
x4c: Xarray for efficient CESM postprocessing,
analysis, and visualization

Motivation, Design, and Features

Nov 10, 2025

Feng Zhu
Paleoclimate Software Engineer II

PPC, CGD, NSF NCAR

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

▣ Self-Introduction

MS in AOS
(2016; UW-Madison)

PhD in Earth Sciences
(2021; USC)

Research Interests:
• Paleoclimate Modeling, Data Assimilation, and Machine Learning

(led two NSF-funded proposals on ML-enhanced Earth system sciences)
• Scientific Programming for facilitating Scientific Discovery

▣ Motivation

Motivation | Design | Features | Summary

A typical workflow for a CESM-based research:

CESM Modeling

• Analysis
• Visualization

Postprocessing
(History to Timeseries) CESM_postprocessing

• Out of maintenance
• Not very flexible to use and debug
• Small issues (e.g., timestamps,

metadata/variable handling)

▣ Motivation

Motivation | Design | Features | Summary

Xarray is a great tool that has provided powerful, fundamental
blocks for scientific analysis and visualization tasks. However, it
still requires nontrivial programming skills and efforts.

an interruption to the
scientific mind flow

lengthy &
error-prone

what scientists really need is a tool that works, but with minimal
programming skills and efforts, and thus minimal interruption to
the mind flow, so as to better focus on scientific thinking

▣ Motivation

Motivation | Design | Features | Summary

Given a CESM simulation with an SE dycore (ne30),
plot:
๏ a map of the MJJAS Land Surface Temperature
๏ a 100-yr time series of its Global Mean

A Typical Earth System Data Analysis Task regridding

projection

annualization/
seasonalization

derived
variables

geospatial
averaging

data
selection &

merge

▣ Motivation

Motivation | Design | Features | Summary

x4c is an Xarray extension that features intuitive, flexible, concise,
and easy-to-use workflows for CESM postprocessing, analysis,
and visualization.

x4c aims to liberate scientists from technical details
and facilitate scientific thinking.

▣ Motivation

Motivation | Design | Features | Summary

A typical workflow for a CESM-based research:

CESM Modeling

• Analysis
• Visualization

Postprocessing
(History to Timeseries) CESM_postprocessing }

• CGD-SIF Award on CESM
Postprocessing (under the guidance
of Michael Levy & Brian Dobins)

▣ Design

Motivation | Design | Features | Summary

A Bottom-up Design

Fundamental Features
(Xarray Extension)

regridding, annualization,
spatial averaging,
visualization, etc.

Advanced
Features

(Timeseries)
CESM diagnostic

systems

High-level Workflows
(History, Timeseries)

CESM postprocessing &
diagnostic workflows

(ts&climo generation, etc.) Object-Orient
Programming (OOP)

High Cohesion,
Low Coupling

Intuitive,
Concise,
Flexible

▣ Fundamental Features (Xarray Extension)

Motivation | Design | Features | Summary

Visualization
Given a CESM simulation with an SE dycore (ne30),
plot:
๏ a map of the MJJAS Land Surface Temperature

da.plot() da.x.plot()

▣ Fundamental Features (Xarray Extension)

Motivation | Design | Features | Summary

Visualization

x4c.set_style('journal_spines', font_scale=1.2)

fig, ax = da.x.plot()

x4c.showfig(fig)
x4c.savefig(fig, './figs/LST_MJJAS.pdf')

da.x.plot()

▣ Fundamental Features (Xarray Extension)

Motivation | Design | Features | Summary

Visualization

x4c.set_style('journal_spines', font_scale=1.2)

fig, ax = da.x.plot(
 levels=np.linspace(5, 35, 21),
 cbar_kwargs={'ticks': np.linspace(5, 35, 7)},
 add_gridlines=True,
 latlon_range=(-50, 50, 30, 160),
)

x4c.showfig(fig)
x4c.savefig(fig, './figs/SST_ann_regional.pdf')

▣ Fundamental Features (Xarray Extension)

Motivation | Design | Features | Summary

Regridding

ds = x4c.open_dataset(fpath, comp='atm', grid='ne30np4')
ds_rgd = ds.x.regrid()
ds_rgd['TS']

ds.x.regrid([dlon=1, dlat=1, weight_file=...])
Leveraging xESMF
• atm: ne16/30/120np4/pg3 to 1x1 / 2x2
• ocn: gXX to any regular grid

• dlon: the longitude spacing
• dlat: the latitude spacing
• weight_file: the path to a user-provided ESMF

weighting file for other regridding cases

▣ Fundamental Features (Xarray Extension)

Motivation | Design | Features | Summary

Visualization (ne30)
1. x4c w/ regridding

▣ Fundamental Features (Xarray Extension)

Motivation | Design | Features | Summary

Visualization (ne30)

2.1 x4c w/o regridding 2.2

▣ Fundamental Features (Xarray Extension)

Motivation | Design | Features | Summary

Visualization (g16)
1. x4c w/ regridding 2. x4c w/o regridding

▣ Fundamental Features (Xarray Extension)

Motivation | Design | Features | Summary

Annualization
ds.x.annualize([months=...])

ds_ann = ds_rgd.x.annualize(months=[5, 6, 7, 8, 9], days_weighted=True)
ds_ann['TS']

• months: a list of months over which to annualize; default: calendar year. Examples:
• [6, 7, 8]: JJA seasonalization
• [12, 1, 2]: DJF seasonalization
• [3, 9, 10]: any arbitrary combination

▣ Fundamental Features (Xarray Extension)

Motivation | Design | Features | Summary

Spatial Averaging
da.x.geo_mean([latlon_range=..., ind=...])

• latlon_range: a square range in [lat_min, lat_max, lon_min, lon_max] to perform an
arbitrary geo-spatial averaging; default: global mean

• ind: a climate index; 'nino3.4', 'nino1+2', 'nino3', 'nino4', 'tpi', 'wp', 'dmi', 'iobw'

da.x.gm; da.x.nhm; da.x.shm; da.x.zm

da_gm = ds_ann['TS'].x.geo_mean()
da_gm

▣ CESM Postprocessing (History) A “Case” System

Motivation | Design | Features | Summary

▣ CESM Postprocessing (History)

Motivation | Design | Features | Summary

A “Case” System

▣ CESM Postprocessing (History)

Motivation | Design | Features | Summary

case.gen_ts(
 comps={'atm': ['PRECC']},
 output_dirpath=os.path.join('/glade/campaign/cgd/ppc/fengzhu/x4c/gen_ts/test', case.casename),
 staging_dirpath=os.path.join('/glade/derecho/scratch/fengzhu/x4c/gen_ts/test', case.casename),
 timespan=(1, 100),
 timestep=10,
 timestep_unit='year',
 nproc=4,
 overwrite=True,
)

History.gen_ts()

OCN: 22.3 mins

ATM: 13.3 mins ICE: 7.5 mins

LND: 19.6 mins
ROF:
1.1

mins

Node 1

Node 2

Node 3

▣ CESM Postprocessing (History)

Motivation | Design | Features | Summary

History.gen_ts()
For production run, x4c supports multiple nodes leveraging MPI.
See https://ncar.github.io/x4c/notebooks/post-pbs.html#CESM3-Example

Task Nodes NCPUs Mem CPU Elap

mom6.h.sfc+z 1 128 129.26 17.23 0.22
mom6.h.native

+rho2+mosart 1 128 134.22 23.63 0.20

cam+cice.h+clm2 1 128 138 56.10 0.22

cice.h1 13 13*128 1655.82 34.93 0.25

History: /glade/derecho/scratch/cmip7/archive/b.e30_beta06.B1850C_LTso.ne30_t232_wgx3.192.wrkflw.1
x4c Timeseries: /glade/campaign/cesm/development/cross-wg/diagnostic_framework/x4c/timeseries/b.e30_beta06.B1850C_LTso.ne30_t232_wgx3.192.wrkflw.1
Model years: 1 - 10

Task Nodes NCPUs Mem CPU Elap

all 16 1024 1952.26 24.66 0.21

Baseline: CESM_postprocessing

x4c

▣ Diagnostic Features (Timeseries)

Motivation | Design | Features | Summary

case = x4c.Timeseries(dirpath, [grid_dict=…, casename=…, cesm_ver=…])
• dirpath: the History.gen_ts() generated timeseries directory
• grid_dict: the grid info; default: {'atm': 'ne30pg3', 'ocn': 'g16'}

A “Case” System

dirpath = '/glade/campaign/cesm/development/cross-wg/diagnostic_framework/x4c/timeseries/b.e30_beta06.B1850C_LTso.ne30_t232_wgx3.192.wrkflw.1_32'
case = x4c.Timeseries(
 dirpath,
 casename='b.e30_beta06.B1850C_LTso.ne30_t232_wgx3.192.wrkflw.1',
 grid_dict={'atm': 'ne30gp3'},
)

Motivation | Design | Features | Summary

case.load(vn, [timespan=..., load_idx=-1])
• vn: an existing variable name under the timeseries directory
• timespan: a timespan in (start, end) pointing to a single or multiple files
• load_idx: the file index to load; default: -1 (the last file)

▣ Diagnostic Features (Timeseries) Timeseries.load(raw)

case.load('TS')
case.ds['TS']

case.load('TS', comp='atm', hstr='cam.h0a')
case.ds['TS']

Motivation | Design | Features | Summary

case.load(vn, [timespan=..., load_idx=-1])
• vn: an existing variable name under the timeseries directory
• timespan: a timespan in (start, end) pointing to a single or multiple files
• load_idx: the file index to load; default: -1 (the last file)

▣ Diagnostic Features (Timeseries) Timeseries.load(derived)

case.load('LST', comp='atm', hstr='cam.h0a')
case.ds['LST']

Motivation | Design | Features | Summary

▣ Diagnostic Features (Timeseries) Timeseries.load(derived)

Motivation | Design | Features | Summary

▣ Diagnostic Features (Timeseries) Contribution from the Community
https://ncar.github.io/x4c

Motivation | Design | Features | Summary

▣ Diagnostic Features (Timeseries) Contribution from the Community
https://ncar.github.io/x4c

Motivation | Design | Features | Summary

Idea: to summarize a series of
data processing steps with a
spell that can be calculated
and plotted

spell = 'vn:[:ann:sa]'
case.calc(spell)
case.plot(spell)
• vn: diagnostic variable name
• ann: annualization method
• sa: spatial averaging method

▣ Diagnostic Features (Timeseries) A “Spell” System

Motivation | Design | Features | Summary

Given a CESM simulation with an SE dycore (ne30),
plot:
๏ a map of the MJJAS Land Surface Temperature

spell = 'LST:5,6,7,8,9'
case.calc(spell)
case.diags[spell]

fig, ax = case.plot(spell)

▣ Diagnostic Features (Timeseries) A “Spell” System

Motivation | Design | Features | Summary

Given a CESM simulation with an SE dycore (ne30),
plot:
๏ a 100-yr time series of its Global Mean

x4c.set_style('web', font_scale=1.2)

spell = 'LST:5,6,7,8,9:gm'
fig, ax = case.plot(spell, timespan=(201, 300))

▣ Diagnostic Features (Timeseries) A “Spell” System

Motivation | Design | Features | Summary

GMST 'TS:ann:gm'

▣ Diagnostic Features (Timeseries) A “Spell” System

Motivation | Design | Features | Summary

A map of DJF SST 'SST:12,1,2'

▣ Diagnostic Features (Timeseries) A “Spell” System

Motivation | Design | Features | Summary

A map of annual Bottom Water Temperature (z_t=49)

'TEMP.isel(z_t=49):ann'

▣ Diagnostic Features (Timeseries) A “Spell” System

Motivation | Design | Features | Summary

A map of annual Bottom Water Temperature (z_t=49)

'TEMP.isel(z_t=49)|regrid:ann'

▣ Diagnostic Features (Timeseries) A “Spell” System

Motivation | Design | Features | Summary

A map of annual Bottom Water Temperature (z_t=49)

'TEMP.isel(z_t=49)|regrid(dlon=2, dlat=2):ann'

▣ Diagnostic Features (Timeseries) A “Spell” System

Motivation | Design | Features | Summary

A map of annual 600 hPa Geopotential Height

'Z3|plev(60000):ann'

▣ Diagnostic Features (Timeseries) A “Spell” System

Motivation | Design | Features | Summary

A map of annual 600 hPa Geopotential Height

'Z600 ~ Z3|plev(60000)' 'Z600:ann'

▣ Diagnostic Features (Timeseries) A “Spell” System

Motivation | Design | Features | Summary

Zonal mean of annual Surface Temperature

'TS:ann:zm'

▣ Diagnostic Features (Timeseries) A “Spell” System

Motivation | Design | Features | Summary

Seasonal cycle of Northern Hemisphere Surface Temperature

'TS:climo:nhm'

▣ Diagnostic Features (Timeseries) A “Spell” System

Motivation | Design | Features | Summary

Zonal mean of annual Meridional Ocean Circulation (MOC)

'MOC:ann:yz'

▣ Diagnostic Features (Timeseries) A “Spell” System

Motivation | Design | Features | Summary

▣ Diagnostic Features (Timeseries) High-level Workflows

▣ Summary

Motivation | Design | Features | Summary

• Next Step: AI-enhanced Data Analysis and Visualization
Porting LLMs to the “spell” system.
Welcome funding support to expand this work!

• x4c aims to liberate scientists from technical details,
facilitating scientific thinking.

• x4c enables concise gridded data analysis and
publication-ready visualization with the .x command.

• x4c.History() makes CESM postprocessing (hist2ts)
flexible and transparent.

• x4c.Timeseries(), along with the “spell” system,
makes CESM diagnostic and visualization intuitive
and efficient.

• x4c could serve as a foundational framework for
diagnostic systems such as CUPiD.

Thank you!
(fengzhu@ucar.edu)

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

Nov 10, 2025

Feng Zhu
Paleoclimate Software Engineer II

PPC, CGD, NSF NCAR

Installation
• conda install -c conda-forge xesmf cartopy geocat-comp pop-tools
• pip install x4c

Documentation
• https://ncar.github.io/x4c

