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ABSTRACT 28 

Despite its pronounced global impacts, tropical Pacific decadal variability (TPDV) is poorly 29 

predicted by current climate models due to model deficiencies and a limited understanding of its 30 

underlying mechanisms. Using observational data and a hierarchy of model simulations including 31 

decadal hindcasts, we find that decadal isopycnal depth variability driven by oceanic Rossby 32 

waves in the tropical Pacific provides the most important source of predictability for TPDV. The 33 

predictability arising from initial isopycnal depth conditions is further amplified throughout 34 

decadal predictions by tropical ocean-atmosphere coupling and variations in the strength of 35 

subtropical-tropical cells in the Pacific. Regional initialization experiments that effectively isolate 36 

the impact of different ocean basins on TPDV predictability highlight the essential role of the 37 

tropical Pacific. This study enhances our understanding of the mechanisms governing TPDV 38 

predictability, offering crucial insights for improving the accuracy of decadal predictions.   39 
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Introduction 40 

Decadal variations of sea surface temperature (SST) in the tropical Pacific can affect global 41 

hydroclimate and marine ecosystems 1,2, modulate global mean surface temperature changes 3–5, 42 

and interact with the El Niño-Southern Oscillation (ENSO) phenomenon, the leading mode of 43 

interannual climate variability6–10. However, tropical Pacific decadal SST variations are poorly 44 

predicted by the Coupled Model Intercomparison Project Phase 5/6 (CMIP5/6) decadal 45 

retrospective forecasts, especially the internal tropical Pacific decadal variability (TPDV) 46 

associated with ocean initialization (after removing the effect from external forcings) 11–13. This 47 

low skill in the Pacific sector contrasts with the high skill for SST in most regions of the Indian 48 

and Atlantic Oceans, which has been attributed to the response to external forcing and/or ocean 49 

initialization11–14.  50 

The accuracy of decadal predictions of TPDV relies on the potential predictability provided by 51 

oceanic processes or external forcings, model representations of these mechanisms, and the realism 52 

of oceanic state estimates used to initialize the decadal forecasts. Securing these conditions is 53 

challenging due to the complex processes that could affect TPDV10,15–18, and systematic model 54 

biases in simulating the climatology, variability, and forced changes in the tropical Pacific, as well 55 

as their interactions with other ocean basins 19–23. Uncertainties in mechanistic understanding and 56 

model biases of TPDV are challenging to reduce, given limited observational data, particularly for 57 

oceanic fields. Therefore, it remains difficult to determine to what extent the low decadal 58 

prediction skill for Pacific SSTs is due to intrinsic limits or deficiencies of forecast systems. 59 

While numerous studies have investigated the complex origins and mechanisms of TPDV, less 60 

attention has been devoted to understanding whether and how these mechanisms provide sources 61 

of prediction skill in retrospective forecasts. The null hypothesis for TPDV is that it is a residual 62 

of ENSO decadal changes. The leading Empirical Orthogonal Function (EOF) mode of TPDV 63 

shows a basin-wide ENSO-like spatial anomaly pattern (Fig. 1a) and is related to random changes 64 

in the relative number of warm (El Niño) and cold (La Niña) events over different epochs8,24. The 65 

second EOF mode of TPDV displays a zonal dipole pattern in the tropical Pacific (Fig. S1a) and 66 

is associated with decadal modulation of ENSO amplitude or asymmetries6,25. In contrast to these 67 

ENSO residual explanations, other studies suggest an extratropical contribution to TPDV from the 68 

North or South Pacific26–30. In the extratropics, stochastic atmospheric variability can be integrated 69 
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by the ocean due to its large thermal inertia, producing low-frequency SST variability31–34. The 70 

resulting extratropical low-frequency SST variability can then influence the tropical Pacific via 71 

thermodynamic and dynamical processes, particularly wind-evaporation-SST (WES) and low 72 

cloud-SST feedbacks, which propagate wind stress and SST anomalies associated with the Pacific 73 

meridional mode into the equatorial western-to-central Pacific29,30,35,36.  74 

Although the ENSO residual effect and stochastic atmospheric variability lack preferred 75 

timescales and are inherently unpredictable on decadal timescales37, these random processes can 76 

initiate slow oceanic processes which likely determine the timescale of TPDV and provide a source 77 

of predictability10,17,18,38. Based on observational and/or modeling studies, several oceanic 78 

mechanisms in the Pacific have been proposed to contribute to TPDV, including off-equatorial 79 

oceanic Rossby wave activity, spiciness advection, and variations in the strength of the subtropical-80 

tropical cells (STCs). Decadal-scale off-equatorial oceanic Rossby wave reflections at the western 81 

boundary of the Pacific serve as a delayed negative feedback for TPDV by affecting equatorial 82 

Pacific thermocline depth, similar to the dynamics driving ENSO phase transitions on interannual 83 

timescales39–44. STCs are the upper-ocean overturning circulations connecting the subtropical and 84 

equatorial Pacific oceans, which influence tropical Pacific SSTs through mean advection of 85 

temperature anomalies (�̅�𝑇′) or variations of STC strength (𝑣′𝑇%). Surface water masses in the 86 

subtropics that are subducted into the pycnocline may move equatorward and upwell to the surface 87 

upon reaching the equator, affecting the equatorial Pacific SSTs45. However, subsequent studies 88 

suggest that this subtropical thermal subduction cannot efficiently reach the equator due to energy 89 

dissipation, dispersion in the form of planetary-scale oceanic waves, and perturbation from winds 90 

at lower latitudes46. Density-compensated temperature anomalies, known as ocean “spiciness”47, 91 

can propagate more effectively along isopycnal surfaces from the subtropics to the tropics48–51. 92 

Alternatively, variations in STC strength can affect the rate of transport of the relatively constant 93 

water masses, influencing the equatorial Pacific upwelling, with enhanced upwelling bringing 94 

colder subsurface water to the surface and reduced upwelling having the opposite effect 46,52,53. 95 

The extent to which these various slow oceanic processes contribute to the predictability of TPDV 96 

and their relative importance remains unclear. 97 

Other ocean basins may also influence tropical Pacific decadal climate through both 98 

atmospheric and oceanic pathways10,54.  For example, decadal-scale cooling in the central-eastern 99 

tropical Pacific, a main factor driving global surface warming slowdowns, has been linked to 100 
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tropical Atlantic SST warming23,55–59. However, some studies suggest that the tropical Atlantic’s 101 

impact on the tropical Pacific might be overstated in regional SST-restoring experiments, which 102 

can overestimate the upward net surface heat fluxes in the tropical Atlantic compared to 103 

observations60,61. Further, the Atlantic-Pacific connection may be artificially amplified by the way 104 

in which internal variability is defined, leading to spurious linkages62. Investigations using an 105 

empirical model of the tropical Pacific-Atlantic systems, where the inter-basin feedbacks can 106 

cleanly be removed, indicate that Atlantic-Pacific coupling damps TPDV63. Other studies also 107 

argue for the role of the tropical Indian Ocean in affecting tropical Pacific decadal climate64,65. It 108 

is plausible that inter-basin interactions could play a role in TPDV predictions, but these linkages 109 

and causalities need to be verified with appropriate sensitivity experiments. 110 

Despite the low real-world prediction skill, earlier studies based on perfect model experiments 111 

suggest potential multiyear predictability in the Pacific43,66. Recent studies underscore the 112 

degradation of tropical Pacific decadal prediction skill by volcanic eruptions due to inadequate 113 

model representation of volcanic forcing and response, while forecast systems that exclude 114 

volcanic eruptions show high skill67–70. Case studies indicate that particular phase transitions of 115 

TPDV can be retrospectively predicted when a model is properly initialized from strong ENSO 116 

event71,72. Other studies indicate that spurious ENSO conditions due to initialization shock in the 117 

first forecast year will degrade the long-range skill of decadal hindcasts73,74. Increasing the spatial 118 

resolution of decadal forecasts to resolve ocean eddies also improves the prediction skill in the 119 

eastern tropical Pacific because of a more realistic prediction of the SST trend in the Southern 120 

Ocean and associated teleconnections75. These findings collectively imply the presence of 121 

potential predictability for TPDV, which could arise from internal climate processes both within 122 

and beyond the Pacific. 123 

Several important questions remain. What are the external (greenhouse gas, aerosols, and 124 

volcanic eruptions) and internal (oceanic initialization) factors affecting decadal prediction skill in 125 

the tropical Pacific? For the skill arising from internal oceanic initial conditions, what is the relative 126 

importance of the various mechanisms discussed above? Do other ocean basins play a role in 127 

affecting TPDV predictions? To answer these questions, we make use of observational and 128 

reanalysis data and a hierarchy of model simulations conducted with the Community Earth System 129 

Model version 1 (CESM1) at 1° horizontal resolution. In particular, we first evaluate the CESM1 130 

simulation of TPDV in the free-running coupled preindustrial control simulation and in historical 131 
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ocean-only simulations forced with observed surface conditions. We investigate both external and 132 

internal influences on TPDV prediction skill by comparing uninitialized historical simulations and 133 

initialized decadal retrospective forecasts. We focus on the initialized hindcasts conducted without 134 

volcanic forcing as these exhibit high prediction skill in the tropical Pacific69, and attribute the 135 

predictability arising from initialization to specific oceanic processes. Finally, the impacts of 136 

different ocean basins on TPDV are established using a set of regional initialization experiments.  137 

Results 138 

a. Predictability and prediction skill of TPDV 139 

We evaluate how observed TPDV during 1955–2022 is reproduced by a series of CESM1 140 

simulations with varying levels of observational constraints (Fig. 1). We define TPDV as the 141 

leading EOF of quadratically-detrended 10-year running mean SST anomalies in the tropical 142 

Pacific (20°S–20°N; 120°E–80°W). This 10-year running mean is used to facilitate comparisons 143 

between observations and initialized forecasts as explained below, and it yields results similar to 144 

that using an 8–40-year band-pass filter10). During 1955–2022, observed TPDV exhibits basin-145 

wide SST anomalies in the tropical Pacific (Fig. 1a), fluctuating between warm and cold phases 146 

on decadal timescales (Fig. 1b). During the positive phase of TPDV, the thermocline becomes 147 

deeper in the eastern equatorial Pacific but shallower in the western part (Fig. 1c). The observed 148 

temporal and spatial features of TPDV are well reproduced by the ocean-sea ice simulation forced 149 

with observed surface forcing and fluxes (FOSI; Methods). Decadal Prediction Large Ensemble 150 

(DPLE) and DPLE without volcanic forcing (DPLE_NoVolc; Methods) are initialized from the 151 

FOSI oceanic and sea ice states on Nov 1 of each year during 1954–2015, and the ensemble-mean 152 

hindcasts are averaged over forecast year (FY) 1–10 for each initialization date, in order to examine 153 

the predictability of decadal anomalies. At FY1–10, DPLE_NoVolc shows a correlation skill 154 

[anomaly correlation coefficient (ACC) = 0.57) in predicting the observed (standardized) first 155 

principal component (PC1) timeseries of TPDV during 1955–2022, which is substantially higher 156 

than that for DPLE (ACC = 0.22). The 0.57 PC1 correlation between DPLE_NoVolc and 157 

observations indicates that over 30% of the observed PC1 variance is predictable with ocean 158 

initialization.  The lower skill of DPLE compared to DPLE_NoVolc is related to an excessive 159 

tropical Pacific cooling response to large volcanic eruptions in the 1960s and 1980s69. In contrast 160 

to the initialized decadal forecasts, the ensemble mean of the uninitialized CESM1 large ensemble 161 
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(LE; Methods), which represents the model’s response to external forcings, shows a negative 162 

correlation (-0.33) with the observed TPDV PC1 timeseries, and the magnitude of the externally 163 

forced TPDV PC1 is much weaker than TPDV PC1 in both the observations and initialized 164 

forecasts. This contrast between initialized and uninitialized simulations suggests that the observed 165 

TPDV during the last ~70 years is largely driven by internal climate variability rather than external 166 

radiative forcing. We also present the same analysis for the second EOF mode in Fig. S1, which 167 

exhibits a zonal-dipole SST pattern over the tropical Pacific in observations and accounts for only 168 

16% of the total decadal variance. The second PC (PC2) is linked to the decadal modulation of 169 

ENSO characteristics and is poorly predicted by the decadal forecasts and the uninitialized 170 

simulations (Fig. S1h–j). 171 

 172 
Fig. 1 Tropical Pacific decadal variability from 1955 to 2022 in observations and CESM1 173 
simulations/hindcasts. (a–e) Global SST and (k–o) equatorial Pacific subsurface ocean 174 
temperature patterns associated with TPDV in (a, f, and k) observations (SST in ERSSTv5 and 175 
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ocean temperature in EN4),  (b, g, and l) the forced ocean-sea ice simulation (FOSI), and the 176 
ensemble-means of (c, h, and m) CESM1 DPLE, (d, I, and n) DPLE_NoVolc, and (e, j, and o) LE. 177 
The EOF analysis is conducted for quadratically detrended and 10-yr running-mean SST 178 
anomalies in the tropical Pacific (20°S–20°N, 120°E–80°W; outlined by the black box in a. to 179 
calculate (f–j) the timeseries of the standardized first principal component (PC1). The numbers in 180 
the top-right corner in a–e denote the percentage of total decadal variance explained by the leading 181 
EOF mode in each dataset. The associated pattern is displayed using the regression of quadratically 182 
detrended and 10-yr running-mean (a–e) SST anomalies and (k–o) equatorial Pacific (3°S–3°N) 183 
subsurface ocean temperature anomalies onto PC1. The abscissa in f–j represents the start year of 184 
the 10-yr averaging window (e.g., 1955 represents 10-yr average anomalies spanning from 1955 185 
to 1964 for observation, FOSI, and LE, and corresponds to the hindcasts averaged across FY1–10 186 
initialized in Nov 1954 for DPLE and DPLE_NoVolc). The r value indicates the correlations of 187 
each model simulation with observed PC1. 188 

The ensemble-mean decadal hindcasts show weaker amplitude and excessive westward 189 

extension of TPDV SST anomalies compared to observations (Fig. 1a–d), due to the predictability 190 

limit and/or inherent model bias. The magnitude of the global SST regression onto the standardized 191 

PC1 in the decadal hindcasts is weaker than observed for most of the ocean basins, mostly because 192 

the ensemble averaging reduces variance by isolating the predictable component of variance76. The 193 

free-running simulation of CESM1 under preindustrial conditions shows an amplitude of TPDV 194 

natural variability more comparable to that in observations (Fig. S2). The pattern bias of TPDV, 195 

however, exists even in the preindustrial control simulation (Fig. S2), suggesting that it arises from 196 

inherent biases in CESM177. We also evaluate the SST and subsurface ocean temperature 197 

variability associated with TPDV in other observational or reanalysis datasets. ERSSTv5 and 198 

HadISST give similar results for SST, while EN4 and ORAS4 show differences in the amplitude 199 

and structure of equatorial Pacific subsurface temperature anomalies (cf. Fig. 1 and  S2). In the 200 

following sections, we will present the results based on FOSI in the main text, and those based on 201 

observational datasets in the supplementary materials.  202 

Consistent with the spatiotemporal features of TPDV captured by EOF analysis in the different 203 

simulations (Fig. 1), the anomaly correlation skill (ACC) for detrended decadal SST anomalies in 204 

the tropical Pacific is increased by including ocean initialization (DPLE minus LE; Fig. 2e and j) 205 

or excluding volcanic forcing (DPLE_NoVolc minus DPLE; Fig. 2d and i). The ACC results are 206 

overall similar whether verifying against FOSI (Fig. 2) or observations (ERSSTv5 and EN4; Fig. 207 

S3). The increased skill in DPLE_NoVolc compared to DPLE is most pronounced over the central 208 

tropical Pacific, where the solar radiation reduction associated with volcanic aerosol forcing can 209 
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most effectively influence the ocean mixed layer heat budget and SST69. The skill enhancement 210 

by ocean initialization in DPLE relative to LE is confined to the eastern Pacific, due to intrinsic 211 

model bias in simulating excessive westward extension of TPDV SST anomalies. The local 212 

correlation skill for SST in the central-eastern Pacific reaches ~0.7 in DPLE_NoVolc, higher than 213 

that for EOF PC1 (0.57; Fig. 1).  214 

We further investigate the ACC skill of ocean temperature in the equatorial Pacific as a 215 

function of depth and longitude (Fig. 2). The significant impact of volcanic forcing is limited to 216 

the upper ~100 meters in the central equatorial Pacific (Fig. 2i), which is generally above the 217 

thermocline depth (black curve in Supplemental Fig. S4a). The influence of volcanic forcing on 218 

ocean temperatures is largely confined above the thermocline depth and acts primarily through 219 

shortwave radiation and ENSO dynamical processes69. This suggests that the same subsurface 220 

oceanic process may operate in both DPLE and DPLE_NoVolc, but cannot provide a source of 221 

predictability for upper layer temperature and SST when the tropical Pacific system is perturbed 222 

by volcanic forcing. Related to the western Pacific pattern bias in subsurface temperatures (Fig. 223 

1), ACC is insignificant (or even negative) in the western Pacific for the upper 250 meters. In 224 

subsequent sections, we will explore the oceanic processes contributing to the predictable 225 

component of TPDV.  226 
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 227 
Fig. 2 Decadal prediction skill is improved by ocean initialization and excluding volcanic 228 
forcing. Anomaly correlation coefficient (ACC) of quadratically detrended 10-yr running-mean 229 
(a–e) SST and (f–j) equatorial Pacific (3°S–3°N) subsurface ocean temperature during 1955–2022 230 
in the ensemble-mean forecasts averaged over FY1–10 for (a and f) DPLE and (b and g) 231 
DPLE_NoVolc, and 10-yr running-mean ensemble mean of (c and h) LE, and their differences [(d 232 
and i) DPLE_NoVolc minus DPLE, and (e and j) DPLE minus LE]. The ACC skill is verified 233 
against FOSI (see Fig. S3 for ACC skill verified against observations). Stippling indicates values 234 
that are not significant at the 90% confidence level, based on bootstrapping across both time and 235 
ensemble members (see Methods).  236 

b. Pacific oceanic mechanisms contributing to TPDV predictability 237 

In this section, we will explore the influence of three leading oceanic mechanisms (Rossby 238 

waves, spiciness, and STCs) on TPDV in both FOSI and hindcasts. We illustrate the characteristics 239 

of the Rossby wave reflection mechanism by showing variability of the depth of the σ_θ= 25.5 kg 240 

m-3 isopycnal (Fig. S4). The climatological depth of this isopycnal aligns closely with the depth 241 

where large variability of subsurface ocean temperature is observed for both equatorial (3°S–3°N; 242 

Fig. S4b) and off-equatorial Pacific regions (15°S–20°N; Fig. S4f). Its vertical displacement 243 



 11 

mostly reflects adiabatic temperature variability associated with oceanic wave propagation, which 244 

is most pronounced at 10°–15° latitude as shown in Fig. S3j and consistent with earlier studies78,79. 245 

Additionally, this isopycnal (σ_θ= 25.5 kg m-3) lies below the equatorial Pacific thermocline and 246 

can remain unaffected by volcanic forcing during a 10-year forecast period (Fig. 2; Fig. S4a). To 247 

isolate the low-frequency variability associated with TPDV (Fig. 3a), we use a 10-year running 248 

mean filter to smooth the annual mean fields that are dominated by ENSO variance (Fig. S5). 249 

However, in contrast to the equatorial Pacific where ENSO variability dominates, off-equatorial 250 

Pacific subsurface temperature shows more pronounced decadal variability (Fig. S4h). In addition, 251 

off-equatorial Pacific isopycnal depth shows robust decadal variations even in unfiltered data (Fig. 252 

S5).  253 

During the positive phase of TPDV, decadal SST warming in the central-to-eastern equatorial 254 

Pacific (3°S–3°N; ~160°E–80°W) is concurrent with isopycnal deepening and vice versa during 255 

the negative phase of TPDV in FOSI (Fig. 3a). Phase changes of TPDV SST anomalies occurred 256 

around 1962, 1977, and 1997 (note that the year in the y-axis in Fig. 3a denotes the start year of 257 

the 10-year average). These SST phase changes were preceded by isopycnal depth anomalies 258 

propagating along the equator from the western to the eastern Pacific. These precursor isopycnal 259 

depth anomalies in the western equatorial Pacific are further linked to off-equatorial (10°–15°) 260 

isopycnal depth anomalies. The results suggest that there might be a delayed oceanic feedback 261 

contributing to TPDV phase changes. During the positive phase of TPDV, positive (10°–15°N) 262 

and negative (15°–10°S) wind stress curl anomalies generate off-equatorial upwelling Rossby 263 

waves. These waves propagate toward the western boundary of the Pacific, then travel equatorward 264 

along the western boundary (130°–135°E or 155°–160°E zonally averaged) and reflect as 265 

upwelling equatorial Kelvin waves (3°S–3°N), which may cause thermocline shoaling and SST 266 

cooling in the eastern equatorial Pacific.  267 

In FOSI, equatorial Pacific decadal SST anomalies are significantly correlated with the state 268 

of western equatorial Pacific isopycnal depth anomalies occurring more than 7 years earlier and 269 

with even 13 years earlier precursory isopycnal conditions in the off-equatorial Pacific (Fig. 3b 270 

and c). Similar results are found for decadal SST anomalies in the tropical Pacific (20°S–20°N; 271 

not shown). Analysis of observational data (ERSSTv5/EN4/ERA5 in Fig. S6; 272 

HadISST/ORAS4/NOAA20CR in Fig. S7) shows similar results regarding preceding isopycnal 273 

depth conditions in the western equatorial Pacific influencing TPDV equatorial Pacific SST 274 
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anomalies. However, in both EN4 and ORAS4, isopycnal variability south of the equator makes a 275 

more important contribution to western equatorial Pacific isopycnal depth variability (Figs. S6 and 276 

S7), in contrast to FOSI which shows a stronger contribution from the north (Fig. 3). This 277 

discrepancy in the relative importance of oceanic conditions in the south vs. the north between 278 

FOSI and observations is likely related to uncertainties in the wind stress data used to force the 279 

ocean model component of CESM114,80 (cf. Fig. 3 and Figs. S6 and 7), and differences in the ocean 280 

solutions, assimilation, and statistical correction methods used in the observational datasets.  281 

Considerable differences also exist in subsurface temperature and salinity fields between EN4 and 282 

ORAS4, surface wind stress between ERA5 and 20CR, and SST fields between ERSSTv5 and 283 

HadISST (Figs. S6–7). These observational uncertainties emphasize the need for improved ocean 284 

observations and data assimilation methods to better understand the mechanisms of TPDV. 285 

 286 
Fig. 3 Relation of oceanic Rossby wave reflection to TPDV. a. Longitude-time sections of 287 
quadratically detrended and 10-yr running-mean isopycnal depth anomalies (m; shading) along the 288 
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off-equatorial (10°–15°N and 15°S–10°S), western Pacific boundary (130°–135°E and 155°–289 
160°E), and equatorial (3°S–3°N) waveguides during 1948–2015 (The year value in the y-axis 290 
represents the start year of any 10-yr averaging window). In the equatorial segment, SST anomalies 291 
(°C, contours at intervals of 0.1; positive contours in red solid, negative contours in blue dashed, 292 
and zero contours in thick gray) are overlaid. In the off-equatorial segment, wind stress curl 293 
anomalies (N m-3; contours at intervals of 0.5*10-8; positive contours in black solid, negative 294 
contours in black dashed, zero contours in thick gray) are overlaid and smoothed with a nine-point 295 
local smoothing. Note that the longitude axis is reversed for the off-equatorial segment to show 296 
Rossby wave reflection at the western boundary. b. Timeseries of quadratically detrended and 10-297 
yr running-mean filtered SST anomalies (°C) in the equatorial Pacific (3°S–3°N, 180°–80°W; 298 
thickened black curve; right y-axis), isopycnal depth anomalies (m) in the western equatorial 299 
Pacific (3°S–3°N, 120°E–160°W; blue curve; left y-axis), in the northern off-equatorial western 300 
Pacific (10°–15°N, 120°E–160°W; orange curve) and southern off-equatorial western Pacific 301 
(15°–10°S, 155°E–160°W; green curve). c. Lead-lag correlation of the 10-yr running-mean 302 
equatorial Pacific SST anomalies with the 10-yr running-mean equatorial Pacific SST anomalies 303 
(black), isopycnal depth anomalies in the western equatorial Pacific (blue curve), in the northern 304 
off-equatorial western Pacific (orange curve) and southern off-equatorial western Pacific (green 305 
curve) during a range of 20 lead to lag years. Negative lags correspond to isopycnal depth 306 
anomalies leading the TPDV event peak; positive lags correspond to isopycnal depth anomalies 307 
lagging the TPDV event peak. The filled circles indicate correlations that are statistically 308 
significant at the 90% confidence level, based on a bootstrapping method (Methods). 309 

Next, we compare TPDV SST anomalies with STC strength, estimated using the maximum of 310 

the Pacific zonally-averaged meridional overturning streamfunction as a function of latitude in 311 

FOSI (Fig. 4a; positive/negative overturning streamfunction anomalies north/south of the Equator 312 

indicate poleward anomalous near-surface transport and intensification of STC). The vertical 313 

structure of STC climatology and anomalies during different TPDV phases are shown in Fig. S8. 314 

During the positive phase of TPDV, the STC slows down, with the near-surface flow exhibiting 315 

anomalous equatorward convergence, and vice versa during the negative phase of TPDV. The total 316 

near-surface meridional transport convergence or divergence (near-surface meridional transport 317 

values at 9°S minus 9°N; Fig. 4b) tends to significantly lag the equatorial Pacific decadal SST 318 

anomalies by 2–3 years (Fig. 4b,c) and may act to strengthen TPDV SST anomalies via modulation 319 

of equatorial upwelling once a TPDV phase is initiated. Changes in the STC strength are not 320 

independent of the westward propagation of Rossby waves, which alter the zonal slope of the 321 

pycnocline and create meridional geostrophic current anomalies. Consequently, the collective 322 

effect of Rossby wave propagation leads to a lag in zonally integrated meridional streamfunction 323 

variations relative to SST variations53. Here, we use the Pacific zonally integrated transport, which 324 

may better capture the equilibrium STC response to surface wind stress forcing, while the zonally 325 
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interior transport (excluding the western boundary current) reflects the transient STC response and 326 

may shorten the lag between STC and SST decadal variability. 327 

To illustrate the role of spiciness advection on TPDV, we present a latitude-time diagram of 328 

decadal temperature anomalies on the time-varying isopycnal depth (σ_θ= 25.5 kg m-3; Fig. 4d). 329 

Spiciness anomalies originate in the subtropical eastern Pacific and propagate to the western 330 

tropical Pacific (the pathway is denoted in Fig. S4l). The spiciness of the western equatorial Pacific 331 

(5°S–5°N) is largely controlled by the advection from the South Pacific (5°S–0°; Fig. 4e) and tends 332 

to be out-of-phase with the equatorial Pacific SST anomalies (Fig. 4f). These subsurface spiciness 333 

anomalies thus damp TPDV SST anomalies induced by anomalous equatorial upwelling. Based 334 

on the diagnostic analyses shown in Figs 3 and 4, isopycnal depth variability and associated 335 

Rossby wave activity appear to be the most important precursors for TPDV during 1948–2015 in 336 

FOSI. 337 

 338 
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Fig. 4 Relation of Pacific STC and spiciness anomalies to TPDV. a. Latitude-time sections of 339 
quadratically detrended and 10-yr running-mean filtered vertical maximum of the Pacific zonal 340 
average meridional overturning streamfunction (Sv; shading) and tropical Pacific (160°E–120°W) 341 
SST (°C; contours at intervals at 0.1; positive contours in red solid, negative contours in blue 342 
dashed, and zero contours in gray thickened) during 1948–2015 (The abscissa represents the start 343 
year of each 10-yr averaging window). b. Timeseries of quadratically detrended and 10-yr running-344 
mean filtered SST (°C) anomalies in the equatorial Pacific (3°S–3°N, 180°–80°W; thickened black 345 
curve; right y-axis), STC (Sv) strength at 9°N (orange curve; sign flipped so that positive/negative 346 
values denote equatorward/poleward near-surface transport; left y-axis), 9°S (green curve), and 347 
the total convergence/divergence between 9°N and 9°S (blue curve). c. Lead-lag correlation of the 348 
equatorial Pacific SST anomalies in year 0 with the equatorial Pacific SST anomalies (black), STC 349 
strength at 9°N (orange curve), 9°S (green curve), and in total (blue curve) during a range of 20 350 
lead to lag years. Positive (negative) lags indicate that TPDV leads (lags) the STC strength 351 
anomalies. The filled circles indicate correlations that are statistically significant at the 90% 352 
confidence level based on a bootstrapping method.  d. As in a., but the shading indicates the 353 
spiciness anomalies (°C; left y-axis) along the path denoted by dots in Fig. S4l. e. Timeseries of 354 
quadratically detrended and 10-year running-mean filtered SST (°C) anomalies in the equatorial 355 
Pacific as in panel b, and spiciness anomalies (°C) along the advection pathway from panel d, 356 
meridionally averaged in the northern equatorial Pacific (0°–5°N; orange curve), southern 357 
equatorial Pacific (5°S–0°; green curve), and the total equatorial Pacific (5°S–5°N; blue curve). f. 358 
As in c., but spiciness anomalies in e.  359 

To confirm the role of different oceanic processes in the decadal hindcasts, we correlate the 360 

predicted equatorial Pacific SST in FY1–10 during 1955–2016 with concurrent oceanic fields in 361 

FY1–10 of DPLE_NoVolc (Fig. 5a–c) and the corresponding initial conditions in November 362 

(Nov0) in FOSI during 1954–2015 (Fig. 5d–f). In FY1–10, positive decadal SST anomalies in the 363 

tropical Pacific are associated with isopycnal deepening in the eastern equatorial Pacific and 364 

shoaling in the west (Fig. 5a–c). The predicted equatorial Pacific SST index in FY1–10 does not 365 

show significant correlations with the initial SST anomalies over most regions in the tropical 366 

Pacific. In contrast, it shows significant correlations with subsurface temperature anomalies in the 367 

western equatorial Pacific and with isopycnal depth anomalies not only over the equatorial western 368 

Pacific but also in the off-equatorial Pacific region (10°–20° latitude), suggesting the critical role 369 

of Rossby wave initialization.  370 

To show the propagation and influence of subsurface processes through the 10-year forecast 371 

period in DPLE_NoVolc, we correlate the predicted equatorial Pacific SST index in FY5–10 with 372 

several fields at the concurrent (FY5–10) and earlier 6-year forecast periods (FY4–9, 3–8, 2–7, 373 

and 1–6). This analysis reveals that equatorial Pacific SST anomalies in FY5–10 (Fig. 5g5) can be 374 

traced back to subsurface temperature anomalies in the equatorial Pacific (Fig. 5h1), along with 375 
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off-equatorial and equatorial isopycnal depth anomalies in FY1–6 (Fig. 5i1). As significant SST 376 

correlations intensify in FY2–7 (Fig. 5g2), surface westerly anomalies start to develop over the 377 

western equatorial Pacific in FY3–8 (Fig. 5i2), deepening the isopycnal in the eastern equatorial 378 

Pacific (Fig. 5i2). The coupling of SST, wind, and isopycnal depth can enhance the predictability 379 

provided by the initial subsurface temperature anomalies. The equatorial Pacific SST index in 380 

FY5–10 also shows significant correlations with the Pacific STC overturning streamfunction, 381 

originating in the South Pacific (20°Sº–10°S) in FY1–6 (Fig. 5j1). When a positive TPDV starts 382 

to develop at FY1–6, the positive overturning streamfunction anomalies in the subsurface South 383 

Pacific weaken the south Pacific branch of anticlockwise STC (with negative values in dashed 384 

contours), amplifying TPDV SST anomalies in the later lead times. In DPLE, however, the tropical 385 

Pacific SST anomalies at FY5–10 show much weaker correlations with oceanic conditions at 386 

earlier lead times than in DPLE_NoVolc, suggesting that volcanic forcing perturbs the linkage 387 

between the initial condition memory and SST variability at late lead times (Fig. S9). 388 
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 389 
Fig. 5 Source and persistence of predictability in initialized decadal forecasts. (a–f) 390 
Correlation maps with detrended SST anomalies in the central-eastern equatorial Pacific (3°S–3°N, 391 
180°E–120°W; denoted by the white box in a) averaged in FY1–10 during 1955–2016 in 392 
DPLE_NoVolc. Correlations (color shading) are calculated with the quadratically detrended (a and 393 
d) global SST, (b and e) ocean temperature in the equatorial Pacific (3°S–3°N), and (c and f) 394 
tropical Pacific isopycnal depth (σ_θ= 25.5 kg m-3) anomalies at (a–c) FY1–10 during 1955–2016, 395 
and (d–f) the corresponding FOSI initial conditions in Nov0 during 1954–2015. (g–j) Correlation 396 
maps with detrended SST anomalies in the central-eastern equatorial Pacific (3°S–3°N, 180°E–397 
120°W; denoted by the white box in g5) averaged in FY5–10 during 1955–2016 in DPLE_NoVolc. 398 
Correlations (color shading) are calculated with the detrended (g1–5) global SST, (h1–5) ocean 399 
temperature in the equatorial Pacific (3°S–3°N), (i1–5) tropical Pacific isopycnal depth (σ_θ= 25.5 400 
kg m-3), surface winds, and (j1–5) STC overturning streamfunction at FY1–6, FY2–7, FY3–8, 401 
FY4–9, and FY5–10 during 1955–2016. STC climatology during 1964–2015 in Fig. S8 are 402 
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overlaid in j1–5 using black contours at intervals of 8 Sv [positive (negative) contours in solid 403 
(dashed) contours and zero contours thickened]. The stippling indicates shaded values that are not 404 
significant at the 90% confidence level, based on a two-tailed Student’s t-test. Only significant 405 
correlations for surface wind vectors are shown. 406 

Insignificant correlations between predicted TPDV SST anomalies at FY1–10 and initial 407 

tropical Pacific SST anomalies in Nov0 (Fig. 5) suggest that the initial ENSO state does not affect 408 

the overall TPDV predictability at 10-year lead. The minor role of ENSO is further examined using 409 

a Singular Value Decomposition (SVD) analysis81 between predicted tropical Pacific SST and the 410 

global SST initial conditions in Nov0 (Fig. S10). The leading SVD mode (SVD1) explains 59% 411 

of the total squared covariance between predicted tropical Pacific SST and the global SST initial 412 

conditions. The timeseries of the two expansion coefficients of SVD1 show decadal variations, 413 

and the associated heterogeneous correlation maps onto the SVD timeseries closely mirror the 414 

linear correlation analysis in Fig. 5. In contrast, the two expansion coefficients of SVD2 show 415 

strong interannual variability associated with ENSO, accounting for 15% of the covariance. This 416 

result suggests that there is only a weak interannual component in the predicted tropical Pacific 417 

SST anomalies in FY1–10, manifesting as an equatorial mode affected by the initial ENSO states 418 

in Nov0.  419 

c. Role of Interbasin interactions in affecting TPDV prediction during 1999–2008 420 

In Fig. 5d, we also identify significant correlations between the predicted TPDV index and the 421 

initial SST conditions in several remote ocean areas, including negative correlations over the North 422 

Atlantic and positive correlations over the extratropical oceans of the Southern Hemisphere. To 423 

test if these correlations indicate causality, and to separate the effects of initial conditions in 424 

different ocean basins on the tropical Pacific predictions, we conduct a set of regional initialization 425 

experiments for the period 1999–2008 (Fig. 6b–e; Methods). During this period, the tropical 426 

Pacific shows negative decadal SST anomalies in observations (Fig. S11a) and FOSI (Fig. 6f), 427 

which are well predicted by the DPLE_NoVolc forecasts initialized on Nov 1, 1998 in Fig. S11b 428 

& Fig. 6g with different drift correction methods (See Methods). The comparisons among the 429 

sensitivity forecasts with regional ocean initialization suggest that this skillful prediction of 430 

tropical Pacific decadal cooling is mainly associated with tropical Pacific initialization (Fig. 6h), 431 

which shows negative isopycnal depth anomalies in the tropical Pacific in the initial conditions 432 

(Fig. S11c). The North Atlantic (20°N–60°N) initialization experiment produces positive SST 433 
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anomalies over both the North and northern tropical Atlantic (0°–20°N; Fig. 6d and i). In contrast 434 

to previous SST-restoring experimentse.g.,59, the tropical Atlantic induced warming does not 435 

generate tropical Pacific cooling. This is because the net surface heat flux over the tropical Atlantic 436 

is downward (Fig. 6n), and so SST warming there is not an active forcing that can affect 437 

atmospheric teleconnections, consistent with previous studies61,62. The tropical Atlantic shows 438 

insignificant SST anomalies in the Full initialization experiment (Fig. 6g), possibly due to 439 

competing effects from the tropical Pacific (Fig. 6h) and North Atlantic (Fig. 6i). The Southern 440 

Hemisphere ocean initialization (Southern Ocean, Indian Ocean, and Atlantic Ocean sectors) is 441 

responsible for the predicted warming over the Southern Ocean in the Full Initialization 442 

experiment (cf. Figs. 6g and j). However, the sign of the predicted ensemble-mean Southern Ocean 443 

warming is opposite to that observed and seen in FOSI (Fig. S11a and Fig. 6f) and might contribute 444 

to the tropical Pacific warming in the SH initialization experiment (Fig. 6j). This suggests that the 445 

predicted tropical Pacific cooling in the Full initialization experiment might be underestimated due 446 

to prediction errors in the Southern Ocean.  447 

Given that interbasin interactions may vary from case to case, additional regional initialization 448 

experiments with more start dates are required to robustly isolate the influence of different ocean 449 

basins on TPDV prediction skill in general. A more refined analysis of the role of different ocean 450 

regions is also necessary. For example, further experiments are needed to distinguish the impacts 451 

of isopycnal initial conditions in the equatorial vs. off-equatorial Pacific on TPDV prediction skill. 452 

Although the correlation analysis does not suggest an influence from initial North Pacific SST 453 

anomalies on TPDV prediction skill (Fig. 5d), this might be due to inherent model underestimation 454 

of the coupling between the extratropics and tropics82. Similarly, additional experiments are 455 

required to isolate the role of the Indian Ocean. The significant correlations between the predicted 456 

TPDV index and the initial Indian SST conditions are confined to the extratropical South Indian 457 

Ocean, rather than the tropical region, which has been suggested as an important factor for 458 

TPDV64,65. Notably, most areas of the Indian Ocean exhibit significant prediction skill in detrended 459 

SST in both decadal forecasts and LE, suggesting that the Indian Ocean decadal prediction skill is 460 

largely attributable to external forcing (Figs. S13 and S14). In the selected case study of 1999–461 

2008, the cooling in the Indian Ocean is not well predicted by any of the experiments (Fig. 6g–j), 462 

potentially diminishing its influence on the tropical Pacific.  463 
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 464 
Fig. 6 The influence of different ocean basins on TPDV predictability during 1999–2008. SST 465 
(°C) anomalies in November 1998 in (a) ERSSTv5 and (b) FOSI. (c–e) The areas with SST values 466 
on November 1 of 1998 denote the ocean regions that have the initialization of full-depth ocean 467 
temperature and salinity anomalies added on the climatology from FOSI; the November 1 FOSI 468 
climatology during 1954–2015 is used everywhere else. Quadratically detrended SST (°C) 469 
anomalies during 1999–2008 in (f) FOSI and 10-member ensemble mean forecasts initialized on 470 
November 1st, 1998, including (g) Full initialization experiment, (h) Tropical Pacific initialization, 471 
(i) North Atlantic initialization, and (j) Southern Ocean initialization. (k–o) as in (f–j) but for the 472 
surface net heat flux (SHF; W m-2; positive values heat the ocean). Stippling indicates values that 473 
are not significant at the 90% confidence level, based on bootstrapping across ensemble members 474 
(see Methods).  475 

Summary and Discussion 476 

Our study investigates a set of oceanic mechanisms that may provide a source of predictability 477 

for TPDV based on observations and a hierarchy of model simulations and hindcasts. The CESM1 478 
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decadal prediction system without volcanic forcing (DPLE_NoVolc) shows high skill in predicting 479 

observed TPDV during the 1950s to the present. The high predictability of TPDV arises from the 480 

subsurface ocean initial conditions, particularly decadal isopycnal depth variability associated with 481 

oceanic Rossby wave adjustments in the tropical Pacific. The predictability inherent in the initial 482 

isopycnal conditions is further reinforced by the response of the subtropical cells and ocean-483 

atmosphere coupling processes in the tropical Pacific throughout the 10-year forecasts. Although 484 

we can rely on the initial isopycnal conditions for useful TPDV prediction skill, the origins of 485 

decadal isopycnal depth variability and the associated surface wind stress fluctuations driving 486 

isopycnal variability remain less clear, as also suggested by Capotondi et al.18. We also find that 487 

the initial ENSO SST state in a particular year plays a very minor role in affecting the overall 488 

TPDV predictability, but ENSO decadal modulation may contribute to establishing decadal wind 489 

and isopycnal variability associated with TPDV. 490 

To investigate the potential role of inter-basin interactions in TPDV prediction skill, we 491 

conducted regional initialization experiments which suggest that the predictability of TPDV SST 492 

cooling during 1999–2008 arises mainly from initial conditions in the tropical Pacific as opposed 493 

to those in the North Atlantic or tropical Atlantic. This result adds to previous work highlighting 494 

potential issues in using SST-restoring experiments to study the causality of interbasin ocean 495 

interactions61. During 1999–2008, CESM1 decadal forecasts erroneously predict positive decadal 496 

SST anomalies in the Southern Ocean, which are opposite to those observed and may contribute 497 

to an erroneous tropical Pacific SST warming. The Southern Ocean errors could be reduced by 498 

increasing the model resolution used for decadal hindcasts, which enhances prediction skill in the 499 

tropical Pacific75. On the other hand, some studies suggest that models may underestimate 500 

Atlantic-Pacific Ocean interactions due to climatological biases, which displace atmospheric 501 

convective regimes and sensitivities22,83. The influence of interbasin ocean interactions on decadal 502 

predictability needs to be further analyzed using regional experiments with more initialization 503 

dates and other properly designed experiments. 504 

Our results are subject to biases in CESM1 at 1° resolution and to considerable observational 505 

uncertainties. To investigate the dependence of the results on the choice of model and 506 

observational datasets, it will be important to examine other CMIP6 decadal forecasts84 as well as 507 

Ocean Model Intercomparison Project simulations85. Enhancing observational and reanalysis 508 

datasets is crucial for studying decadal ocean variability. Addressing the low CMIP5/6 decadal 509 
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prediction skill in the Pacific Ocean is key for improving the skill of current decadal climate 510 

prediction systems, which bridge the gap between seasonal forecasts and centennial climate 511 

projections and provide useful information on climate adaptation and resilience for decision 512 

makers in many sectors of the economy. 513 

Methods 514 

a. CESM1 simulations and forecasts 515 

We analyze the dynamics and predictability of TPDV using the CESM1, a global Earth system 516 

model consisting of atmosphere, ocean, land, and ice components linked by a flux coupler86. All 517 

experiments are conducted using the same model version as in the 40-member CESM1 Large 518 

Ensemble (CESM1 LE87) at nominal 1° latitude-longitude resolution, including the Community 519 

Atmosphere Model, version 5 (CAM588) with 30 vertical levels; the Parallel Ocean Program, 520 

version 2 (POP289) with 60 vertical levels; the Community Land Model, version 4 (CLM490); and 521 

the Los Alamos National Laboratory Community Ice Code, version 4 (CICE491). To compensate 522 

for the lack of comprehensive and consistent observations and reanalysis of subsurface oceanic 523 

processes that could influence TPDV, we analyze a forced ocean-sea ice simulation (FOSI), in 524 

which the ocean and sea ice components are forced with observed atmospheric and surface flux 525 

fields. The surface fluxes are derived using bulk formulae based on observed atmospheric fields 526 

from the Coordinated Ocean-Ice Reference Experiment forcing dataset92. FOSI provides a realistic 527 

simulation of SST variability during 1948–2015, despite some inconsistencies in the Southern 528 

Ocean93 (Fig. S12). Estimates for subsurface ocean temperatures and salinities are subject to larger 529 

observational uncertainties than for SST, as discussed in the following result sections. 530 

FOSI provides the ocean and sea ice conditions needed to initialize the Decadal Prediction 531 

Large Ensemble (DPLE14) and a parallel decadal forecast set that excludes historical volcanic 532 

aerosol forcing (DPLE_NoVolc69). In DPLE, 40-member forecasts are initialized from identical 533 

oceanic and sea ice conditions from FOSI on November 1st of each year during 1954–2015 and 534 

integrated for 122 months. The atmosphere and land initial conditions are expected to play a very 535 

minor role in contributing to decadal-scale climate predictability, and are obtained from a random 536 

member of the CESM1 LE without any observational constraints except for the historical radiative 537 

forcing. The ensemble spread among individual members is created by adding round-off level 538 
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perturbations to the initial atmospheric temperatures. The CMIP5 historical forcings for 1954–539 

2005, and representative concentration pathway (RCP) 8.5 forcings for 2006 and onwards, are 540 

used as the external forcings for the DPLE forecasts. DPLE_NoVolc follows the DPLE protocol, 541 

except that it excludes historical volcanic aerosol forcing during 1954–2005 and has a smaller 542 

ensemble size of 10. The comparison between DPLE and DPLE_NoVolc isolates the effect of 543 

historical volcanic forcing on decadal prediction skill and predictability69. 544 

To isolate the role of initialization in affecting predictability and prediction skill, we compare 545 

the DPLE with the uninitialized CESM1 LE14. The CESM1 LE is comprised of 40-member 546 

historical simulations subject to the CMIP5 forcings during 1920–2100, including the historical 547 

volcanic forcing87. We quadratically detrend all data sets (observed and simulated) to remove the 548 

forced climate change signal during 1954–2015. Results are very similar if we use other methods 549 

of estimating and removing the forced climate signal, including subtracting a linear trend or the 550 

ensemble mean of the CESM1 LE69. We also evaluate the performance of CESM1 in simulating 551 

intrinsic TPDV variability in an 1801-yr CESM1 control simulation under preindustrial 552 

atmospheric greenhouse gas concentrations.  553 

b. Observational datasets  554 

We assess the simulation realism and retrospective forecast skill of TPDV using multiple 555 

observational and reanalysis datasets available from the 1950s to 2022. The SSTs are taken from 556 

the National Oceanic and Atmospheric Administration (NOAA) Extended Reconstruction Sea 557 

Surface Temperature version 594 (ERSSTv5) dataset at 2° spatial resolution, and the Hadley Centre 558 

Sea Ice and SST dataset95 (HadISST) at 1° spatial resolution, during 1954-2022. The ocean 559 

temperature and salinity are taken from the Met Office Hadley Center EN496 (EN4) with bias 560 

correction97 at 1° horizontal resolution with 42 vertical levels during 1954-2022, and the European 561 

Centre for Medium-Range Weather Forecasts (ECMWF) Ocean Reanalysis System 498 (ORAS4) 562 

at 1° horizontal resolution with 42 vertical levels during 1958–2017. The ocean potential density 563 

is calculated using the temperature and salinity based on the equation of state for seawater99. 564 

Surface wind stress is taken from the fifth generation ECMWF atmospheric reanalysis of global 565 

climate100 (ERA5) for 1954-2022. Surface wind stress is also calculated based on surface wind 566 

components from the NOAA Twentieth Century Reanalysis version 3101 (NOAA20CRv3) during 567 
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1954–2022 for comparisons. All observational data are re-gridded to the model grid at ~1° using 568 

a bilinear interpolation before comparison. 569 

c. Analysis methods  570 

Decadal forecasts are initialized from full-field oceanic states constrained by observations and 571 

will drift toward the model’s biased climatology as the forecasts progress. To obtain forecast 572 

anomalies, forecast lead-dependent climatologies are removed from each ensemble member. For 573 

each forecast year (FY) 1–10, a climatology is determined by averaging the ensemble mean annual 574 

mean forecasts at that lead across 1964–2015. The choice of the 1964–2015 period as the baseline 575 

climatology ensures a consistent sample size (52 years) for each lead time. Anthropogenic climate 576 

change is estimated as a quadratic fit of the ensemble mean forecast anomalies across 1954–2015, 577 

as a function of lead time (i.e., FY1–10). This estimated climate change signal is then subtracted 578 

from individual drift-corrected ensemble members, to obtain detrended forecast anomalies.  579 

We evaluate the model performance in capturing observed TPDV using EOF analysis, and by 580 

calculating the anomaly correlation coefficient (ACC) between the ensemble-mean forecasts and 581 

observations. Statistical significance of the results is tested using a bootstrapping method14,102. At 582 

each spatial location, we determine a nonparametric bootstrap distribution of the forecast ACC, 583 

ACC difference, correlation, or composite anomalies by resampling (with replacement) the 584 

forecast ensembles across both the time and/or ensemble member dimensions, and then 585 

recalculating the statistics for each of the 5,000 samples. The calculation of 5,000 values is 586 

performed using 10-member ensembles for all model analyses, considering the varied ensemble 587 

sizes of DPLE (40 ensemble members), DPLE_NoVolc (10), and LE (40). A positive value is 588 

deemed significant at the 90% confidence level if its bootstrapped distribution contains fewer than 589 

500 values below zero (p<500/5,000=0.1), and vice versa for a negative value. 590 

Several metrics are used to examine oceanic processes relevant to TPDV. Mixed layer depth 591 

in CESM1-FOSI is a monthly model output defined using a maximum buoyancy gradient 592 

criterion103. Monthly thermocline depth is calculated as the depth of the maximum vertical 593 

temperature gradient. We use the monthly isopycnal depth where the potential density is equal to 594 

25.5 kg m-3 (σ_θ=25.5 kg m-3) to capture the evolution of both off-equatorial and equatorial oceanic 595 

wave characteristics. Spiciness is defined using the monthly temperature along the time-dependent 596 

monthly isopycnal surface where σ_θ=25.5 kg m-3.  597 
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d. Regional initialization experiments 598 

To examine the impact of initial ocean conditions in different ocean basins on TPDV 599 

predictions, we conducted a set of sensitivity experiments with regional initialization. We focus 600 

on the period of 1999–2008, during which the tropical Pacific exhibited negative decadal SST 601 

anomalies in observations. This tropical Pacific decadal cooling is well predicted by the 602 

DPLE_NoVolc forecasts initialized from the global oceanic states estimated by FOSI on 603 

November 1, 1998 with a ~10-year lead. We refer to this DPLE_NoVolc forecast as the Global 604 

Initialization experiment (Fig. 6). To separate which part of the ocean initialization is more 605 

important to this prediction case, we conducted the following sensitivity experiments (Fig. 6): 1) 606 

A control ensemble initialized with the global FOSI climatology during 1954–2015 (Climatology 607 

initialization); 2) An ensemble initialized with the global FOSI climatology and full-depth ocean 608 

temperature and salinity anomalies in the North Atlantic (North Atlantic initialization; 20°–60°N); 609 

3) Similar to 2), but focusing on Tropical Pacific initialization (20°S–20°N); and 4) Southern 610 

Hemisphere Ocean initialization, including the Southern Ocean, tropical Indian Ocean and tropical 611 

South Atlantic Ocean. To avoid discontinuities in oceanic forcing at the boundaries, we apply a 612 

linear interpolation over 5° latitude bands. Each experiment includes 10-member forecasts subject 613 

to external radiative forcings from November 1998 to December 2008, as was done for the Global 614 

Initialization experiment. Forecast anomalies are computed by subtracting the control simulation 615 

(Experiment 1) from Experiments 2–4 and the Global Initialization experiment. This approach to 616 

calculating forecast anomalies assumes a consistent time-dependent model drift across all 617 

experiments and is used to prevent the extensive computing resources required to reproduce 618 

initialized forecasts for every year from 1954 to 2015 for each experiment. The forecast anomalies 619 

for the Global Initialization experiment, obtained by removing the control simulation, are very 620 

similar to the anomalies calculated using the traditional drift correction (Fig. S11b) and quadratic 621 

detrending (Fig. 6g).   622 

 623 
Data availability: NCAR’s Climate Data Gateway provides the output from CESM1 DPLE 624 
(https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.CESM1-CAM5-DP.html), FOSI 625 
(https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.DPLE-626 
FOSI.ocn.proc.monthly_ave.html), and LE 627 
(https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.cesmLE.html). DPLE_NoVolc is 628 
available through https://portal.nersc.gov/archive/home/c/ccsm/www/CESM1-CAM5-DP-NoV. 629 
Observational and reanalysis datasets used in this study are available online: ERSSTv5 SSTs 630 
from https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html, HadISST from 631 

https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.CESM1-CAM5-DP.html
https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.DPLE-FOSI.ocn.proc.monthly_ave.html
https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.DPLE-FOSI.ocn.proc.monthly_ave.html
https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.cesmLE.html
https://portal.nersc.gov/archive/home/c/ccsm/www/CESM1-CAM5-DP-NoV
https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html
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http://www.metoffice.gov.uk/hadobs/, ORAS4 from ftp://ftp-632 
icdc.cen.unihamburg.de/EASYInit/ORA-S4, EN4 from 633 
https://www.metoffice.gov.uk/hadobs/en4/download.html, ERA5 from 634 
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5, and NOAA20CRv3 from 635 
https://www.psl.noaa.gov/data/gridded/data.20thC_ReanV3.html. 636 
  637 
 638 
Code availability: Codes generated during this study are available from the corresponding author 639 
upon reasonable request. 640 
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