy-induced, velocity. The precise form of the closure is not re-
quired for the analysis below, i.e. the analysis holds for any type of
closure that results in the transport velocity U differing from the
mean velocity �u.

The equation for any large-scale tracer in isopycnal coordinates
is derived from the projection of the equation for tracer density, h
times the tracer, see Eq. 2 of Gent et al. (1995). When the tracer is
the PV, this means projecting (3) for the absolute vorticity to get

@ �x
@t
þr � ð �x�uþx0u0Þ ¼ 0: ð6Þ

Following the discussion on page 427 of Greatbatch (1998), it is
preferable to define the mean PV as the thickness-weighted mean,
so that

�x ¼ �q�h;x0 ¼ �hq0 þ �qh0; ð7Þ

then (6) can be rewritten in the form

@ð�h�qÞ
@t
þr � ð�h�q�uþ h0u0�qÞ ¼ �r � ð�hq0u0Þ: ð8Þ

This is the conservative form of the PV equation that leads to the
theorems found by Haynes and McIntyre (1987) and Haynes and
McIntyre (1990). It is very important to note that x is a linear func-
tion of u, so that the mean relative vorticity, �f, and the mean PV, �q,
are both functions of the mean velocity, �u.

The fundamental assumption now used is that ocean eddies mix
PV along isopycnals and not across them, so that the right-hand-
side of (8) can be parameterized as Laplacian diffusion along iso-
pycnals with coefficient j. Then (8) becomes

@ð�h�qÞ
@t
þr � ð�h�qUÞ ¼ r � ðj�hr�qÞ; ð9Þ

where the small-slope approximation has been used in the diffusion
term, see Eq. (2) of Gent and McWilliams (1990). Using (5), (9) can
be written as an equation for the mean PV as

D��q
Dt
� @

�q
@t
þ U � r�q ¼ r � ðj

�hr�qÞ
�h

: ð10Þ

Note that this is exactly the equation for an arbitrary tracer given in
Eq. (6) of Gent et al. (1995) applied to the mean PV, which is ad-
vected by the transport velocity U and diffused along isopycnal sur-
faces. Use of this closure for PV has been proposed before, see Eq.
(91) of Greatbatch (1998) and Smith (1999). This form of closure
is appealing because a momentum equation that is consistent with
(10) will retain an analog to Kelvin’s circulation theorem where, in
the absence of diffusion, potential vorticity is conserved along par-
ticle trajectories that follow U.
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The standard GM closure modifies the isopycnal layer thickness
and the temperature and salinity equations, but it does not change
the momentum equation for the mean velocity �u. It is important to
note that a PV closure does change the momentum equation, and
an energy analysis and the momentum equation using the closure
in (10) will be explored in the next two sections.
3. Analysis of energetics

The momentum equation consistent with the PV closure shown
in (9) is

@u
@t
þ ðf þ fÞk� Uþr/þrK 0 ¼ k� ðjhrqÞ; ð11Þ

where the overbars to represent mean quantities have now been
dropped. The PV equation shown in (9) can be derived by taking
the curl of (11) and combining the result with (5). Note that the
term (f + f)k � U is equivalent to hqk � U and is solely responsible
for producing a system in which mean PV is advected by the total
velocity U. Eq. (11) includes the gradient of the mean Montgomery
potential, /, along with the gradient of an undefined function, K0.
We must include K0 in (11) since the compatibility between the
momentum and PV equations can only be constrained to within
the gradient of a potential function. Comparison with (2) suggests
that K0 should be a form of kinetic energy, and this is explored in
the next subsections.

3.1. The unmodified system

The inviscid and adiabatic system given in Section 2.1 does con-
serve the sum of kinetic and potential energy, defined as total
mechanical energy. The total mechanical energy equation results
from adding (K + / )⁄(1) and hu�(2) to obtain

@

@t
ðhKÞ þ /

@h
@t
þr � ðhKuÞ þ r � ðh/uÞ ¼ 0: ð12Þ

Eq. (12) shows there is a conservative exchange between kinetic
and potential energy due to the interaction between the thickness,
Montgomery potential (defined following (2)) and the velocity field.
Integrating (12) over the entire (x,y,q) domain, with suitable
boundary conditions on u and assuming hydrostatic balance, gives
the domain-averaged total mechanical energy equation

d
dt

Z
V

hK þ gz2

2q0

� �
dxdydq ¼ 0: ð13Þ

Eq. (13) shows that h K + gz2/2q0 is a global invariant of the inviscid,
Boussinesq and adiabatic system.

3.2. Energetics of the PV eddy closure

The energy relations of the PV eddy closure should mimic those
of the unmodified system. In particular, the important physical
property that the Coriolis force does not contribute to the KE
should be retained, which requires that the dot product of the
momentum Eq. (11) is by the total velocity U. Thus, the kinetic en-
ergy equation is formed by adding K0⁄ (5) and hU� (11), but ignor-
ing the mixing term on the RHS of (11), to obtain

K 0
@h
@t
þ hU � @u

@t
þr � ðhUK 0Þ ¼ �hU � r/: ð14Þ

Note that the mixing term on the RHS of (11) has been dropped in
this inviscid analysis, but will be analysed in the next Section. The
total energy equation is constructed by adding (14) and the PE
equation, derived by /⁄ (5), to yield
K 0
@h
@t
þ hU � @u

@t
þ /

@h
@t
þr � ðhUK 0Þ þ r � ðhU/Þ ¼ 0: ð15Þ

Note that, as in the unmodified system, the exchange terms from
(14) and the PE equation combine to produce a single divergence
term that vanishes when integrated over the entire domain. This re-
sults from the fact that the same velocity, U, that transports the
layer thickness is dotted into the momentum Eq. (11) to form the
KE equation.

The complication in deriving the energy relation for the PV eddy
closure arises during the consideration of K0. In general, the first
two terms of (15) can not be combined because the transport
velocity U differs from the mean velocity u. There is no general def-
inition of K0 that makes these terms combine. However, if K0 is cho-
sen as

K 0 ¼ 1
2
ðu � uÞ þ ðu � u�Þ ¼ 1

2
ðu � UÞ þ 1

2
ðu � u�Þ; ð16Þ

this results in a total energy equation of the form

@

@t
ðhK 0Þ þ /

@h
@t
þr � ðhUK 0Þ þ r � ðh/UÞ ¼ hu � @u�

@t
: ð17Þ

Thus, the PV eddy closure has an energy relation analogous to the
unmodified system, but with an error in total energy conservation
proportional to the time derivative of the bolus velocity. We made
this choice for K0 because it has the usual first term from the mean
velocity, and results in only a single RHS term in (17) that is
proportional to @u⁄/@t. This term is small because u⁄ is small
compared to u.
4. The momentum equation

Now that K0 has been defined in (16), this completes the form of
the PV closure momentum Eq. (11). In this section, properties of
the term due to the mixing of PV along isopycnals on the RHS of
(11) are explored. Very often the full PV in the mixing term has
been replaced by the planetary vorticity, and the relative vorticity
component has been ignored. The planetary vorticity component, f/
h, on the RHS of (11) produces a zonal momentum equation of the
form

@u
@t
� ðf þ fÞV þ @/

@x
þ @K 0

@x
¼ �jbþ

jfhy

h
; ð18Þ

where u and V are the zonal and meridional components of u and U,
respectively. Note that if the GM form for the bolus velocity is as-
sumed, then the �fv⁄ term on the LHS cancels the second RHS term
in (18). However, we have not assumed the GM form in our analysis,
which is general for any choice of the bolus velocity. The �jb term
on the RHS of (18) has been discussed in many previous papers such
as Welander (1973), Treguier et al. (1997), Wardle and Marshall
(2000), Zhao and Vallis (2008) and Eden (2010).

The relative vorticity component of PV, f/h, on the RHS of (11)
produces a zonal momentum equation of the form

@u
@t
þ � � � ¼ jðuyy � vxyÞ þ

jfhy

h
: ð19Þ

The first two terms on the RHS look like viscous terms, especially if
the horizontal velocity is nearly nondivergent, so that �vxy � uxx.
However, there are two problems that arise if these terms are con-
sidered as the viscosity closure of the model. The first problem
with the RHS of (19) is that it cannot be expressed as the diver-
gence of a tensor divided by h. This is the required form in isopyc-
nal coordinates to ensure a positive definite sink of global kinetic
energy (Condition I hereafter), e.g. see Smith and McWilliams
(2003) and Griffies (2004). The second problem is that the RHS



128 T. Ringler, P. Gent / Ocean Modelling 39 (2011) 125–134
of (19) is derived from a curl operator, which is antisymmetric
when written as a stress tensor. Therefore, it cannot satisfy the con-
dition that the viscosity should not affect velocity fields associated
with solid body rotation (Condition II hereafter), see Wajsowicz
(1993).

Because of these problems, it is not clear to us that a global
ocean model based on (11) will remain numerically stable. How-
ever, the zonal channel model based on this equation described
in Section 5 is numerically stable when using the RHS of (11) as
the dissipative closure. If one judges Conditions I and II to be very
important properties, the most straightforward way to change the
RHS of (19) into a viscous closure that satisfies both Conditions I
and II is to approximate it as Laplacian diffusion of u, and to add
the necessary Jacobian term. Then the zonal momentum equation
becomes

@u
@t
þ � � � ¼ r � ðjhruÞ

h
�

Jxyðjh; vÞ
h

: ð20Þ

Note that the KE Eq. (14) is formed by hU� (11), so that to ensure a
sink of KE in this equation, (u,v) on the RHS of (20) should be re-
placed by (U,V). However, we believe that using the standard vis-
cous closure in terms of (u,v) is more pragmatic. A global model
using this viscous closure will be numerically stable because
momentum transfer is downgradient. A possible disadvantage of
this closure is that momentum transfer is known to be upgradient
in ocean jets, such as the Antarctic Circumpolar Current, see McWil-
liams and Chow (1981).

Retaining the planetary component of PV on the RHS of (11), but
changing to the viscous closure that satisfies Conditions I and II,
gives the momentum equation as

@u
@t
þ ðf þ fÞk� Uþr/þrK 0

¼ jhk�r f
h

� �
þr � ðjhruÞ

h
þ

Jxyðjh;k� uÞ
h

: ð21Þ

This is an alternative momentum equation we suggest could be
used in ocean models, rather than (11) which resulted directly from
the downgradient PV mixing assumption. Using the definition of K0

in (16), Eq. (21) can also be written in the form

D�u
Dt
þ u � ru� þ f k� Uþr/ ¼ jhk�r f

h

� �

þr � ðjhruÞ
h

þ
Jxyðjh;k� uÞ

h
: ð22Þ

The unfamiliar second term on the LHS is a summation over the two
components of u and u⁄.

All the equations so far have been written in isopycnal coordi-
nates, but many ocean models use height as the vertical coordi-
nate. The general form of the momentum Eq. (11), with K0

defined by (16), transformed into z-coordinates becomes

D�u
Dt
þ u � ru� � rq

qz

@u�

@z

� �
þ f k� Uþrp

q0

¼ jk� ðrq� qzrqqzÞ=qz: ð23Þ

The gradient operator is now with respect to constant z, and the
summation in the bracketed term on the LHS is over the two com-
ponents of u and u⁄. Eq. (23) has a similar form to the two-dimen-
sional, zonally-averaged momentum equation discussed in Section
8 of Plumb and Ferrari (2005), which only simplifies when the small
Rossby number approximation is invoked. However, the momen-
tum Eq. (23) is fully three-dimensional, and there is no approxima-
tion used in deducing it from the assumed potential vorticity Eq.
(10). Transforming our alternative momentum Eq. (22) into z-coor-
dinates gives
D�u
Dt
þ u � ru� � rq

qz

@u�

@z

� �
þ f k� Uþrp

q0

¼ jk� rf þ f
rq
qz

� �
z

� �
þr � ðjruÞ þ Jxyðj;k� uÞ: ð24Þ

Note that the density gradient terms arising from the transforma-
tion of the viscous terms in (22) have been ignored, so that the vis-
cous terms in (24) are the standard form in z-coordinates, which
includes the Jacobian term when j is variable, see Wajsowicz
(1993). Eqs. (23) and (24) contain terms proportional to the density
slope and its vertical derivative, so they might have to be tapered in
the mixed layer where the slopes become steep.
5. Evaluation of PV closures

In order to better understand the attributes of the various ap-
proaches to PV closure, we conduct a set of re-entrant channel sim-
ulations that loosely follows the geometry used by McWilliams
and Chow (1981). The system configuration is meant to serve as
an idealized model of the Antarctic Circumpolar Current. As dis-
cussed below, our motivation for choosing this configuration is
that channel dynamics are particularly challenging for eddy
parameterizations. Our purpose is not to complete a tuning exer-
cise where we attempt to obtain a best-fit with eddying solutions,
rather our goal is to compare, contrast and, hopefully, better
understand a few of the tenable approaches that modify mean
PV through the parameterization of eddy processes.

The numerical model is configured in a 2000 km � 2000 km do-
main that is periodic in the zonal direction and bounded in the
meridional direction with no-slip boundary conditions. The b-
plane approximation is used with f0 = �1.1 � 10�4 s�1 and
b = 1.4 � 10�11 m�1 s�1. The simulations include three isopycnal
layers with mean layer thicknesses of 500 m, 1250 m and 3250 m
with densities of 1010 kg m�3,1013 kg m�3 and 1016 kg m�3,
respectively. The system is forced by a zonal wind stress applied
to the top model layer of the form s ¼ s0eðy�y0=rÞ2 where
s0 = 0.1 N m�2, y0 is the meridional mid-point of the channel and
r = 300 km. As shown below, the jet region is far removed from
the lateral boundaries to better simulate the dynamics of an
unconstrained zonal jet.

The model used in this study is based on the C-grid numerical
scheme presented in Thuburn et al. (2009) and Ringler et al.
(2010). This numerical method is being used to develop global
atmosphere and ocean models as a part of the Model for Prediction
Across Scales (MPAS) project. The MPAS modeling approach is
attractive for this study because potential vorticity is conserved
to within machine precision, i.e. we retain Kelvin’s circulation the-
orem in the numerical model to within machine precision. As a re-
sult, we can implement (11), either in its entirety or by selectively
choosing specific components of the PV closure, while still conserv-
ing mean PV in the numerical model.

As summarized in Table 1, four model configurations are dis-
cussed. The first configuration serves as the high-resolution refer-
ence solution (referred to hereafter as REF). REF has a resolution of
dx = 10 km. Since this resolution is sufficient to resolve the Rossby
radius of deformation of the first baroclinic mode that is estimated
to be approximately 100 km, no eddy-closure is included in REF.
This simulation includes only a mr4u term on the RHS of the
momentum equation with m = 2.0 � 109 m4 s�1 to remove the
downscale cascade of energy and potential enstrophy.

The other three model configurations test various forms of eddy
closure, and all use a resolution of dx = 62.5 km. These simulations
are meant to represent typical model resolutions that occur in the
Southern Ocean when conducting global climate change simula-
tions. The first of these low-resolution experiments uses the



Table 1
REF denotes the high-resolution reference solution that includes no eddy closure.
GMST refers to the standard implementation of GM where the momentum equation is
unaltered by the eddy closure. PVBL includes the bolus transport part of the GM
closure on PV, but omits the isopycnal diffusion of PV. GMPV modifies the momentum
equation so that PV is transported by the bolus velocity and diffused along isopycnals.
The bolus velocity is computed based on the eddy closure parameter, jh, that is set to
500 m2 s�1. The diffusion of PV in the GMPV simulation is controlled by the value of
jq. When jq = jh, PV is treated exactly the same as tracers in the standard
implementation of GM. We conduct simulations with jq equal to 500 m2 s�1 and
250 m2 s�1. The other diffusion parameters are specified as m = 2.0 � 109 m4 s�1 and
l = 1.0 � 102 m2 s�1.

Simulation thickness
equation

momentum equation

REF @h
@t þr � ðhuÞ ¼ 0 @u

@t þ ðf þ fÞk� uþr/þrK ¼ �mr4u
GMST @h

@t þr � ðhUÞ ¼ 0 @u
@t þ ðf þ fÞk� uþr/þrK ¼ lr2u

PVBL @h
@t þr � ðhUÞ ¼ 0 @u

@t þ ðf þ fÞk� Uþr/þrK 0 ¼ lr2u
GMPV @h

@t þr � ðhUÞ ¼ 0 @u
@t þ ðf þ fÞk� Uþr/þrK 0 ¼ k� ðjqhrqÞ
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standard GM closure (GMST) where the bolus velocity is included
in the transport of thickness along with the unmodified momen-
tum equation. The second low-resolution configuration includes
the bolus velocity in the transport of PV, but omits the RHS diffu-
sivity of PV (PVBL). Both the GMST and PVBL simulations use a l
r2u as the RHS dissipation with l = 100 m2 s�1. The third low-res-
olution configuration modifies the momentum equation such that
PV is treated in exactly the same manner as tracers in the GMST
system (GMPV); mean PV is transported by the mean plus bolus
velocities and is diffused along isopycnals. As discussed below, in
the GMPV configuration we explore the scenario where the closure
Fig. 1. A snapshot of PV in the upper ocean layer at day 6000 from the reference simulat
shed, resulting in occluded PV cores that, on average, slowly propagate to the west.
parameter for computing the RHS diffusion of PV (jq) differs from
the closure parameter used to compute the bolus velocity (jh).

Each simulation is run for 8000 days starting from a state of rest
with noise added to the mean thickness fields. The noise is in-
cluded to seed baroclinic instability. All statistics are generated
from the last 4000 days of the simulation. Data is sampled every
4 days. The time stepping algorithm is 4th-order Runge Kutta with
fully explicit time integration.

The reference solution evolves into turbulent motion at about
day 1200 of the simulation. A snapshot of the PV field at day
6000 is shown in Fig. 1. The system is characterized by a meander-
ing jet that sheds PV filaments in both the equatorward and pole-
ward directions. These PV filaments occlude to become long-lived,
coherent vortical features moving in the opposite direction from
the zonal jet. The spectrum of the kinetic energy field along the
y = y0 line (not shown) shows a slope very close to �3 that is indic-
ative of fully-developed, geostrophic turbulence (Vallis, 2006).

The primary goal of eddy parameterization is to mimic the
eddy-induced fluxes of layer thickness, tracers, potential vorticity
and/or momentum based on the large-scale structure. We present
in Fig. 2 the zonal-mean, time-mean meridional eddy fluxes of
thickness, potential vorticity and momentum that occur in the
top layer of the eddy-resolving reference simulation. Each figure
panel also contains the zonal-mean, time-mean field that is im-
pacted through the meridional convergence of these eddy-fluxes.
Panel A shows that the eddy-induced thickness flux, h0v 0, is nega-
tive (poleward) across the jet region. Similarly, panel B indicates
that the eddy-induced potential vorticity flux, ðhvÞ0q0, is also pole-
ward in the jet. The meridional gradients in mean thickness and
mean PV are positive throughout the region of the jet. Thus, the
ion. Strong PV gradients exist along the core of the meandering jet. PV filaments are



Fig. 2. All panels show eddy flux and mean state for the upper ocean layer. Panel A:
The eddy-induced meridional flux of thickness, v 0h0 , along with the zonal-mean,
time-mean thickness field. Panel B: The eddy-induced meridional flux of potential
vorticity, ðhvÞ0q0 , along with the zonal-mean, time-mean potential vorticity field.
Panel C: The eddy-induced meridional flux of momentum, ðhvÞ0u0 , along with the
zonal-mean, time-mean zonal wind field.
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eddy-induced fluxes of thickness and potential vorticity are down-
gradient. Panel C shows that the eddy-induced momentum flux,
ðhvÞ0u0, is qualitatively very different. On the equatorward side of
the jet, the eddy-induced momentum fluxes are weakly negative
(poleward) and are directed up the gradient of zonal flow. On the
poleward flank of the jet, the eddy-induced momentum fluxes
are strongly positive (equatorward) and are also directed up the
gradient of zonal flow. As a result, the eddy-induced momentum
fluxes act to accelerate the mean zonal jet.

Using the approach detailed in McWilliams and Chow (1981),
these eddy fluxes can be combined with the gradients of the mean
fields to calculate an effective diffusion of the mean fields by the
eddies, i.e. we can compute how effective the eddies are at modi-
fying the large-scale, mean fields. We compute the effective

diffusivity of layer thickness, jh, by estimating jh ¼ �h0v 0= @�h
@y

throughout the jet region. While the diffusivities tend to be noisy,
we estimate a mean value of jh to be roughly 500 m2 s�1 averaged
across the jet. In all eddy-closure simulations we compute the bo-
lus velocity as u� ¼ �jhr�h=�h with jh = 500 m2 s�1. The effective

diffusivity of PV is determined by estimating �ðhvÞ0q0= �h @�q
@y

� �
to

be roughly 500 m2 s�1, which is the same magnitude as the layer
thickness diffusivity. However, the effective diffusivity of momen-
tum varies substantially across the jet region. By estimating

�ðhvÞ0u0= �h @�u
@y

� �
we find values in the neighborhood of �5000 m2

s�1 along the poleward flank of the zonal jet.
The reference simulation is consistent with the results in

McWilliams and Chow (1981). The eddies act to smooth the PV
gradient through a down-gradient flux of eddy-transported PV.
Through Kelvin’s circulation theorem, this down-gradient flux of
PV acts to decelerate the zonal jet. At the same time, the eddies
act to accelerate the zonal jet through a counter-gradient flux of
momentum. Furthermore, the diffusivities obtained in the refer-
ence solution are broadly consistent with those shown in Figs.
11, 12 and 13 of McWilliams and Chow (1981). The challenge for
the eddy closures discussed below is to mimic these opposing
influences on the zonal flow.

The PV field at day 6000 from each of the low-resolution simu-
lations is shown in Fig. 3. The color scale for these figures is iden-
tical to that used in Fig. 1. None of the simulations evolve into a
steady-state; each has some level of transient wave activity. Of
the four simulations, the PVBL has highest level of eddy activity,
which develops into a weak turbulent flow. The GMPV simulation
with jq = 500 m2 s�1 shows the lowest level of eddy activity with
the presence of low-amplitude, highly regular waves propagating
along the gradient of PV. The GMST and GMPV with jq =
250 m2 s�1 simulations fall in the middle of the four simulations
in terms of their eddy activity.

The low-resolution simulations are evaluated in terms of their
time-mean, zonal-mean representation of zonal flow and PV.
Fig. 4 shows the time-mean, zonal-mean zonal flow (hereafter,
zonal flow) in all three ocean layers for REF and the four low-
resolution simulations. Fig. 5 shows the time-mean, zonal-mean
PV field (hereafter, PV field) for the same set of simulations.

The reference solution has a zonal jet of approximately
1.0 m s�1 in the top model layer that is shifted approximately
200 km equatorward of mid-channel. The characteristic width of
the jet is commensurate with the half-width of the wind stress.
Outside the jet region, there is essentially no zonal flow. The lowest
layer exhibits a jet that is slightly broader and about 40% as strong
as the jet in the top layer. In terms of PV, REF shows a linear gradi-
ent across the top-layer jet region that is in near-geostrophic bal-
ance with the zonal flow. The PV gradient in the top layer is
dominated by the gradient of h, with b and f playing secondary
roles. Outside the jet region, PV shows little variation in the merid-
ional direction. In the middle layer, the eddy-resolving simulation
has almost completely mixed PV. A weak reversal of the PV gradi-
ent is produced in the bottom layer. In the region of the jet, the PV
gradient in the bottom layer is two orders of magnitude smaller
than that found in the top layer.

The standard GM simulation does not evolve into fully-devel-
oped turbulence; the transfer of available potential energy to unre-
solved scales by the closure suppresses the instability in the jet
region. GMST largely reproduces the reference simulation.
Throughout all model layers, GMST exhibits a jet that is slightly
weaker, broader and shifted 200 km poleward relative to REF.
GMST does not do as well with respect to the mean PV fields. While



Fig. 3. A snapshot of PV in the upper ocean layer at day 6000 from the four simulations that include an eddy-closure.

1 In many respects it makes more sense to reduce jq to 100 m2 s�1 to match the
value of l used in the GMST and PVBL simulations. It turns out that the GMPV
simulation is unstable with jq = 100 m2 s�1 unless we include a small amount of
additional dissipation in the form of r2u or r4u.
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none of the eddy-closure simulations capture the structure of the
top-layer PV field on the poleward side of the jet in the REF simu-
lation, GMST produces the weakest overall PV gradient. In the mid-
dle layer, GMST shows the least ability to thoroughly mix PV, as
found in the REF simulation.

We find that altering the GMST configuration by simply includ-
ing the bolus term in PV transport (PVBL) leads to relatively large
changes. Including the transport of PV by the bolus velocity leads
to an exact exchange between potential and kinetic energy. As a re-
sult, the potential energy that is removed in the GMST simulation
is transfered into zonal kinetic energy in the PVBL simulation lead-
ing to an acceleration of the jet. The PVBL experiment does evolve
into turbulence. The acceleration of the zonal jet via the bolus
transport of PV acts to instigate a baroclinic instability in the jet re-
gion. In terms of the zonal flow, PVBL is very similar to GMST ex-
cept shifted 300 km equatorward. In terms of the PV field, PVBL
is markedly different than GMST. Overall, PVBL more closely than
any other of the closure simulations reproduces the REF PV field
in all layers.

Certainly in terms of the zonal flow, GMPV with jq = 500 m2 s�1

is the least satisfactory of the eddy-closure simulations. Recall that
since jq = jh, this simulation treats PV in exactly the same way as
GMST treats tracers. This simulation produces the weakest zonal
jet that is displaced the farthest from the REF solution. Outside of
the core jet region, GMPV with jq = 500 m2 s�1 produces westward
jets of approximately 0.3 m s�1 that are not seen in the REF simu-
lation. In the region of westward flow, the meridional gradient of
thickness is small and the PV gradient is due, primarily, to b. The
�jb term in (18) of the PV diffusion term produces a constant
westward acceleration at every location in the domain. This west-
ward bias in the flow is clearly evident in all model layers. In terms
of the PV field, GMPV with jq = 500 m2 s�1 is not particularly nota-
ble by producing errors that are larger than PVBL but smaller than
GMST.

Given that the GMPV simulation with jq = 500 m2 s�1 is clearly
deficient, we explore using a smaller value for jq than for jh. While
there is no theoretical justification for doing this, we hope it might
provide insights into paths forward. The last simulation we discuss
is GMPV with jq = 250 m2 s�1 (see footnote1). This reduction in jq

results in a better representation of the REF solution in every respect.
Reducing jq from 500 m2 s�1 to 250 m2 s�1 leads to a stronger zonal
jet positioned much closer to that found in the REF simulation. In
addition, the spurious westward flow is reduced, if only slightly. In
terms of the reproducing the PV field from REF, the reduction in jq

results in more modest improvements. For example, the
jq = 250 m2 s�1 simulations does slightly better than the
jq = 500 m2 s�1 simulation in capturing the PV gradient in the top
layer.

In terms of representing the jet region, GMPV with
jq = 250 m2 s�1 is arguably, if only marginally, better than the
GMST or PVBL simulations. Yet outside the jet region the GMPV
simulations show a strong westward bias. In the section below
we discuss possible remedies to remove this strong westward bias.



Fig. 4. Zonal-mean, time-mean zonal flow for the reference solution and four
simulations that use different forms of eddy-closure.

Fig. 5. Zonal-mean, time-mean PV for the reference solution and four simulations
that use different forms of eddy-closure.
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6. Discussion and conclusions

There are three main conclusions from the theoretical part of
this paper where we have formulated in isopycnal coordinates an
eddy closure for Ertel potential vorticity that is identical to that
for passive tracers.

The first is that treating PV exactly like any passive tracer in iso-
pycnal coordinates leads to the mean PV being a function of the
mean velocity. In turn, this leads to the PV closure having a
momentum equation to predict the mean velocity. In addition, this
momentum equation is not unique because it contains the gradient
of an undefined potential function. This non-uniqueness has been
noted before on page 430 of Greatbatch (1998), and Eq. (75) of
Smith (1999) also contains the gradient of an undefined potential
function. This undefined potential function does not project into
the rotational component of the velocity field, but rather projects
entirely into the divergent component of the velocity field. The
divergent component of the velocity field plays an important role
in the flow of energy through the system, primarily through the
storage and release of available potential energy. We use the total
energy equation to optimally choose the form of this potential
function. When the momentum equation is written in vector
invariant form, it becomes apparent that this potential function
is related to kinetic energy.

Second, for an arbitrary relationship between the mean and
transport velocities it can be shown that the inviscid form of this
momentum equation and the thickness equation do not possess
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The eddies induce a net poleward 
transport of mass.  This bolus 
velocity carries mean PV toward 
the pole. This transport acts to 
steepen the mean PV gradient and 
accelerate the mean zonal jet.

The eddies mix PV across the jet
region. This mixing acts to weaken 
the mean PV gradient and 
decelerate the mean zonal jet.

PV transport

PV mixing

Fig. 6. A conceptual model of how the PV closure acts to modify the zonal flow in
the top layer.
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an exact conservation property for domain-averaged total energy.
The difficulty in the analysis of the energetics arises in the formu-
lation of the kinetic energy. The form of the kinetic energy is not
obvious, and the choice in (16) was made because it makes the
non-conservation as small as possible since it is proportional to
@u⁄/@t. Regardless of the relationship between the mean and trans-
port velocities, momentum equations that are derived from (10)
will retain an analog to Kelvin’s circulation theorem where, in
the absence of diffusion, potential vorticity is conserved along par-
ticle trajectories that follow U.

Third, the mixing of the relative vorticity part of the PV along
isopycnals leads to terms that look like a viscous stress, but these
terms do not satisfy two important properties that are usually re-
quired of a viscous closure. They do not assure a positive definite
sink of global kinetic energy, and they do affect velocity fields asso-
ciated with solid body rotation. This PV closure also clearly shows
that the horizontal viscosity coefficient used in the momentum
equation is the same as the along isopycnal mixing coefficient. Very
often this is chosen to be equal to the GM closure coefficient j. This
is very unfamiliar, however, because in all implementations of the
GM scheme that we are aware of, the viscosity coefficient has al-
ways been chosen with different criteria and numerical values than
the GM coefficient.

The original GM choice of u⁄ assured a domain-averaged sink of
potential energy. Gent and McWilliams (1996) show that there is
not a PV conservation with the original GM. This paper proposes
an eddy closure that extends Gent and McWilliams (1996) to in-
clude PV conservation. When the mean and transport velocities
are related through the standard GM bolus velocity, the closure in-
cludes a non-conservation in total energy; this non-conservation
arises because our form of kinetic energy is not conserved along
particle trajectories following the transport velocity. The practical
implications of this non-conservation of energy need to be care-
fully evaluated.

The obvious question is whether there are other closure equa-
tions that have well defined energy and PV conservation proper-
ties? We know of two such equation sets. The first is if the LHS
of the momentum equation takes the usual form shown in (2),
but with u replaced by U everywhere, which was first suggested
by McDougall and McIntosh (1996) and Greatbatch (1998). How-
ever, this implies that the PV is a function of U, which, as concluded
above, is not consistent with assuming a closure in isopycnal coor-
dinates that treats PV exactly like any passive tracer. Never-the-
less, ‘‘residual-mean’’ ocean numerical models based on this
momentum equation have been built, and global and midlatitude
simulations are described in Ferreira and Marshall (2006), and
Zhao and Vallis (2008), respectively.

The second such equation set is the Lagrangian-Averaged
Navier Stokes (LANS) closure, see Holm (1999). In the LANS clo-
sure, there are also two velocities; a transport velocity, called
the ‘‘smooth velocity’’, and a predicted mean velocity, called the
‘‘rough velocity.’’ The momentum Eq. (11) has essentially the
same functional form as the LANS closure when expressed in
vector-invariant form, see Eq. (1.4) in Gibbon and Holm (2006).
In fact, the only differences between this PV eddy closure and
the LANS closure is the definition of the potential on the LHS of
(11), and the relationship between the transport velocity U and
the mean velocity u, i.e. the specification of u⁄. In the GM closure,
u⁄ is specified to produce a sink of available mean potential en-
ergy, whereas in the LANS closure the specification of u⁄ is purely
kinematic in nature, being only a function of the mean velocity
and a single specified parameter called a. Both the LANS closure
and our PV eddy closure lead to exact conservation of PV along
trajectories defined by the transport velocity U, and have unfa-
miliar terms in the momentum equation like the second term
on the LHS of (22). It would be informative to explore further
the implications of this striking resemblance between these two
closures.

The numerical simulations in a zonal channel clearly suggest
that a literal implementation of the PV closure is not appropriate,
at least when specifying a globally uniform closure parameter.
The issue is not with the bolus transport of PV, but rather with
the diffusion of PV. PV differs from tracers in the sense that it is
impossible to completely mix PV within isopycnal layers due to
the inclusion of planetary vorticity. The westward flow along the
flanks of the jet in the GMPV simulations exhibit this difference;
the westward flow arises due to the �jb term in (18) trying to
mix planetary vorticity down-gradient. Obviously, since the eddy
closure parameter embodies the mixing that is being parameter-
ized in the non-eddy resolving simulations, where there is no mix-
ing the closure parameter should be near zero. We did not take the
next step to allow j to vary in space, but this will certainly be
required if a closure of this type is to be used in practice. Very re-
cently, Eden (2010) has used a j that varies with y, and has shown
that it is vital to retain this ‘‘beta’’ term in order to reproduce
idealized channel quasigeostrophic eddy-resolving simulations in
a two-dimensional zonally-averaged model with parameterized
eddies.

The numerical simulations demonstrate that the GMPV closure
approach developed here is viable in the sense that it produces sta-
ble solutions. Our conjecture is that the deficiencies in the GMPV
simulations can be remedied through the specification of
j = j(y,z) for this channel problem. The notable feature of the
GMPV closure is that it includes a mechanism that mimics the
counter-gradient momentum transport that is found in the eddy-
resolving simulations but is missing from GM. This mechanism is
obtained through the transport of PV by the bolus velocity.

It is important to note that in the GMPV simulations, the PV clo-
sure does contribute to the global momentum budget. It was
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pointed out by Green (1970), Welander (1973), and Killworth
(1997) that a parameterization in the momentum equation proba-
bly should not do so. The simplest way to implement this is to sub-
tract the global integral of the first term from the RHS of (21) or
(22). This constraint is the reason that Eden (2010) introduces a
gauge term in the forcing, which is defined by the global domain
integral of the parameterized forcing in his Eq. (10). However,
implementing this constraint changes the kinetic energy equation,
and further work is required in order to understand all the conse-
quences of using, or not using, this global constraint.

We conclude with a conceptual model of the how the GMPV clo-
sure proposed here alters the PV dynamics of a non-eddy resolving
simulation. The conceptual model closely follows the results of
Plumb (1979) who showed that eddies act in both an advective
and diffusive manner to alter the mean state. As shown in Fig. 6,
the proposed PV closure acts to modify the top-layer zonal jet in
two ways. First, the transport of PV by the bolus velocity acts to
accelerate the eastward jet. Second, the PV closure includes a
down-gradient diffusion of PV that acts to mix PV and decelerate
the jet. Thus, the PV closure results in two additional forces in the
momentum equation that act to push the jet in opposite directions.
The opposing forces included in our GMPV closure are in strong
analogy to the eddy-induced forces produced in the eddy-resolving,
reference simulation. Eddies in the reference solution act to accel-
erate the zonal flow through the counter-gradient transport of
momentum while also acting to decelerate the zonal flow through
the down-gradient transport of PV. Looking forward, our challenge
is to better measure the effective diffusivity as it varies in space and
time, and to further investigate the precise form of diffusion that
occurs on the RHS of the momentum equation.
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