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Figure S1. The timeseries of monthly thermocline depth in the (a) western equatorial Pacific (3°S–

3°N, 120°E–180°) and (b) eastern equatorial Pacific (3°S–3°N, 150°W–80°W) in the FOSI (dark 

red) and 7 ocean reanalysis datasets [ORAS4 (purple), SODA (dark blue), EN4l09 (blue), EN4g10 

(light blue), ECCOV4R4 (yellow), GOADS (orange), ICOADS_Kobe (red)]. (c,d) as in (a,b) but 

for the anomalous values after removing the monthly climatology.   
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Figure. S2 (top) As in Fig. 1e but only the SST and surface wind biases statistically significant at 

the 99.5% confidence level. The thermocline depth anomalies (contours) that are not statistically 

significant at the 99.5% confidence level are masked with black stippling. The effect of different 

ensemble sizes on the estimate of climatological bias in the three forecast ensembles are evaluated 

using bootstrap analysis. To test whether a climatological bias is significantly different from zero, 

a bootstrapped distribution of 5,000 climatological bias is calculated based on any 10 members 

randomly selected (with replacement) from the full forecast ensemble. A positive bias is significant 

at 99.5% confidence level if its bootstrapped distribution having fewer than 25 values that are 

below zero (p<25/5,000), vice versa for a negative bias. (bottom) The climatological SST bias (°C) 

averaged over the equatorial Pacific (3°S-3°N; 140°E-80°W) for the ensemble forecasts initialized 

in November (red), March (green), and June (blue). The thick curves represent the ensemble mean 
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based on all available members, and the shading indicates the range (minimum to maximum) of 

ensemble mean based on 5,000 bootstrapped samples of 10 members. There are 40, 20, and 10 

members in the November, March, and June forecasts, respectively.  
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Figure S3. As in Fig. 5, but for composites of 1-yr La Niña, 2-yr El Niño, and 2-yr La Niña events. 

The statistical significance of these anomalies is shown in Fig. S4. 
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Figure S4. As in Figs. 5 and S3 but only the SST and surface wind anomalies statistically 

significant at the 95% confidence levels are shown for all four types of events. The thermocline 

depth anomalies (contours) that are not statistically significant at the 95% confidence level are 

masked with black stippling. 
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Figure S5. As in Fig. 6, but for composites of 1-yr La Niña, 2-yr El Niño, and 2-yr La Niña events. 

The statistical significance of these anomalies is shown in Fig. S6. 
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Figure S6. As in Figs. 6 and S5 but only the SST and surface wind anomalies statistically 

significant at the 95% confidence levels are shown for all four types of events. 
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Figure S7. As in Fig.7, but for composites of 1-yr La Niña, 2-yr El Niño, and 2-yr La Niña events. 

The statistical significance of these anomalies is shown in Fig. S8. 
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Figure S8. As in Figs 7 and S7 but only the SST and surface wind anomalies statistically 

significant at the 95% confidence levels are shown for all four types of events. The SLP and Z200 

anomalies (contours) that are not statistically significant at the 95% confidence level are masked 

with black stippling.  
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Figure S9. As in Figs 7 and S7 but SLP, surface wind, Z200, and ocean precipitation anomalies 

are based on the JAR55, and land precipitation anomalies are based on the CRU.  


