
Southern Ocean mean state constrains historical warming via 1 
radiative forcing and evaporative damping 2 

 3 

 4 

 5 

Yiqun Tian1, Shineng Hu1,2*, Clara Deser3, Xianglei Huang4, Xiuhong Chen4 6 

 7 
 8 

1 Division of Earth and Climate Sciences, Nicholas School of the Environment, Duke University, 9 
Durham, NC, USA 10 

2 Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke 11 
University, Durham, NC, USA 12 

3 Climate and Global Dynamics, National Center for Atmospheric Research, Boulder, CO, USA 13 
4 Department of Climate and Space Sciences and Engineering, the University of Michigan, Ann 14 

Arbor, MI, USA 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

* Corresponding author: Shineng Hu (shineng.hu@duke.edu)  26 

mailto:shineng.hu@duke.edu


Abstract 27 

Large uncertainties in equilibrium climate sensitivity (ECS) and transient climate response 28 
(TCR) have persisted for several decades and are linked to discrepancies in historical 29 
warming rate across models. Analyzing 754 historical simulations of 30 Coupled Model 30 
Intercomparison Project 6 (CMIP6) models, including 12 Large-Ensemble (LE) models, we 31 
identify the Southern Ocean (SO) climatological sea surface temperature (SST) as one 32 
potential source of inter-model spread in the twentieth-century warming. Models with a 33 
colder SO tend to simulate significantly stronger SO and global warming trends. This 34 
negative correlation results from CO₂-induced surface longwave radiative forcing 35 
modulated by climatological precipitable water and from warming-induced evaporative 36 
damping modulated by climatological latent heat flux. These two mechanisms, mainly the 37 
evaporative damping, explain 70% of the inter-model spread in the SO warming. Our 38 
findings highlight the need to reduce the model bias and spread in SO climatological SST to 39 
better constrain anthropogenic SO and global warming. 40 

Main 41 

ECS and TCR are two key metrics of climate sensitivity quantifying the global mean surface 42 
temperature (GMST) response to a doubling of atmospheric CO₂. ECS measures the GMST 43 
increase at equilibrium following a doubling of CO₂ relative to the preindustrial period, whereas 44 
TCR represents the GMST change at the time of CO₂ doubling under a 1% per year increase in 45 
CO₂, reflecting the transient response of the climate system1. Better understanding the physical 46 
processes and model characteristics that influence ECS and TCR is crucial for assessing the pace 47 
and amplitude of human-induced warming and for informing effective mitigation and adaptation 48 
strategies. Despite continuous advances in model development, large uncertainties in model-49 
based estimates of ECS and TCR have persisted over the past few decades, including the most 50 
recent CMIP61.  51 

From the classical forcing-feedback-response perspective, climate sensitivity can be influenced 52 
by either external forcing or internal climate feedback, broadly defined. The proposed candidates 53 
include, for example, cloud feedback2,3,4,5,6,7,8,9, efficacy of radiative forcings10, ocean heat 54 
uptake11,12, and warming pattern13,14. These factors are not mutually exclusive. In parallel, 55 
another group of studies aims to relate climate sensitivity to the climatological mean state15,16,17. 56 
Recently, SO mean-state SST18,19 and sea ice extent20 are suggested to be linked to low cloud 57 
feedback and thus modulate climate sensitivity.  58 

Accurately simulating the historical climate states, both the mean and the change, is a necessary, 59 
albeit not sufficient, condition to qualify a model for reliable future projection. Not surprisingly, 60 
climate models with a higher ECS or TCR tend to simulate a stronger anthropogenic warming 61 
rate in the historical period, suggesting an inherent link between these climate sensitivity metrics 62 
and the historical warming21. Understanding and constraining the inter-model spread in the 63 
historical warming rate, the aim of this study, is therefore essential for improving projections of 64 
future warming. 65 



The historical warming rate in observations or any individual model simulation is affected by 66 
both internal climate variability and externally forced climate response, while ECS or TCR by 67 
definition only quantifies the latter. To reconcile this, initial-condition LE simulations with a 68 
given model are designed to separate the forced climate response from internal climate 69 
variability22. The ensemble mean of LE historical simulations reflects only the externally forced 70 
climate response, while for each ensemble member the residual after the removal of ensemble 71 
mean isolates the internal climate variability. As we will show later, the usage of LE simulations 72 
is critical if one aims to investigate the true, externally forced warming rate for the historical 73 
period in models.  74 

 75 

 76 
Figure 1. Southern Ocean (SO) climatological sea surface temperature (SST) constrains 77 
historical warming. a, Historical global mean SST trend (1925-2014) from 12 large-ensemble 78 
(LE) models (≥30 members each). Grey squares show individual ensemble members and red 79 
squares denote ensemble means. Observational SSTs are shown as dashed horizontal lines. b, 80 
Inter-model correlation between local SST climatology (1850-1920) and global mean SST trend 81 
(1925-2014) for the 12 LE models based on ensemble means. Stippling marks areas where the 82 
correlation is insignificant at the 95% confidence level, according to a two-sided Student's t-test. 83 
c, As in b, but for the correlation between SO (40°S-60°S; highlighted with a blue box) SST 84 
climatology and SST trend at each ocean grid. d, Relation between SO SST climatology and SO 85 
SST trend across models. e, Relation between SO SST trend and global mean SST trend across 86 
models. In panels d and e, uncertainty bars denote one inter-member standard deviation, and r 87 
indicates the Pearson correlation coefficient for the 12 LE models. Observations are also 88 
included in panel d and e for comparison. 89 

 90 



Model disagreement in the historical warming rate 91 

30 models in total from the CMIP6 archive are analyzed, each with at least 5 ensemble members 92 
(Methods; SI Table 1). Most of our analysis is focused on the 12 LE models that have at least 30 93 
ensemble members each. Within a single model, the global mean sea surface temperature 94 
(GMSST) trend or the GMST trend during a 90-year historical period (1925-2014) can differ by 95 
up to a factor of 4 among the ensemble members, highlighting a strong role of internal variability 96 
(Fig. 1a). Indeed, the historical GMSST trend due to internal variability can reach up to 60% of 97 
the externally forced trend. Therefore, if one or only a few realizations of each model is used, the 98 
large inter-model spread of historical climate trends could be largely affected by internal 99 
variability.  100 

Similarly, there is also a large spread in the ensemble-mean (i.e. forced) GMSST trend across the 101 
12 LE models, ranging from 0.35°C to 0.82°C per 90 years (Fig. 1a). A similar conclusion can be 102 
drawn for GMST trends as the two are highly correlated (Extended Data Fig. 1). For comparison, 103 
the observed GMSST trend is 0.54°C per 90 years on average across 3 datasets (see Methods). 104 
Taken together, climate models differ by more than a factor of 2 in their simulated forced 105 
historical GMSST warming rates, an amount which is significantly larger than the observational 106 
uncertainty of trends across different datasets (0.45-0.66°C per 90 years). These model 107 
uncertainties in the simulated forced historical warming rate reflect true inter-model 108 
discrepancies not resultant from internal variability, given the large ensemble sizes for each 109 
model LE. 110 

Tracing the uncertainties to the Southern Ocean 111 

Motivated by previous studies15,16,17, we investigate the possibility that the inter-model spread of 112 
forced historical warming among the CMIP6 LE models can be traced to the climatological mean 113 
state. We firstly compute the inter-model correlation between the ensemble-mean historical 114 
GMSST trend during 1925-2014 and the ensemble-mean climatological SST locally at each 115 
ocean grid averaged over a prior period, 1850-1920. Robust negative correlations are identified 116 
in almost the entire SO (Fig. 1b). Models with a cooler SO mean state tend to simulate a stronger 117 
historical GMSST warming (also see Extended Data Fig. 2), thus implying a higher climate 118 
sensitivity. In fact, the climatological SST in the SO exhibits a particularly large inter-model 119 
spread (6-10°C across 12 LE models), and two-thirds of the 12 LE models have an anomalously 120 
warm SO compared to observations23,24,25,26 (Fig. 1d; Extended Data Fig. 2). Negative 121 
correlations are also seen in the subpolar North Atlantic but much more confined in space (Fig. 122 
1b). Tropical ocean climatological SST is positively correlated with the historical GMSST trend, 123 
with pronounced positive correlations on either side of the equator in the western and central 124 
tropical Pacific and to a weaker extent also in the tropical Atlantic (Fig. 1b). Whether these 125 
positive correlations indicate a physical link between the tropical ocean climatological SST and 126 
the ensemble-mean historical GMSST trend or partly reflect the SO-tropical ocean connection in 127 
climatological SST (Extended Data Fig. 3) warrants further investigation. Regardless, the inter-128 
model spread of climatological SST is relatively small in the off-equatorial regions of the 129 
west/central tropical Pacific compared to the SO (Extended Data Fig. 4). Thus, we focus on the 130 
SO for the remainder of this study. 131 



How might the inter-model spread in climatological SST in the SO be linked to the spread in 132 
GMSST trend? Although the correlations identified here do not necessarily imply causality, 133 
previous studies on the teleconnected impacts of the SO suggest that a mechanistic explanation, 134 
beyond merely statistical, is possible. In particular, SO SST anomalies have been shown to 135 
influence surface winds over the southeastern subtropical Pacific, altering the local mixed layer 136 
heat budget via the wind-evaporation-cloud-SST feedback mechanism12,27,28. The resulting 137 
subtropical SST anomalies can then extend into the deep tropics via coupled ocean-atmosphere 138 
processes, impacting atmospheric deep convection and associated Rossby Wave teleconnections 139 
to the Northern Hemisphere12,28,29,30,31.It is thus reasonable to speculate that the SO 140 
climatological SST first modulates the local SST trend, which in turn impacts the GMSST trend 141 
through the teleconnection pathways mentioned above. This conjecture is supported by the 142 
negative correlation between local SO climatological SST and SST trend (r = -0.84 for 12 LE 143 
models; Fig. 1d) and the positive correlation between the SO SST trend and GMSST trend (r = 144 
0.78 for 12 LE models; Fig. 1e); we note that the latter correlation remains strong when the SO 145 
region is excluded from the GMSST calculation (r = 0.69). These conclusions remain valid when 146 
the analysis is expanded to the 30 climate models with smaller ensemble sizes (Extended Data 147 
Fig. 5). Furthermore, the SO climatological SST is negatively correlated with the SST trend 148 
nearly everywhere except the Arctic, equatorial eastern Pacific and Antarctic coastal regions 149 
(e.g., Weddell Sea, Amundsen Sea, and Bellingshausen Sea) (Fig. 1c). Nevertheless, it remains 150 
elusive why the SO SST trend is negatively correlated with the SO climatological SST. To 151 
elucidate this potential linkage, in the next section we will focus on the SO and quantify the 152 
contribution of the SO climatological SST to the inter-model spread in the SO forced historical 153 
warming, ranging from 0.22 K to 0.74 K per 90 years across the 12 LEs (Fig. 1d). 154 

Modulating effect of Southern Ocean climatological SST on local warming 155 

The mixed layer heat budget for the SO SST change in the historical period can be written as:   156 

																																																																	𝐶 !"
!#
=	𝑄$%# − 𝐷&                                                     (1) 157 

where 𝐶 is the ocean mixed layer heat capacity, 𝑇 is SST, 𝑄$%# ≈ 𝐹 −	𝜆'𝑇 is the net ocean 158 
surface heat flux consisting of radiative forcing (𝐹) and net surface climate feedback (−	𝜆'𝑇), 159 
and 𝐷& is the divergence of ocean heat transport. For an ocean mixed layer depth of 100 m 160 
(Extended Data Fig. 6) and an SST change of 0.44°C during 1925-2014 averaged across the 12 161 
LEs (Fig. 1d), 𝐶 𝑑𝑇 𝑑𝑡⁄  is estimated to be 0.06 W/m2, an order of magnitude smaller than CO2-162 
induced radiative forcing for this period (0.96 W/m2; Methods). This implies a quasi-equilibrium 163 
state under a slowly evolving, transient climate in which	𝑄$%# ≈ 𝐷&, as also reported by previous 164 
studies32. In a two-ocean layer conceptual framework33, 𝐷& is often parameterized as 𝜆&(𝑇 − 𝑇!) 165 
where the deep ocean temperature change 𝑇! is relatively small for short-term changes. Taken 166 
together, it leads us to derive that,       167 

𝑇 ≈ 	 (
)	
≡		 (

)!+)"	
																																																																			(2) 168 

where 𝜆 is the effective surface climate feedback that includes contributions from both the net 169 
surface heat flux-induced atmospheric damping (𝜆') and the ocean heat transport-induced 170 
damping (𝜆&). According to Eq. (2), the inter-model spread in SO SST change over the period 171 
1925-2014 is determined by the radiative forcing (𝐹) and the effective surface climate feedback 172 



(𝜆). These two factors will be discussed below firstly for the multi-model mean across the 12 LE 173 
models and then for the inter-model spread with connections to the climatological SST. 174 

During 1925-2014, atmospheric CO2 is the dominant radiative forcing agent in the SO, although 175 
other forcing agents may play a significant role in certain periods (e.g., ozone forcing after the 176 
1970s34. Here we focus on the CO2 -induced radiative forcing in our analysis of 𝐹. Using an 177 
offline radiative transfer model, we estimate that the radiative forcing 𝐹 due to the CO2 increase 178 
during 1925-2014 (from 305 to 400 ppm) is 0.96 W m⁻² (Methods). The forced SO SST change 179 
𝑇 during 1925-2014 is 0.44 K on average across the LEs. Utilizing Eq. (2), we can estimate that 180 
the effective surface climate feedback 𝜆 is 2.18 W m⁻² K⁻¹.  181 

 182 
Figure 2. State dependence of CO2 surface radiative forcing. Mechanism linking CO₂-induced 183 
surface downward longwave radiative forcing in clear sky (rldscs) to climatological atmospheric 184 
water vapor content (prw). a, Climatological sea surface temperature (SST; contours at 1 °C 185 
interval) overlaid on climatological precipitable water (shading) for CanESM5. b, As in a, but 186 
for MIROC6. c, Relation between Southern Ocean (SO; 40°S-60°S) SST climatology and SO 187 
climatological precipitable water across models. d, Relation between SO climatological 188 
precipitable water and SO historical (1925-2014) CO₂-induced surface clear-sky longwave 189 
radiative flux (downward positive) from the offline radiative calculation (Methods). In panels c 190 
and d, uncertainty bars denote one inter-member standard deviation, and r indicates the Pearson 191 
correlation coefficient. 192 

How do these determining factors, 𝐹 and 𝜆, differ across climate models? Are they dependent on 193 
climatological SST? As CO₂ increases, the atmospheric emissivity increases, which therefore 194 
enhances the downwelling longwave radiative flux reaching the surface. In models with a 195 
warmer climatological SST, the warmer atmosphere contains more precipitable water following 196 
the Clausius-Clapeyron relation (Fig. 2a-c; Extended Data Fig. 7), and the increase of 197 



atmospheric emissivity due to the increased CO2 is less effective for an already opaque 198 
atmosphere. Although the negative correlation between climatological precipitable water and 199 
surface downwelling clear-sky longwave radiative flux (Extended Data Fig. 8) is consistent with 200 
this argument, an apparent caveat exists: the diagnosed increase in downward longwave radiative 201 
flux also includes the temperature increase effect. To reconcile this, offline radiative calculations 202 
of CO2 increase are conducted for each LE model separately with its own vertical profiles of 203 
climatological temperature and humidity over the SO (Methods). Based on these calculations, 204 
models with more precipitable water indeed have a weaker CO₂ surface radiative forcing (r = -205 
0.97), although the forcing (𝐹) spread [0.89 W m-2, 1.02 W m2] is relatively small (Fig. 2d). 206 
Substituting the 𝐹 spread into Eq. (2) yields a corresponding 𝑇 spread of [0.41 K, 0.47 K], which 207 
explains about 12% of the total 𝑇 spread [0.22 K, 0.74 K] across the 12 LEs. 208 

 209 
Figure 3. State dependence of evaporative damping effect. a, Climatological sea surface 210 
temperature (SST; contours at 1 °C interval) overlaid on surface latent heat flux climatology 211 
(upward positive; shadings) for CanESM5. b, As in a, but for MIROC6. c, Relation between 212 
Southern Ocean (40°S-60°S; SO) SST climatology and SO climatological surface latent heat flux 213 
across the ensemble means of the 12 LE models. In panel c, uncertainty bars denote one inter-214 
model standard deviation, and r indicates the Pearson correlation coefficient. 215 

The effective climate feedback consists of the contribution from both atmospheric damping (𝜆') 216 
and oceanic damping (𝜆&), and the former further consists of four components (𝜆' = 𝜆,- +217 
𝜆.- + 𝜆,/ + 𝜆./) including the surface shortwave and longwave radiative fluxes, sensible and 218 
latent heat fluxes, respectively. Among them, the evaporative damping feedback (𝜆./) is directly 219 
modulated by the climatological SST32. Latent heat flux can be approximated as, 𝐿𝐻 ≈220 
	𝜌'01𝐿2𝐶3𝑊𝑞∗(1 −ℋ), where 𝜌'01 is air density, 𝐿2 is latent heat of vaporization, 𝐶3 is transfer 221 
coefficient, W is surface wind speed, ℋ is relative humidity, and 𝑞∗ is saturation specific 222 
humidity exponentially dependent on SST (i.e., Clausius-Clapeyron relation). Therefore, we 223 
have, 224 

																																																																													𝜆./ ≡
5./
5"

≈ 𝛼𝐿𝐻::::																																																												(3)                                                        225 

constrained by the climatological latent heat flux (denoted by the overbar) and the parameter 𝛼 ≈ 226 
0.07 K-1 from the Clausius-Clapeyron relation. Models with a warmer climatological SST tend to 227 



have a higher climatological latent heat flux in the SO (r = 0.94 for 12 LE models), the difference 228 
of which can reach as large as 19 W	m67 between the warmest and coldest models (Fig. 3; also 229 
see Extended Data Fig. 9). Based on Eq. (3), 𝜆./ can thus differ by 1.33 𝑊	𝑚67	𝐾68 across the 230 
12 LE models, which is substantial compared to the multi-model mean value of 𝜆, 2.18 W m-231 
2	𝐾68. Allowing 𝜆 to vary over the range of [1.51 W m-2	𝐾68, 2.84 W m-2	𝐾68], we estimate the 232 
𝑇 spread due to the SST-dependent 𝜆./ spread to be [0.34 K, 0.64 K], which explains about 58% 233 
of the total 𝑇 spread [0.22 K, 0.74 K].  234 

Taken together, our theoretical estimate suggests that the LE spread of climatological SST in the 235 
SO can explain at least 70% of the spread of the local forced historical SST trend, 12% from 236 
CO2-induced radiative forcing and 58% from warming-induced evaporative damping.  237 

Finally, we briefly discuss other possible mechanisms that are potentially related to 238 
climatological SST. Ocean mixed layer depth, which determines the heat capacity 𝐶 in Eq. (1), 239 
varies by ~40% across the models investigated, and its relation with climatological SST is 240 
insignificant (Extended Data Fig. 6). Also, its influence on the spread of SO SST trends should 241 
be small, given that the temperature tendency term is an order of magnitude smaller than the 242 
CO2-induced radiative forcing in Eq. (1). A cooler SO is found to be associated with a greater 243 
Antarctic sea ice extent (Extended Data Fig. 10) and thus a larger ‘capacity of change’18, which 244 
can potentially favor stronger ice albedo feedback further mediated by low cloud changes20. But 245 
the state dependence of this feedback loop involving ice extent has yet to be rigorously 246 
demonstrated and is hard directly quantify without targeted numerical experiments. We have also 247 
attempted to investigate the inter-model relation between climatological SST and cloud-related 248 
quantities, as cloud feedback is known to be important for the SO climate6,8. However, no 249 
statistically significant relationships have been identified for any of the cloud-related variables 250 
investigated, including climatological cloud area fraction, liquid water path, ice water path, 251 
cloud-induced surface shortwave and longwave radiative fluxes (Extended Data Fig. 11). Upper 252 
ocean salinity has been proposed to influence ocean stratification and, consequently, the rate of 253 
SO surface warming35. However, this mechanism is not evident in our analysis: climatological 254 
sea surface salinity is neither correlated with the climatological SST nor correlated with the 255 
historical SST trend in the SO across the 12 LEs (Extended Data Fig. 12).  256 

Discussion 257 

Based on the 12 LE models (each having at least 30 members) in the CMIP6 archive, we find a 258 
large (factor of 2 to 3) inter-model spread in the magnitude of forced global warming over the 259 
historical period 1925-2014, which we suggest may be partially attributable to the spread of 260 
climatological SO SST. Models with a climatologically warmer SO tend to simulate a weaker SO 261 
SST warming, which potentially contributes to a weaker GMSST warming through 262 
teleconnections. Two mechanisms are proposed to explain the state dependence of SO surface 263 
warming, and theoretical quantifications are further provided. First, a warmer SO is associated 264 
with a warmer, moister atmosphere that acts to suppress the surface longwave radiative forcing 265 
induced by a certain increase of atmospheric CO2. Second, a warmer SO is associated with a 266 
larger latent heat flux that acts to enhance the evaporative damping effect. These two SO 267 
climatological SST-dependent mechanisms together can explain 70% of the model spread of SO 268 
warming, 12% through the CO2 forcing and 58% through the evaporative damping. Including all 269 
30 CMIP6 models (18 of which have ensemble sizes between 5-29 members) yields overall 270 
consistent results. 271 



Complementing the existing literature with various proposed approaches4,6,10,14,35,36,37,38, our 272 
study provides another possible candidate to constrain ECS with the SO climatological SST, with 273 
clear theoretical support beyond purely statistical relations. For the historical period, the 274 
observational records fall well within the inter-model relation between the SO ensemble-mean 275 
climatological SST and the SO ensemble-mean historical SST trend across the 12 LEs, validating 276 
our methodology (Fig. 1d; Extended Data Fig. 5).  277 

Our study highlights an urgent need for reducing the SO climatological SST bias and narrowing 278 
its inter-model spread (Fig. 1d; Extended Data Fig. 4) in order to improve the SO SST response 279 
to external forcing. To illustrate this opportunity, we analyze the Community Earth System 280 
Model version 1 (CESM1) historical simulations (10 members each) in its low-resolution (LR) 281 
and high-resolution (HR) configurations39. Compared to CESM1-LR, CESM1-HR has a warmer 282 
SO climatological SST and a weaker SO historical warming, consistent with the relation 283 
identified for the CMIP6 model ensemble (Fig. 1d, Extended Data Fig. 5). More targeted model 284 
experiments with a modified SO climatological SST are now underway to explicitly test its 285 
influence on the historical warming in the SO and the globe.  286 



Methods 287 

Observational datasets 288 

Three monthly observational SST datasets are used: (1) National Oceanic and Atmospheric 289 
Administration Extended Reconstructed Sea Surface Temperature Version 5 (ERSSTv5) with a 290 
resolution of 2° × 2°40. (2) Hadley Centre Sea Ice and SST v.1.1 (HadISST 1.1) with a resolution 291 
of 1° × 1°41. (3) Centennial In Situ Observation-Based Estimates of the Variability of SST and 292 
Marine Meteorological Variables (COBE) with a resolution of 1° × 1°42. For consistency across 293 
datasets and comparability with model outputs, all SST products are regridded to a resolution of 294 
1° × 1°. 295 

CMIP6 LE simulations 296 

We use historical all-forcing simulations from the CMIP6 archive (Supplementary Table S1). A 297 
total of 30 CMIP6 LE models are analyzed, each with at least 5 ensemble members. With SST as 298 
an example, 4 models have 5-9 members, 10 models have 10-19 members, 4 models have 20-29 299 
members, and 12 models have more than 30 members, resulting in a total of 754 ensemble 300 
members from 30 models. The ensemble sizes of other main variables are generally comparable 301 
with SST. Detailed information on model names, ensemble sizes, and variable availability is 302 
provided in Supplementary Table S1. All the model variables are regridded to a resolution of 303 
1° × 1° for inter-model comparison. 304 

The primary variables analyzed include SST (tos), surface temperature (ts), atmosphere water 305 
vapor content (prw), sea-ice area percentage (siconc), ocean mixed layer depth defined by sigma 306 
T (mlotst), surface upward latent heat flux (hfls), surface downwelling shortwave flux in air 307 
(rsds), surface downwelling shortwave flux in air assuming clear sky (rsdscs), surface 308 
downwelling longwave flux in air (rlds), surface downwelling longwave flux in air assuming 309 
clear sky (rldscs), atmosphere cloud condensed water content (clwvi), atmosphere cloud ice 310 
content (clivi), and cloud area fraction (clt). 311 

CESM1 simulations 312 

CESM v1.3 with high-resolution and low-resolution (CESM1-HR, CESM1-LR) configurations 313 
were analyzed. Both models contain 10 ensemble members. For the historical trend analysis, 314 
years 1925-2005 are from the historical simulations, and years 2006-2014 are from the RCP8.5 315 
simulations. CESM1-LR has a resolution of 1° × 1° for all components. CESM1-HR has a 316 
resolution of 0.25° × 0.25° for atmosphere and land models and 0.1° × 0.1° for the ocean and sea-317 
ice models. Surface temperature is used for comparison with SST in CMIP6 simulations. 318 

Definitions 319 

In this study, the SO is defined as the region spanning 40°S to 60°S. The climatological mean 320 
state is calculated over the period 1850–1920, while the historical linear trend is computed over a 321 
subsequent 90-year period 1925-2014. The two time periods are chosen to be non-overlapping to 322 
ensure that the mean state and trend metrics remain independent and do not influence each other. 323 
All the results presented are based on annual averages. 324 

  325 



Statistical significance 326 

To assess the robustness of our results, we conduct significance tests throughout the study using 327 
the two-tailed Student’s t-test. Statistical significance is evaluated at the 95% confidence level 328 
unless otherwise specified. This approach is applied to determine whether the diagnosed 329 
differences or trends are unlikely to occur by random chance, thereby enhancing the reliability of 330 
the reported findings. 331 

CO2-induced downward surface longwave radiative forcing from the offline radiative 332 
transfer model  333 

CO2-induced downward surface longwave radiative forcing employed to test the causal 334 
hypothesis was obtained by taking the difference between two sets of clear-sky downward 335 
longwave radiations at the surface (rldscs). They were calculated using a versatile offline 336 
radiative transfer model widely used in the atmospheric radiation community, MODTRAN 5.243. 337 
For the first set of calculations, the inputs to MODTRAN 5.2 are the mean-state water vapor and 338 
temperature profiles as well as surface temperature climatology from each individual model 339 
simulation, respectively. CO2 concentration is set to be 305 ppm, and other trace gases are from 340 
the default typical profiles included in MODTRAN 5.244. The inputs to the second set are the 341 
same as the first one except for the CO₂ concentration being instantaneously increased by 31%, 342 
i.e., approximately the historical rise from 305 ppm to 400 ppm between 1925 and 2014. The 343 
differences in rldscs between the two sets thus reflect only the direct effect of CO₂, excluding 344 
feedback processes.  345 



Data Availability 346 

All data used in this study are available online. For observational datasets, the NOAA’s 347 
ERSSTv5 data are available at https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html; 348 
HadISST 1.1 data at https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html; COBE 349 
SST at https://psl.noaa.gov/data/gridded/data.cobe.html. For model simulations, CMIP6 data are 350 
available at: https://aims2.llnl.gov/search; CESM1-HR and CESM1-LR data are available 351 
through the Casper cluster at /glade/campaign/collections/cmip/CMIP6/CESM-352 
HR/CVDP/archive_remapped/. 353 
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