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Abstract

Large uncertainties in equilibrium climate sensitivity (ECS) and transient climate response
(TCR) have persisted for several decades and are linked to discrepancies in historical
warming rate across models. Analyzing 754 historical simulations of 30 Coupled Model
Intercomparison Project 6 (CMIP6) models, including 12 Large-Ensemble (LE) models, we
identify the Southern Ocean (SO) climatological sea surface temperature (SST) as one
potential source of inter-model spread in the twentieth-century warming. Models with a
colder SO tend to simulate significantly stronger SO and global warming trends. This
negative correlation results from CO:-induced surface longwave radiative forcing
modulated by climatological precipitable water and from warming-induced evaporative
damping modulated by climatological latent heat flux. These two mechanisms, mainly the
evaporative damping, explain 70% of the inter-model spread in the SO warming. Our
findings highlight the need to reduce the model bias and spread in SO climatological SST to
better constrain anthropogenic SO and global warming.

Main

ECS and TCR are two key metrics of climate sensitivity quantifying the global mean surface
temperature (GMST) response to a doubling of atmospheric CO2. ECS measures the GMST
increase at equilibrium following a doubling of CO:- relative to the preindustrial period, whereas
TCR represents the GMST change at the time of CO: doubling under a 1% per year increase in
COs, reflecting the transient response of the climate system!. Better understanding the physical
processes and model characteristics that influence ECS and TCR is crucial for assessing the pace
and amplitude of human-induced warming and for informing effective mitigation and adaptation
strategies. Despite continuous advances in model development, large uncertainties in model-
based estimates of ECS and TCR have persisted over the past few decades, including the most
recent CMIP6'.

From the classical forcing-feedback-response perspective, climate sensitivity can be influenced
by either external forcing or internal climate feedback, broadly defined. The proposed candidates
include, for example, cloud feedback?3#36.7:89  efficacy of radiative forcings!?, ocean heat
uptake!’12, and warming pattern'>!4. These factors are not mutually exclusive. In parallel,
another group of studies aims to relate climate sensitivity to the climatological mean state
Recently, SO mean-state SST'®!° and sea ice extent?® are suggested to be linked to low cloud
feedback and thus modulate climate sensitivity.

15,16,17

Accurately simulating the historical climate states, both the mean and the change, is a necessary,
albeit not sufficient, condition to qualify a model for reliable future projection. Not surprisingly,
climate models with a higher ECS or TCR tend to simulate a stronger anthropogenic warming
rate in the historical period, suggesting an inherent link between these climate sensitivity metrics
and the historical warming?!. Understanding and constraining the inter-model spread in the
historical warming rate, the aim of this study, is therefore essential for improving projections of
future warming.
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The historical warming rate in observations or any individual model simulation is affected by
both internal climate variability and externally forced climate response, while ECS or TCR by
definition only quantifies the latter. To reconcile this, initial-condition LE simulations with a
given model are designed to separate the forced climate response from internal climate
variability??>. The ensemble mean of LE historical simulations reflects only the externally forced
climate response, while for each ensemble member the residual after the removal of ensemble
mean isolates the internal climate variability. As we will show later, the usage of LE simulations
is critical if one aims to investigate the true, externally forced warming rate for the historical
period in models.
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Figure 1. Southern Ocean (SO) climatological sea surface temperature (SST) constrains
historical warming. a, Historical global mean SST trend (1925-2014) from 12 large-ensemble
(LE) models (=30 members each). Grey squares show individual ensemble members and red
squares denote ensemble means. Observational SSTs are shown as dashed horizontal lines. b,
Inter-model correlation between local SST climatology (1850-1920) and global mean SST trend
(1925-2014) for the 12 LE models based on ensemble means. Stippling marks areas where the
correlation is insignificant at the 95% confidence level, according to a two-sided Student's t-test.
¢, As in b, but for the correlation between SO (40°S-60°S; highlighted with a blue box) SST
climatology and SST trend at each ocean grid. d, Relation between SO SST climatology and SO
SST trend across models. e, Relation between SO SST trend and global mean SST trend across
models. In panels d and e, uncertainty bars denote one inter-member standard deviation, and r
indicates the Pearson correlation coefficient for the 12 LE models. Observations are also
included in panel d and e for comparison.
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Model disagreement in the historical warming rate

30 models in total from the CMIP6 archive are analyzed, each with at least 5 ensemble members
(Methods; SI Table 1). Most of our analysis is focused on the 12 LE models that have at least 30
ensemble members each. Within a single model, the global mean sea surface temperature
(GMSST) trend or the GMST trend during a 90-year historical period (1925-2014) can differ by
up to a factor of 4 among the ensemble members, highlighting a strong role of internal variability
(Fig. 1a). Indeed, the historical GMSST trend due to internal variability can reach up to 60% of
the externally forced trend. Therefore, if one or only a few realizations of each model is used, the
large inter-model spread of historical climate trends could be largely affected by internal
variability.

Similarly, there is also a large spread in the ensemble-mean (i.e. forced) GMSST trend across the
12 LE models, ranging from 0.35°C to 0.82°C per 90 years (Fig. 1a). A similar conclusion can be
drawn for GMST trends as the two are highly correlated (Extended Data Fig. 1). For comparison,
the observed GMSST trend is 0.54°C per 90 years on average across 3 datasets (see Methods).
Taken together, climate models differ by more than a factor of 2 in their simulated forced
historical GMSST warming rates, an amount which is significantly larger than the observational
uncertainty of trends across different datasets (0.45-0.66°C per 90 years). These model
uncertainties in the simulated forced historical warming rate reflect true inter-model
discrepancies not resultant from internal variability, given the large ensemble sizes for each
model LE.

Tracing the uncertainties to the Southern Ocean
Motivated by previous studies!>!%!7 we investigate the possibility that the inter-model spread of
forced historical warming among the CMIP6 LE models can be traced to the climatological mean
state. We firstly compute the inter-model correlation between the ensemble-mean historical
GMSST trend during 1925-2014 and the ensemble-mean climatological SST locally at each
ocean grid averaged over a prior period, 1850-1920. Robust negative correlations are identified
in almost the entire SO (Fig. 1b). Models with a cooler SO mean state tend to simulate a stronger
historical GMSST warming (also see Extended Data Fig. 2), thus implying a higher climate
sensitivity. In fact, the climatological SST in the SO exhibits a particularly large inter-model
spread (6-10°C across 12 LE models), and two-thirds of the 12 LE models have an anomalously
warm SO compared to observations?>>423-26 (Fig, 1d; Extended Data Fig. 2). Negative
correlations are also seen in the subpolar North Atlantic but much more confined in space (Fig.
1b). Tropical ocean climatological SST is positively correlated with the historical GMSST trend,
with pronounced positive correlations on either side of the equator in the western and central
tropical Pacific and to a weaker extent also in the tropical Atlantic (Fig. 1b). Whether these
positive correlations indicate a physical link between the tropical ocean climatological SST and
the ensemble-mean historical GMSST trend or partly reflect the SO-tropical ocean connection in
climatological SST (Extended Data Fig. 3) warrants further investigation. Regardless, the inter-
model spread of climatological SST is relatively small in the off-equatorial regions of the
west/central tropical Pacific compared to the SO (Extended Data Fig. 4). Thus, we focus on the
SO for the remainder of this study.
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How might the inter-model spread in climatological SST in the SO be linked to the spread in
GMSST trend? Although the correlations identified here do not necessarily imply causality,
previous studies on the teleconnected impacts of the SO suggest that a mechanistic explanation,
beyond merely statistical, is possible. In particular, SO SST anomalies have been shown to
influence surface winds over the southeastern subtropical Pacific, altering the local mixed layer
heat budget via the wind-evaporation-cloud-SST feedback mechanism!227-28, The resulting
subtropical SST anomalies can then extend into the deep tropics via coupled ocean-atmosphere
processes, impacting atmospheric deep convection and associated Rossby Wave teleconnections
to the Northern Hemisphere!2282%-3031 Tt is thus reasonable to speculate that the SO
climatological SST first modulates the local SST trend, which in turn impacts the GMSST trend
through the teleconnection pathways mentioned above. This conjecture is supported by the
negative correlation between local SO climatological SST and SST trend (r = -0.84 for 12 LE
models; Fig. 1d) and the positive correlation between the SO SST trend and GMSST trend (r =
0.78 for 12 LE models; Fig. 1e); we note that the latter correlation remains strong when the SO
region is excluded from the GMSST calculation (r = 0.69). These conclusions remain valid when
the analysis is expanded to the 30 climate models with smaller ensemble sizes (Extended Data
Fig. 5). Furthermore, the SO climatological SST is negatively correlated with the SST trend
nearly everywhere except the Arctic, equatorial eastern Pacific and Antarctic coastal regions
(e.g., Weddell Sea, Amundsen Sea, and Bellingshausen Sea) (Fig. 1¢). Nevertheless, it remains
elusive why the SO SST trend is negatively correlated with the SO climatological SST. To
elucidate this potential linkage, in the next section we will focus on the SO and quantify the
contribution of the SO climatological SST to the inter-model spread in the SO forced historical
warming, ranging from 0.22 K to 0.74 K per 90 years across the 12 LEs (Fig. 1d).

Modulating effect of Southern Ocean climatological SST on local warming

The mixed layer heat budget for the SO SST change in the historical period can be written as:
dar
CE: Qnet_Do (1)

where C is the ocean mixed layer heat capacity, T is SST, Q. = F — A,T is the net ocean
surface heat flux consisting of radiative forcing (F) and net surface climate feedback (— 1,T),
and D,, is the divergence of ocean heat transport. For an ocean mixed layer depth of 100 m
(Extended Data Fig. 6) and an SST change of 0.44°C during 1925-2014 averaged across the 12
LEs (Fig. 1d), C dT /dt is estimated to be 0.06 W/m?, an order of magnitude smaller than CO»-
induced radiative forcing for this period (0.96 W/m?; Methods). This implies a quasi-equilibrium
state under a slowly evolving, transient climate in which Q. = D,, as also reported by previous
studies®?. In a two-ocean layer conceptual framework??, D, is often parameterized as A, (T — T,)
where the deep ocean temperature change Ty is relatively small for short-term changes. Taken
together, it leads us to derive that,

F F
r= AT Ag+, (2)

where A is the effective surface climate feedback that includes contributions from both the net
surface heat flux-induced atmospheric damping (4,) and the ocean heat transport-induced
damping (4,). According to Eq. (2), the inter-model spread in SO SST change over the period
1925-2014 is determined by the radiative forcing (F) and the effective surface climate feedback



173
174

175
176
177
178
179
180
181

182

183
184
185
186
187
188
189
190
191
192

193
194
195
196
197

(1). These two factors will be discussed below firstly for the multi-model mean across the 12 LE
models and then for the inter-model spread with connections to the climatological SST.

During 1925-2014, atmospheric CO is the dominant radiative forcing agent in the SO, although
other forcing agents may play a significant role in certain periods (e.g., ozone forcing after the
1970s3*. Here we focus on the CO; -induced radiative forcing in our analysis of F. Using an
offline radiative transfer model, we estimate that the radiative forcing F due to the CO; increase
during 1925-2014 (from 305 to 400 ppm) is 0.96 W m2 (Methods). The forced SO SST change
T during 1925-2014 is 0.44 K on average across the LEs. Utilizing Eq. (2), we can estimate that
the effective surface climate feedback 4 is 2.18 W m= K.
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Figure 2. State dependence of CO; surface radiative forcing. Mechanism linking CO:-induced
surface downward longwave radiative forcing in clear sky (vldscs) to climatological atmospheric
water vapor content (prw). a, Climatological sea surface temperature (SST; contours at 1 °C
interval) overlaid on climatological precipitable water (shading) for CanESMS5. b, As in a, but
for MIROC6. ¢, Relation between Southern Ocean (SO; 40°S-60°S) SST climatology and SO
climatological precipitable water across models. d, Relation between SO climatological
precipitable water and SO historical (1925-2014) CO:-induced surface clear-sky longwave
radiative flux (downward positive) from the offline radiative calculation (Methods). In panels ¢
and d, uncertainty bars denote one inter-member standard deviation, and r indicates the Pearson
correlation coefficient.

How do these determining factors, F and A, differ across climate models? Are they dependent on
climatological SST? As CO: increases, the atmospheric emissivity increases, which therefore
enhances the downwelling longwave radiative flux reaching the surface. In models with a
warmer climatological SST, the warmer atmosphere contains more precipitable water following
the Clausius-Clapeyron relation (Fig. 2a-c; Extended Data Fig. 7), and the increase of
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atmospheric emissivity due to the increased CO; is less effective for an already opaque
atmosphere. Although the negative correlation between climatological precipitable water and
surface downwelling clear-sky longwave radiative flux (Extended Data Fig. 8) is consistent with
this argument, an apparent caveat exists: the diagnosed increase in downward longwave radiative
flux also includes the temperature increase effect. To reconcile this, offline radiative calculations
of COz increase are conducted for each LE model separately with its own vertical profiles of
climatological temperature and humidity over the SO (Methods). Based on these calculations,
models with more precipitable water indeed have a weaker CO: surface radiative forcing (r = -
0.97), although the forcing (F) spread [0.89 W m™2, 1.02 W m?] is relatively small (Fig. 2d).
Substituting the F spread into Eq. (2) yields a corresponding T spread of [0.41 K, 0.47 K], which
explains about 12% of the total T spread [0.22 K, 0.74 K] across the 12 LEs.
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Figure 3. State dependence of evaporative damping effect. a, Climatological sea surface
temperature (SST; contours at 1 °C interval) overlaid on surface latent heat flux climatology
(upward positive; shadings) for CanESM35. b, As in a, but for MIROCG. ¢, Relation between
Southern Ocean (40°S-60°S; SO) SST climatology and SO climatological surface latent heat flux
across the ensemble means of the 12 LE models. In panel ¢, uncertainty bars denote one inter-
model standard deviation, and t indicates the Pearson correlation coefficient.

The effective climate feedback consists of the contribution from both atmospheric damping (4,)
and oceanic damping (4,), and the former further consists of four components (1, = Agy, +

Aiw + Asy + Apy) including the surface shortwave and longwave radiative fluxes, sensible and
latent heat fluxes, respectively. Among them, the evaporative damping feedback (4, ) is directly
modulated by the climatological SST*. Latent heat flux can be approximated as, LH =~
PairLyCeW q* (1 — H), where p,;,- is air density, L, is latent heat of vaporization, Cy, is transfer
coefficient, W is surface wind speed, H is relative humidity, and g* is saturation specific
humidity exponentially dependent on SST (i.e., Clausius-Clapeyron relation). Therefore, we
have,

_ OLH _ T
/1L = ? ~ aLH (3)
constrained by the climatological latent heat flux (denoted by the overbar) and the parameter a =~

0.07 K-! from the Clausius-Clapeyron relation. Models with a warmer climatological SST tend to
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have a higher climatological latent heat flux in the SO (r = 0.94 for 12 LE models), the difference
of which can reach as large as 19 W m~2 between the warmest and coldest models (Fig. 3; also
see Extended Data Fig. 9). Based on Eq. (3), A, can thus differ by 1.33 W m™2 K1 across the
12 LE models, which is substantial compared to the multi-model mean value of 4, 2.18 W m-

2K 1. Allowing A to vary over the range of [1.51 W m2 K~1, 2.84 W m2 K~1], we estimate the
T spread due to the SST-dependent 4, ; spread to be [0.34 K, 0.64 K], which explains about 58%
of the total T spread [0.22 K, 0.74 K].

Taken together, our theoretical estimate suggests that the LE spread of climatological SST in the
SO can explain at least 70% of the spread of the local forced historical SST trend, 12% from
COz-induced radiative forcing and 58% from warming-induced evaporative damping.

Finally, we briefly discuss other possible mechanisms that are potentially related to
climatological SST. Ocean mixed layer depth, which determines the heat capacity C in Eq. (1),
varies by ~40% across the models investigated, and its relation with climatological SST is
insignificant (Extended Data Fig. 6). Also, its influence on the spread of SO SST trends should
be small, given that the temperature tendency term is an order of magnitude smaller than the
COz-induced radiative forcing in Eq. (1). A cooler SO is found to be associated with a greater
Antarctic sea ice extent (Extended Data Fig. 10) and thus a larger ‘capacity of change’!'®, which
can potentially favor stronger ice albedo feedback further mediated by low cloud changes®. But
the state dependence of this feedback loop involving ice extent has yet to be rigorously
demonstrated and is hard directly quantify without targeted numerical experiments. We have also
attempted to investigate the inter-model relation between climatological SST and cloud-related
quantities, as cloud feedback is known to be important for the SO climate®®. However, no
statistically significant relationships have been identified for any of the cloud-related variables
investigated, including climatological cloud area fraction, liquid water path, ice water path,
cloud-induced surface shortwave and longwave radiative fluxes (Extended Data Fig. 11). Upper
ocean salinity has been proposed to influence ocean stratification and, consequently, the rate of
SO surface warming®. However, this mechanism is not evident in our analysis: climatological
sea surface salinity is neither correlated with the climatological SST nor correlated with the
historical SST trend in the SO across the 12 LEs (Extended Data Fig. 12).

Discussion

Based on the 12 LE models (each having at least 30 members) in the CMIP6 archive, we find a
large (factor of 2 to 3) inter-model spread in the magnitude of forced global warming over the
historical period 1925-2014, which we suggest may be partially attributable to the spread of
climatological SO SST. Models with a climatologically warmer SO tend to simulate a weaker SO
SST warming, which potentially contributes to a weaker GMSST warming through
teleconnections. Two mechanisms are proposed to explain the state dependence of SO surface
warming, and theoretical quantifications are further provided. First, a warmer SO is associated
with a warmer, moister atmosphere that acts to suppress the surface longwave radiative forcing
induced by a certain increase of atmospheric CO;. Second, a warmer SO is associated with a
larger latent heat flux that acts to enhance the evaporative damping effect. These two SO
climatological SST-dependent mechanisms together can explain 70% of the model spread of SO
warming, 12% through the CO; forcing and 58% through the evaporative damping. Including all
30 CMIP6 models (18 of which have ensemble sizes between 5-29 members) yields overall
consistent results.
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Complementing the existing literature with various proposed approaches*6:10-14:33.36.37.38 " gyyp

study provides another possible candidate to constrain ECS with the SO climatological SST, with
clear theoretical support beyond purely statistical relations. For the historical period, the
observational records fall well within the inter-model relation between the SO ensemble-mean
climatological SST and the SO ensemble-mean historical SST trend across the 12 LEs, validating
our methodology (Fig. 1d; Extended Data Fig. 5).

Our study highlights an urgent need for reducing the SO climatological SST bias and narrowing
its inter-model spread (Fig. 1d; Extended Data Fig. 4) in order to improve the SO SST response
to external forcing. To illustrate this opportunity, we analyze the Community Earth System
Model version 1 (CESM1) historical simulations (10 members each) in its low-resolution (LR)
and high-resolution (HR) configurations®*”. Compared to CESM1-LR, CESM1-HR has a warmer
SO climatological SST and a weaker SO historical warming, consistent with the relation
identified for the CMIP6 model ensemble (Fig. 1d, Extended Data Fig. 5). More targeted model
experiments with a modified SO climatological SST are now underway to explicitly test its
influence on the historical warming in the SO and the globe.
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Methods
Observational datasets

Three monthly observational SST datasets are used: (1) National Oceanic and Atmospheric
Administration Extended Reconstructed Sea Surface Temperature Version 5 (ERSSTvS) with a
resolution of 2° x 2°40, (2) Hadley Centre Sea Ice and SST v.1.1 (HadISST 1.1) with a resolution
of 1° x 1°41(3) Centennial In Situ Observation-Based Estimates of the Variability of SST and
Marine Meteorological Variables (COBE) with a resolution of 1° x 1°4?, For consistency across
datasets and comparability with model outputs, all SST products are regridded to a resolution of
1°x1°.

CMIP6 LE simulations

We use historical all-forcing simulations from the CMIP6 archive (Supplementary Table S1). A
total of 30 CMIP6 LE models are analyzed, each with at least 5 ensemble members. With SST as
an example, 4 models have 5-9 members, 10 models have 10-19 members, 4 models have 20-29
members, and 12 models have more than 30 members, resulting in a total of 754 ensemble
members from 30 models. The ensemble sizes of other main variables are generally comparable
with SST. Detailed information on model names, ensemble sizes, and variable availability is
provided in Supplementary Table S1. All the model variables are regridded to a resolution of

1° x 1° for inter-model comparison.

The primary variables analyzed include SST (tos), surface temperature (ts), atmosphere water
vapor content (prw), sea-ice area percentage (siconc), ocean mixed layer depth defined by sigma
T (mlotst), surface upward latent heat flux (hfls), surface downwelling shortwave flux in air
(rsds), surface downwelling shortwave flux in air assuming clear sky (rsdscs), surface
downwelling longwave flux in air (rlds), surface downwelling longwave flux in air assuming
clear sky (rldscs), atmosphere cloud condensed water content (clwvi), atmosphere cloud ice
content (clivi), and cloud area fraction (clt).

CESM1 simulations

CESM v1.3 with high-resolution and low-resolution (CESM1-HR, CESM1-LR) configurations
were analyzed. Both models contain 10 ensemble members. For the historical trend analysis,
years 1925-2005 are from the historical simulations, and years 2006-2014 are from the RCP8.5
simulations. CESM1-LR has a resolution of 1° x 1° for all components. CESM1-HR has a
resolution of 0.25° % 0.25° for atmosphere and land models and 0.1° % 0.1° for the ocean and sea-
ice models. Surface temperature is used for comparison with SST in CMIP6 simulations.

Definitions

In this study, the SO is defined as the region spanning 40°S to 60°S. The climatological mean
state is calculated over the period 1850—-1920, while the historical linear trend is computed over a
subsequent 90-year period 1925-2014. The two time periods are chosen to be non-overlapping to
ensure that the mean state and trend metrics remain independent and do not influence each other.
All the results presented are based on annual averages.



326

327
328
329
330
331

332
333

334
335
336
337
338
339
340
341
342
343
344
345

Statistical significance

To assess the robustness of our results, we conduct significance tests throughout the study using
the two-tailed Student’s #-test. Statistical significance is evaluated at the 95% confidence level
unless otherwise specified. This approach is applied to determine whether the diagnosed
differences or trends are unlikely to occur by random chance, thereby enhancing the reliability of
the reported findings.

CO:z-induced downward surface longwave radiative forcing from the offline radiative
transfer model

COz-induced downward surface longwave radiative forcing employed to test the causal
hypothesis was obtained by taking the difference between two sets of clear-sky downward
longwave radiations at the surface (rldscs). They were calculated using a versatile offline
radiative transfer model widely used in the atmospheric radiation community, MODTRAN 5.2%,
For the first set of calculations, the inputs to MODTRAN 5.2 are the mean-state water vapor and
temperature profiles as well as surface temperature climatology from each individual model
simulation, respectively. CO; concentration is set to be 305 ppm, and other trace gases are from
the default typical profiles included in MODTRAN 5.2, The inputs to the second set are the
same as the first one except for the CO: concentration being instantaneously increased by 31%,
i.e., approximately the historical rise from 305 ppm to 400 ppm between 1925 and 2014. The
differences in rldscs between the two sets thus reflect only the direct effect of CO-, excluding
feedback processes.
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Data Availability

All data used in this study are available online. For observational datasets, the NOAA’s
ERSSTVS data are available at https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html;
HadISST 1.1 data at https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html; COBE
SST at https://psl.noaa.gov/data/gridded/data.cobe.html. For model simulations, CMIP6 data are
available at: https://aims2.1Inl.gov/search; CESM1-HR and CESM1-LR data are available
through the Casper cluster at /glade/campaign/collections/cmip/CMIP6/CESM-
HR/CVDP/archive remapped/.

Acknowledgments

Y.T. was supported in part by the National Science Foundation (NSF) National Center for
Atmospheric Research (NCAR) Graduate Visitor Program during summer 2025. NSF-NCAR is a
major facility sponsored by the NSF under Cooperative Agreement No. 1755088. Any opinions,
findings and conclusions, or recommendations expressed in this material do not necessarily
reflect the views of the National Science Foundation. We thank Ivy Tan, Jiang Zhu, Yue Dong,
Yen-Ting Hwang, and Pedro DiNezio, and Yan Pan for helpful discussions and comments.

Author contributions

S. H. conceived the study. Y. T. performed the data analysis and wrote the first draft of the paper.
X. C. and X. H. conducted the offline radiative calculation. All authors contributed to the
interpretation of the results and refinement of the paper.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to Shineng Hu.


https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html
https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html
https://psl.noaa.gov/data/gridded/data.cobe.html
https://aims2.llnl.gov/search

373

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

References

1.

10.

11.

12.

13.

14.

15.

Forster, P., T. Storelvmo, K. Armour, W. Collins, J.-L. Dufresne, D. Frame, D.J. Lunt, T.
Mauritsen, M.D. Palmer, M. Watanabe, M. Wild, and H. Zhang, 2021: The Earth’s
Energy Budget, Climate Feedbacks, and Climate Sensitivity. In Climate Change 2021:
The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai,
A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis,
M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O.
Yelekei, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, pp. 923-1054, doi:10.1017/9781009157896.009.
Cess, R. D., Potter, G. L., Blanchet, J. P., Boer, G. J., Ghan, S. J., Kiehl, J. T,, ... & Yagai,
L. (1989). Interpretation of cloud-climate feedback as produced by 14 atmospheric
general circulation models. Science, 245(4917), 513-516.

Fasullo, J. T., & Trenberth, K. E. (2012). A less cloudy future: The role of subtropical
subsidence in climate sensitivity. science, 338(6108), 792-794.

Sherwood, S. C., Bony, S., & Dufresne, J. L. (2014). Spread in model climate sensitivity
traced to atmospheric convective mixing. Nature, 505(7481), 37-42.

Stevens, B., Sherwood, S. C., Bony, S., & Webb, M. J. (2016). Prospects for narrowing
bounds on Earth's equilibrium climate sensitivity. Earth's Future, 4(11), 512-522.

Tan, 1., Storelvmo, T., & Zelinka, M. D. (2016). Observational constraints on mixed-
phase clouds imply higher climate sensitivity. Science, 352(6282), 224-227.

Knutti, R., Rugenstein, M. A., & Hegerl, G. C. (2017). Beyond equilibrium climate
sensitivity. Nature Geoscience, 10(10), 727-736.

Myers, T. A., Scott, R. C., Zelinka, M. D., Klein, S. A., Norris, J. R., & Caldwell, P. M.
(2021). Observational constraints on low cloud feedback reduce uncertainty of climate
sensitivity. Nature Climate Change, 11(6), 501-507.

Wang, C., Yang, W., Vecchi, G., Zhang, B., Soden, B. J., & Chan, D. (2025). Diagnosing
the factors that contribute to the intermodel spread of climate feedback in CMIP6. Journal
of climate, 38(3), 663-674.

Marvel, K., Schmidt, G. A., Miller, R. L., & Nazarenko, L. S. (2016). Implications for
climate sensitivity from the response to individual forcings. Nature Climate Change, 6(4),
386-389.

Winton, M., Takahashi, K., & Held, I. M. (2010). Importance of ocean heat uptake
efficacy to transient climate change. Journal of Climate, 23(9), 2333-2344.

Hu, S., Xie, S. P., & Kang, S. M. (2022). Global warming pattern formation: The role of
ocean heat uptake. Journal of Climate, 35(6), 1885-1899.

Armour, K. C., Bitz, C. M., & Roe, G. H. (2013). Time-varying climate sensitivity from
regional feedbacks. Journal of Climate, 26(13), 4518-4534.

Dong, Y., Armour, K. C., Zelinka, M. D., Proistosescu, C., Battisti, D. S., Zhou, C., &
Andrews, T. (2020). Intermodel spread in the pattern effect and its contribution to climate
sensitivity in CMIP5 and CMIP6 models. Journal of Climate, 33(18), 7755-7775.
Caballero, R., & Huber, M. (2013). State-dependent climate sensitivity in past warm
climates and its implications for future climate projections. Proceedings of the National
Academy of Sciences, 110(35), 14162-14167.


https://dx.doi.org/10.1017/9781009157896.009

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Anagnostou, E., John, E. H., Babila, T. L., Sexton, P. F., Ridgwell, A., Lunt, D. J., ... &
Foster, G. L. (2020). Proxy evidence for state-dependence of climate sensitivity in the
Eocene greenhouse. Nature communications, 11(1), 4436.

Zhu, J., Poulsen, C. J., & Tierney, J. E. (2019). Simulation of Eocene extreme warmth
and high climate sensitivity through cloud feedbacks. Science advances, 5(9), eaax1874.
Kajtar, J. B., Santoso, A., Collins, M., Taschetto, A. S., England, M. H., & Frankcombe,
L. M. (2021). CMIPS5 intermodel relationships in the baseline Southern Ocean climate
system and with future projections. Earth's Future, 9(6), €2020EF001873.

Shin, S. J., Yeh, S. W., An, S. L., Keenlyside, N., Xie, S. P., & Park, J. H. (2023). Southern
ocean control of 2°C global warming in climate models. Earth's Future, 11(1),
¢2022EF003212.

Vogt, L., de Lavergne, C., Sallée, J. B., Kwiatkowski, L., Frolicher, T. L., & Terhaar, J.
(2025). Increased future ocean heat uptake constrained by Antarctic sea ice extent. Earth
System Dynamics, 16(5), 1453-1482.

Tokarska, K. B., Stolpe, M. B., Sippel, S., Fischer, E. M., Smith, C. J., Lehner, F., &
Knutti, R. (2020). Past warming trend constrains future warming in CMIP6

models. Science advances, 6(12), caaz9549.

Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L., DiNezio, P. N, ... & Ting,
M. (2020). Insights from Earth system model initial-condition large ensembles and future
prospects. Nature Climate Change, 10(4), 277-286.

Wang, C., Zhang, L., Lee, S. K., Wu, L., & Mechoso, C. R. (2014). A global perspective
on CMIP5 climate model biases. Nature Climate Change, 4(3), 201-205.

Hyder, P., Edwards, J. M., Allan, R. P, Hewitt, H. T., Bracegirdle, T. J., Gregory, J. M., ...
& Belcher, S. E. (2018). Critical Southern Ocean climate model biases traced to
atmospheric model cloud errors. Nature communications, 9(1), 3625.

Schuddeboom, A. J., & McDonald, A. J. (2021). The Southern Ocean radiative bias,
cloud compensating errors, and equilibrium climate sensitivity in CMIP6 models. Journal
of Geophysical Research: Atmospheres, 126(22), €2021JD035310.

Luo, F., Ying, J., Liu, T., & Chen, D. (2023). Origins of Southern Ocean warm sea
surface temperature bias in CMIP6 models. npj Climate and Atmospheric Science, 6(1),
127.

Hwang, Y. T., & Frierson, D. M. (2013). Link between the double-Intertropical
Convergence Zone problem and cloud biases over the Southern Ocean. Proceedings of
the National Academy of Sciences, 110(13), 4935-4940.

Kim, H., Kang, S. M., Kay, J. E., & Xie, S. P. (2022). Subtropical clouds key to Southern
Ocean teleconnections to the tropical Pacific. Proceedings of the National Academy of
Sciences, 119(34), €2200514119.

Zhang, X., Deser, C., & Sun, L. (2021). Is there a tropical response to recent observed
Southern Ocean cooling?. Geophysical Research Letters, 48(5), €2020GL091235.

Dong, Y., Armour, K. C., Battisti, D. S., & Blanchard-Wrigglesworth, E. (2022). Two-
way teleconnections between the Southern Ocean and the tropical Pacific via a dynamic
feedback. Journal of Climate, 35(19), 6267-6282.

Kang, S. M., Yu, Y., Deser, C., Zhang, X., Kang, I. S., Lee, S. S., ... & Ceppi, P. (2023).
Global impacts of recent Southern Ocean cooling. Proceedings of the National Academy
of Sciences, 120(30), €2300881120.



462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483

484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Xie, S. P, Deser, C., Vecchi, G. A., Ma, J., Teng, H., & Wittenberg, A. T. (2010). Global
warming pattern formation: Sea surface temperature and rainfall. Journal of

Climate, 23(4), 966-986.

Held, I. M., Winton, M., Takahashi, K., Delworth, T., Zeng, F., & Vallis, G. K. (2010).
Probing the fast and slow components of global warming by returning abruptly to
preindustrial forcing. Journal of Climate, 23(9), 2418-2427.

Liu, W., Hegglin, M. 1., Checa-Garcia, R., Li, S., Gillett, N. P, Lyu, K., ... & Swart, N. C.
(2022). Stratospheric ozone depletion and tropospheric ozone increases drive Southern
Ocean interior warming. Nature Climate Change, 12(4), 365-372.

Liu, M., Soden, B. J., Vecchi, G. A., & Wang, C. (2023). The spread of ocean heat uptake
efficiency traced to ocean salinity. Geophysical research letters, 50(4), e2022GL100171.
Cox, P. M., Huntingford, C., & Williamson, M. S. (2018). Emergent constraint on
equilibrium climate sensitivity from global temperature variability. Nature, 553(7688),
319-322.

Schmittner, A., Urban, N. M., Shakun, J. D., Mahowald, N. M., Clark, P. U., Bartlein, P.
J., ... & Rosell-Melé, A. (2011). Climate sensitivity estimated from temperature
reconstructions of the Last Glacial Maximum. Science, 334(6061), 1385-1388.

Merlis, T. M., Held, 1. M., Stenchikov, G. L., Zeng, F., & Horowitz, L. W. (2014).
Constraining transient climate sensitivity using coupled climate model simulations of
volcanic eruptions. Journal of Climate, 27(20), 7781-7795.

Chang, P., Zhang, S., Danabasoglu, G., Yeager, S. G., Fu, H., Wang, H., ... & Wu, L.
(2020). An unprecedented set of high-resolution earth system simulations for

understanding multiscale interactions in climate variability and change. Journal of
Advances in Modeling Earth Systems, 12(12), e2020MS002298.

Huang, B., Thorne, P. W, Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., ... &
Zhang, H. M. (2017). Extended reconstructed sea surface temperature, version 5
(ERSSTVS5): upgrades, validations, and intercomparisons. Journal of Climate, 30(20),
8179-8205.

Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D.
P, ... & Kaplan, A. (2003). Global analyses of sea surface temperature, sea ice, and night
marine air temperature since the late nineteenth century. Journal of Geophysical
Research: Atmospheres, 108(D14).

Ishii, M., Shouji, A., Sugimoto, S. & Matsumoto, T. Objective analyses of sea-surface
temperature and marine meteorological variables for the 20th century using ICOADS and
the Kobe collection. Int. J. Climatol. 25, 865-879 (2005).

Berk, A., Anderson, G. P., Acharya, P. K., Bernstein, L. S., Muratov, L., Lee, J., ... &
Lewis, P. E. (2005, June). MODTRAN 5: a reformulated atmospheric band model with
auxiliary species and practical multiple scattering options: update. In Algorithms and
technologies for multispectral, hyperspectral, and ultraspectral imagery XI (Vol. 5806,
pp. 662-667). SPIE.

44. McClatchey, R., R. W. Fenn, J.E.A. Selby, F.E. Volz, JS. Garing (1972). Optical

properties of the atmosphere (Third Edition), AFCLR-72-0497, Air Force Cambridge
Research Laboratories, Environmental Research Papers, No. 411.



