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ABSTRACT: Anthropogenic climate change is unfolding rapidly, yet its regional manifestation

can be obscured by internal variability. A primary goal of climate science is to identify the

externally forced climate response from amongst the noise of internal variability. Separating the

forced response from internal variability can be addressed in climate models by using a large

ensemble to average over different possible realizations of internal variability. However, with only

one realization of the real world, it is a major challenge to isolate the forced response directly in

observations. In the Forced Component Estimation Statistical Method Intercomparison Project

(ForceSMIP), contributors used existing and newly developed statistical and machine learning

methods to estimate the forced response over 1950-2022 within individual realizations of the

climate system. Participants used neural networks, linear inverse models, fingerprinting methods,

and low-frequency component analysis, among other approaches. These methods were trained

using large ensembles from multiple climate models and then applied to observations. Here we

evaluate method performance within large ensembles and investigate the estimates of the forced

response in observations. Our results show that many different types of methods are skillful for

estimating the forced response in climate models, though the relative skill of individual methods

varies depending on the variable and evaluation metric. Methods with comparable skill in models

can give a wide range of estimates of the forced response in observations, illustrating the epistemic

uncertainty in forced response estimates. ForceSMIP gives new insights into the forced response

in observations, its uncertainty, and methods for its estimation.
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SIGNIFICANCE STATEMENT: The ForceSMIP project aims to reduce uncertainty in estimates50

of the climate response to anthropogenic and other external forcing and to evaluate statistical and51

machine learning methods designed to estimate the forced response from individual realizations of52

the climate system. New and existing statistical and machine learning methods are evaluated within53

climate models, for which the forced response is known. Applying these methods to observations54

gives an estimate of the real-world forced response. The observational forced response estimate55

agrees with climate models on the large-scale features but also shows discrepancies that give56

insights into responses that may not be simulated well by climate models. In some regions with57

large internal variability, such as the North Atlantic ocean, it remains difficult to determine the58

relative contributions of anthropogenic forcing and internal variability to historical changes.59

1. Introduction60

Climate variability and change is composed of forced and unforced components. The forced61

component of climate change, or forced response, includes all spatiotemporal changes in climate in62

response to external forcing. Here we consider the net response to forcing from greenhouse gasses,63

anthropogenic aerosols, land-use change, stratospheric ozone, and natural forcing (e.g., volcanic64

sulfur emissions and solar variability). The unforced component is due to internal variability of65

the climate system, for example associated with modes of climate variability such as the El Niño-66

Southern Oscillation (ENSO), Atlantic multi-decadal variability (AMV), and the North Atlantic67

Oscillation (NAO). In some regions or variables that are prone to large internal variability, the68

unforced component can be comparable in magnitude to or larger than the forced component,69

even in multi-decadal trends (Deser et al. 2012, 2014; Lehner et al. 2020). Accurate estimation70

of the forced and unforced components of regional climate change is critical for the attribution of71

historical climate changes and the characterization and understanding of climate variability and72

extremes.73

In climate models, the forced component can be isolated using large ensembles, where the same74

climate model is run many times with the same forcing but differences in initial conditions, leading75

to differences in the phasing of internal variability. For a climate measure of interest, the ensemble76

mean — or another relevant statistical measure — of a large ensemble gives an estimate of the forced77

response, with larger ensembles needed for variables with lower signal-to-noise ratio (Milinski et al.78
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2020). Assuming linear additivity of the forced and unforced components, the difference of an79

individual realization from the ensemble mean gives the contribution of internal variability. An80

example is shown for 1980-2022 SST trends from a single member of the ACCESS-ESM1-5 large81

ensemble in Fig. 1, where the full trend (Fig. 1a) is separated into forced and unforced components82

(Fig. 1b and c, respectively) based on the ensemble mean. Large ensembles are now a widespread83

tool used for climate change attribution, climate projections, and studies of climate variability and84

extremes (Deser et al. 2020). However, there is only a single realization of the actual climate85

system, and it is therefore substantially harder to separate observed climate change into forced86

and unforced components. Methods to estimate the forced response directly from observations87

are needed for evaluating climate models and understanding discrepancies between models and88

observations, for example to understand the role of forced response biases and internal variability89

in documented long-term trend discrepancies (Wills et al. 2022; Blackport and Fyfe 2022; Simpson90

et al. 2025) or to understand apparent discrepancies in the amplitude and signal-to-noise properties91

of modeled climate variability (Laepple and Huybers 2014; Scaife and Smith 2018; Klavans et al.92

2025).93

Individual studies have used one or more statistical methods to estimate the forced response in94

observations for various applications. For example, separating the forced and unforced component95

of AMV and the associated Sahel rainfall variability has received particular attention (Ting et al.96

2009; Booth et al. 2012; Zhang et al. 2013; Frankcombe et al. 2015; Bellucci et al. 2017; Frankignoul97

et al. 2017; Wills et al. 2020; Qin et al. 2020; Latif et al. 2022; He et al. 2023). By using different98

methods to estimate the forced response, each with their own methodological assumptions, these99

studies have reached widely differing conclusions ranging from the AMV is mostly forced (Booth100

et al. 2012; Wills et al. 2020; He et al. 2023) to the AMV is mostly internal variability (Zhang101

et al. 2013; Ting et al. 2009; Qin et al. 2020; Latif et al. 2022), although many of these studies102

acknowledge the uncertainty in this conclusion. There are also a range of conclusions on the103

forced and unforced contributions to the multi-decadal modulation of the global warming rate104

(DelSole et al. 2011; Dai et al. 2015; Stolpe et al. 2017; Kravtsov et al. 2018) and multi-decadal105

changes in the Pacific SST pattern (Olonscheck et al. 2020; Wills et al. 2022; Seager et al. 2022;106

Rugenstein et al. 2023) and the Aleutian low (Smith et al. 2016; Oudar et al. 2018), among other107

climate indices. All of these questions would benefit from a systematic comparison of methods for108
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estimating the forced response in observations, and this is what the Forced Component Estimation109

Statistical Method Intercomparison Project (ForceSMIP) aims to do.110

Large ensembles provide a perfect-model testbed for methods that estimate the forced response111

from individual ensemble members, because their ensemble mean gives a good estimate of the112

true forced response in that model. This has been the approach of several previous studies, which113

have developed statistical or machine learning (StatML) methods to estimate the forced response114

in single realizations, evaluated them using large ensembles, and then applied them to observations115

(Deser et al. 2014; Frankcombe et al. 2015; Frankignoul et al. 2017; Sippel et al. 2019; Wills116

et al. 2020; Bône et al. 2024; Rader et al. 2025). However, these studies have generally focused on117

one or two methods compared to some simple reference methods, and there has been no broader118

systematic intercomparison of methods. Furthermore, these studies have primarily targeted surface119

temperature and/or precipitation, and it is not clear how well the methods used generalize to other120

climate variables. ForceSMIP aims to systematically compare various StatML methods for forced121

response estimation across multiple variables in a common framework. Here we both assess which122

methods are skillful within the large ensemble testbed and investigate the spread of estimated forced123

responses in observations.124

The rest of the paper is organized as follows. In Section 2, we present the ForceSMIP framework125

and the climate model large ensemble and observational datasets used. In Section 3, we describe126

the 30 StatML methods that have been submitted to ForceSMIP. In Section 4, we evaluate the127

skill of methods for the spatial patterns of long-term trends across multiple variables, grid-scale128

spatiotemporal variability, and the temporal evolution of selected climate indices. In Section 5,129

we show examples of the forced responses in observations based on the most skillful methods.130

Finally, in Section 6, we draw conclusions and discuss implications, potential applications, and131

future directions.132
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Fig. 1. Illustration of selected methods and how they are evaluated in ForceSMIP using climate model large
ensembles. ForceSMIP participants generated a forced response estimate for each of 10 unlabeled evaluation
members. While the forced response estimate includes spatiotemporal variations across 8 variables over 1950-
2022, here each panel shows 1980-2022 annual-mean SST trends: (a) A single evaluation member (1B) from
a large ensemble, which after the submissions was revealed to be from ACCESS-ESM1-5. (b) The “correct
answer” is thus estimated from the 40-member ensemble mean of ACCESS-ESM1-5. (c) The internal variability
contribution to the trend in (a) is computed as (a) - (b). (d) The TrainingEM method is rescaled from the ensemble
mean of the training models and does not use information from ACCESS-ESM1-5 other than the global-mean
surface temperature trend. It is a reference method meant to illustrate the forced response that would be estimated
from a multi-model ensemble mean. (e)-(i) Forced response estimates from selected ForceSMIP methods, with
names and numbers in the titles corresponding to those in Table 1. (j) Taylor diagram showing root mean square
error (RMSE) normalized by the root mean square amplitude of the ensemble mean (colors), the root mean
square amplitude normalized by the root mean square amplitude of the ensemble mean, i.e., 𝜎𝑖/𝜎REF (black
arcs), and the uncentered pattern correlation 𝑟𝑖 (black rays). See Section 4a for further details of the evaluation
metrics. Each method is shown as a symbol with numbers corresponding to those in Table 1; diamonds show
methods that use pattern information from the training models; circles show methods that do not. The raw data
(a) is shown as a white star, and the dashed white line shows 𝛿RMSE𝑖/RMSERAW = 𝛿𝑟𝑖/ 𝑟RAW. The skill metrics
are averaged over the 5 “unseen model” evaluation members as explained in the text.
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Table 1. Statistical and machine learning methods for forced response estimation submitted to ForceSMIP

Tier 1. Included is information about the institutions involved in developing the methods, a rough categorization

of the method type (NN = neural network), whether the method uses pattern information from the training

models, whether the method is applied to multiple field variables at once (e.g., using the SST forced response to

inform the precipitation forced response), and the number of tunable parameters in the method (i.e., parameters

which can be influenced by the training models; reported by the method contributor). Methods are ordered by

the number of tunable parameters, and this numbering is used throughout the text and figures.

151

152

153

154

155

156

157

# Name Institution(s) Type of Method Pattern Information Multi-Field 𝑁 Parameters

1 RegGMST NCAR Regression No Yes 0

2 4th-Order-Polynomial N/A Reference No No 0

3 10yr-Lowpass N/A Reference No No 0

4 LFCA ETHZ LFCA No No 2

5 LFCA-2 ETHZ LFCA No No 2

6 MF-LFCA ETHZ LFCA No Yes 2

7 MF-LFCA-2 ETHZ LFCA No Yes 2

8 LIMnMCA Cornell, Tohoku LIM No Yes 2

9 ICA-lowpass MPI-M Other No No 3

10 LIMopt ETHZ LIM No No 3

11 LIMopt-filter ETHZ LIM No No 4

12 Colored-LIMnMCA Cornell, Tohoku LIM No Yes 5

13 DMDc Valencia LIM No No 75

14 GPCA Valencia Causal Inference No No 88

15 GPCA-DA Valencia Causal Inference No Yes 89

16 RegGMST-LENSem NCAR Regression No Yes 876

17 MLR-Forcing LLNL Regression No Yes 1.1e4

18 SNMP-OF ETHZ Fingerprinting Yes Yes 1.0e4

19 AllFinger LLNL, WHOI, UCLA Fingerprinting Yes No 1.0e4

20 MonthFinger LLNL, WHO, UCLA Fingerprinting Yes No 1.2e5

21 3DUNet-Fingerprinters UCLA, LLNL, WHOI NN Yes No 5.4e5

22 EOF-SLR IAP, Milwaukee Fingerprinting Yes No O(1e6)

23 LDM-SLR IAP, Milwaukee Fingerprinting Yes No O(1e6)

24 Anchor-OPLS Valencia Regression Yes No 2.1e6

25 UNet3D-LOCEAN LOCEAN NN Yes Yes 2.7e6

26 TrainingEM N/A Reference Yes Yes 9.1e6

27 RandomForest UCLA Random Forest Yes No 1.0e7

28 EncoderDecoder CSU NN Yes No 2.3e7

29 EnsFMP ETHZ Fingerprinting Yes Yes 4.5e7

30 ANN-Fingerprinters LLNL NN Yes No 1e16
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2. ForceSMIP Framework and Data158

The overarching idea of ForceSMIP is that community contributors develop and train StatML159

methods to estimate the forced response from single ensemble members and then apply them to160

model-based evaluation data and observations. The methods are then evaluated based on their161

forced response estimates in the model-based evaluation data, where each model’s true forced162

response is known. Finally, the observational forced response estimates can be compared across163

methods that have proven skillful in the model testbed.164

In order to test or train their methods, contributors were provided with data from 5 climate model165

large ensembles (Table 2). The identity of these training models was revealed to the participants.166

Data over 1850-2100 from all ensemble members of the historical and future scenario simulations167

was provided for 8 climate variables, chosen due to their widespread usage to characterize climate168

variability and change or their relevance for climate extremes: sea-surface temperature (SST),169

2-meter air temperature (T2m), precipitation (PR), sea-level pressure (SLP), monthly-maximum170

of daily precipitation (monmaxpr), monthly-maximum of daily-maximum temperature (monmax-171

tasmax), monthly-minimum of daily-minimum temperature (monmintasmin), and zonal-mean at-172

mospheric temperature (zmTa). The first four variables were taken from monthly outputs of tos,173

tas, pr, and psl, respectively, using the naming conventions of CMIP6 (Eyring et al. 2016). The174

remaining four variables were processed from daily output of pr, tasmax, and tasmin and monthly175

output of ta, respectively. All variables were interpolated to a common 2.5◦ grid following Brunner176

et al. (2020). Four of the variables were then additionally processed with CDO (Schulzweida 2023)177

commands to make derived variables: daily pr with monmax to make monmaxpr, daily tasmax178

with monmax to make monmaxtasmax, daily tasmin with monmin to make monmintasmin, and179

montly ta with zonmean to make zmTa, where monmax takes a monthly maximum, monmin takes180

a monthly minimum, and zonmean takes a zonal mean. After this processing, all variables have181

two spatial dimensions (lat and pressure for zmTa; lat and lon for all others) and monthly time182

resolution.183

After developing and training their methods, the contributors submitted: (1) descriptions and192

basic information about their methods, (2) their method code, and (3) output from application of193

their method to estimate the forced response across all 8 variables in 10 evaluation members over the194

period 1950-2022. For the purposes of ForceSMIP, we use a broad definition of the forced response195
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Table 2. Large ensemble and observational data used in ForceSMIP. The first 5 models are the training

models and the next 5 models are “unseen models”, which are the source of the evaluation members 1B, 1D,

1E, 1G, and 1J used for method evaluation in this paper. Evaluation member 1I is the observational data. “Total

Members” indicates the number of members used to compute the ensemble mean, with the number in parenthesis

indicating the number of future scenario members if it is different than the number of historical simulation

members. CESM2 members are those with smoothed biomass burning (Rodgers et al. 2021). Note that due to

data problems for zmTa in some members of EC-Earth3, only 13 (51) of the total ensemble members were used

to compute the ensemble mean for this variable.

184

185

186

187

188

189

190

191

Model Evaluation Member Total Members Future Scenario Reference

CanESM5 1C (r20i1p2f1) 25 SSP585 Swart et al. (2019)

CESM2 1F (LE 1281.019) 50 SSP370 Rodgers et al. (2021)

MIROC6 1H (r11i1p1f1) 50 SSP585 Tatebe et al. (2019)

MIROC-ES2L N/A 30 SSP245 Hajima et al. (2020)

MPI-ESM1-2-LR 1A (r23i1p1f1) 30 SSP585 Olonscheck et al. (2023)

ACCESS-ESM1-5 1B (r10i1p1f1) 40 SSP585 Ziehn et al. (2020)

EC-Earth3 1D (r6i1p1f1) 18 (58) SSP585 Wyser et al. (2021)

GFDL-SPEAR-MED 1E ( r3i1p1f1) 30 SSP585 Delworth et al. (2020)

IPSL-CM6A-LR 1G (r3i1p1f1) 33 (11) SSP245 Boucher et al. (2020)

NorCPM1 1J (r4i1p1f1) 30 SSP245 Bethke et al. (2021)

ERA5/ERSST5 1I 1 N/A Hersbach et al. (2020); Huang et al. (2017)

(forced component of climate variability and change): it includes all spatiotemporal variations in196

the ensemble mean, thus including climate variations due to natural climate forcings (e.g., volcanic197

eruptions and solar variability) and anthropogenic influences (e.g., anthropogenic emissions of198

greenhouse gases and aerosols). Contributors therefore had to submit forced response estimates199

for all variables at monthly time resolution for all points on the 2.5◦ analysis grid. Nevertheless,200

much of the discussion in the hackathon that preceded the method submission focused on 1950-201

2022 trends or 1980-2022 trends, and many participants focused on skill metrics like the pattern202

correlation and root mean square error (RMSE) in long-term linear trends, as shown in Figs. 1 and203

2. These figures will be discussed in more detail in Section 4, but the overall idea is that by applying204

StatML to a single ensemble member (for which the trends over 1980-2022 are shown in Figs. 1a205

and 2a), the forced response estimates submitted by ForceSMIP contributors (Figs. 1d-i and 2d-i)206

should approximate as closely as possible the ensemble mean of the corresponding large ensemble207
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(Figs. 1b and 2b) by removing the internal variability (Figs. 1c and 2c). The 1980-2022 trends208

shown here are just one way in which the spatiotemporally resolved forced response estimates are209

evaluated in Section 4.210

The evaluation members in which the forced response is estimated are individual ensemble211

members of 9 different climate models (Table 2; excluding one training model) and 1 member212

combining observational and reanalysis data. All evaluation members had the metadata removed213

so that it was not possible to determine which dataset they came from. Only two of the ForceSMIP214
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organizers (C. Deser and A. Phillips) knew the identity of these evaluation members. Of the 9215

model-based evaluation members, 5 were from unseen models that were not among the training216

models. The method evaluation in Section 4 will primarily rely on these 5 unseen-model evaluation217

members. The forced response estimates for the evaluation members will be evaluated against218

the ensemble means computed over all available ensemble members. Note that for two models219

(EC-Earth3 and IPSL-CM6A-LR), there are a different number of historical and future scenario220

members, and in these cases the ensemble mean is computed separately in the historical and221

scenario simulations and then concatenated. Due to finite ensemble size, the ensemble mean222

against which methods are evaluated will still have some internal variability in it. This can lead223

to uncertainty on the order of 1/
√

40+18+30+33+30 = 0.08 (i.e., 8%) in the RMSE metrics that224

will be considered (using the ensemble size of the 5 unseen models during the historical period).225

Data from observations and reanalysis was processed to be on the same spatial and temporal226

resolution as the large ensemble data and was included as one of the unlabeled evaluation members227

(1I). In this way, methods can be evaluated and applied to observations in a single round of forced228

response submissions. This initial round of “Tier 1” ForceSMIP submissions focuses on 1950-229

2022, which was chosen based on the availability of reanalysis data over this period. As such,230

all “observational” data in Tier 1 except SST is actually from ERA5 reanalysis (Hersbach et al.231

2020). Daily tasmax, tasmin, and pr were computed from ERA5 hourly 2-meter temperature and232

rainfall data, and the other variables were computed from monthly ERA5 data. SST is from the233

NOAA Extended Reconstructed SST version 5 (ERSST5; Huang et al. (2017)). Accordingly, the234

observational forced response estimates from ForceSMIP Tier 1 will be subject to any biases present235

in the ERA5 and ERSST5 datasets. This is especially worth keeping in mind for the variables based236

on ERA5 reanalysis, where changes in the observing system can lead to spurious trends (Bengtsson237

et al. 2004). Subsequent Tiers of ForceSMIP will focus on different time periods, 1900-2023 and238

1979-2023, on which different sets of observational data are available.239

While the forced response estimates all have monthly temporal resolution, the analysis in this240

paper focuses on annual or seasonal averages (for SST, T2m, PR, SLP, and zmTA), annual maxi-241

mums, and annual minimums. The annual maximum of monmaxtasmax is called TXx, the annual242

maximum of monmaxpr is called Rx1day, and the annual minimum of monmintasmin is called243

TNn, following standard conventions in the study of extreme events (Zhang et al. 2011).244
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3. Statistical and Machine Learning Methods for Forced Response Estimation245

Thirty StatML methods were submitted to this first tier of the ForceSMIP project. They comprise246

a diverse mix of approaches including linear regression on global-mean temperature or forcing247

timeseries, low-frequency component analysis (LFCA), linear dynamical mode methods such as248

linear inverse models (LIMs), linear fingerprinting methods, and neural networks or other machine249

learning (ML) methods (Table 1). This includes both established methods [e.g., LFCA (Wills et al.250

2020), LIMopt (Frankignoul et al. 2017), and regression on global-mean surface temperature (Ting251

et al. 2009; Deser and Phillips 2021)] and methods newly created for ForceSMIP. The development252

of many of these methods began at a hackathon held at NCAR and ETH Zurich in August 2023.253

These methods are briefly summarized in the following subsections, with key details listed in Table254

1. In Table 1 and throughout the text, methods are ordered by their number of tunable parameters,255

which range from 0 to O(107) or higher. More detailed information about the methods and how256

they were trained can be found in the Supplementary Material, and code for all methods can be257

found at https://github.com/ForceSMIP/tier1-methods.258

a. Linear regression on global-mean temperature or forcing timeseries: RegGMST, RegGMST-259

LENSem, MLR-Forcing260

Many studies of internal variability, including ENSO, AMV, and the Pacific Decadal Oscilla-261

tion (PDO), remove anomalies associated with global-mean sea-surface temperature (GMSST)262

or global-mean surface temperature (GMST) changes when defining indices of this variability263

(Trenberth and Shea 2006; Ting et al. 2009; Frankignoul et al. 2017; Deser and Phillips 2021).264

Underlying these approaches is an implicit estimation of the forced response based on GMSST or265

GMST, under the assumption that those globally aggregated metrics are good proxies of the forced266

response. In ForceSMIP, two methods, RegGMST and RegGMST-LENSem, estimate the forced267

response by regressing each field onto a timeseries of GMST and combining that regression pattern268

with the GMST timeseries. RegGMST uses regression on GMST from the target evaluation mem-269

ber and RegGMST-LENSem uses regression on the ensemble-mean GMST from the 50-member270

CESM2 large ensemble (Deser and Phillips 2023b).271

A similar approach is to regress each field onto timeseries representing important external forcings272

or internal variability. The method MLR-forcing uses a multiple-linear-regression approach to273

13



regress each field onto regional aerosol forcing timeseries and timeseries representing the response274

to various forcings (including greenhouse gasses, volcanic emissions, and solar forcing) and on275

detrended Niño3.4 indices, estimating the forced response as the components associated with the276

forcing timeseries.277

b. Low-frequency component analysis: LFCA, LFCA-2, MF-LFCA, MF-LFCA-2, ICA-lowpass278

Low-frequency component analysis (LFCA) is a method to objectively identify the slowest evolv-279

ing spatial patterns in a dataset, using linear discriminant analysis applied to principal components280

to find patterns that maximize the ratio of low-frequency to total variance (Schneider and Held281

2001; Wills et al. 2018, 2020). It has been used both to study decadal climate variability (e.g.,282

Wills et al. 2019) and to separate forced and unforced components of climate change (Wills et al.283

2020). Its usage as a method to separate forced and unforced components is based on the under-284

standing that the forced response evolves on a longer timescale than most internal variability, i.e.,285

it is using timescale separation to separate forced and unforced components. The application of286

LFCA in ForceSMIP follows Wills et al. (2020), using a 10-year lowpass filter and including 1 or 2287

low-frequency patterns in the forced response estimate (methods LFCA and LFCA-2, respectively).288

Additionally, the methods MF-LFCA and MF-LFCA-2 apply the same method to two variables at289

a time by combining each field with SST, or in the case of SST, combining it with T2m, with each290

field normalized by the trace of its covariance matrix.291

While not a form of LFCA, the ICA-lowpass method uses independent component analysis292

(Hyvärinen and Oja 2000), which similarly finds linear combinations of a chosen set of principal293

components that maximize a variance criterion, in this case the statistical independence of the294

principal components. ICA-lowpass applies independent component analysis to lowpass filtered295

data and identifies the forced pattern based on its spatial uniformity, under the assumption that the296

spatial scales of forced climate change are larger than those of internal variability.297

c. Linear dynamical mode methods: LIMopt, LIMopt-filter, LIMnMCA, Colored-LIMnMCA,298

DMDc, GPCA, GPCA-DA299

Linear dynamical mode methods aim to describe the spatiotemporal variability in a dataset by300

a set of linear dynamical equations, which determine the evolution of a field from one timestep301
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to the next. The specific case of the Linear Inverse Model (LIM), where the evolution operator is302

determined from lagged covariance information, is widely used in climate science (Penland and303

Sardeshmukh 1995; Alexander et al. 2008). The concept of a least damped mode of a LIM was304

introduced by Penland and Sardeshmukh (1995) and has been used to separate the ENSO-related305

or forced variations in a dataset (Compo and Sardeshmukh 2010; Solomon and Newman 2012;306

Frankignoul et al. 2017; Xu et al. 2022). For ForceSMIP, the LIMopt and LIMopt-filter methods307

apply the method LIM optimal perturbation pattern and LIM optimal perturbation filter methods308

of Frankignoul et al. (2017) (see also Wills et al. 2020). The LIMnMCA and ColoredLIMnMCA309

methods combined a similar approach applied to SST with a maximum covariance analysis to find310

the covariations between SST and the other ForceSMIP variables, an extra step which we will show311

made it much more successful than other linear dynamical mode methods for non-temperature312

variables (i.e., PR, SLP, and Rx1day). ColoredLIMnMCA differs from LIMnMCA by the use of a313

LIM for colored Gaussian noise (Lien et al. 2025).314

The DMDc is similar in approach to LIMopt, but with a generalization of LIM to include a315

linear forcing component (Proctor et al. 2016). Similarly, GPCA and GPCA-DA are based on the316

representation of the data as a combination of an autoregressive process and a forced response,317

where the forced response is estimated by the “direct Granger effect” of an external forcing318

timeseries, and are an extension of the method presented in Varando et al. (2022). Like MLR-319

Forcing, these methods employ additional forcing timeseries. Compared to GPCA, GPCA-DA320

additionally uses empirical orthogonal functions (EOFs) of SLP to control against the internal321

variability they may represent, analagous to dynamical adjustment (Wallace et al. 2012; Lehner322

et al. 2017).323

d. Linear fingerprinting methods: AllFinger, MonthFinger, SNMP-OF, EOF-SLR, LDM-SLR,324

Anchor-OPLS, EnsFMP325

Broadly speaking, linear fingerprinting methods use model-based forced response patterns as326

an initial guess of the forced response and then estimate the contribution of this pattern to the327

observations (or an individual ensemble member treated like observations). While traditional328

uses of fingerprinting for detection and attribution generally aim to find a timeseries indicating329
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the amplitude of the forced response pattern compared to internal variability, the fingerprinting330

methods in ForceSMIP additionally combine that timeseries with an estimate of the forced pattern.331

AllFinger and MonthFinger are derived from pattern-based fingerprint analyses (Hasselmann332

1979; Santer et al. 2023), where the forced pattern fingerprint is obtained by averaging across models333

and extracting the leading EOF (amplifying the signal and reducing the noise). Observations —334

or individual model realizations — are projected onto the fingerprint to create a pseudo-PC time335

series, measuring the similarity between the fingerprint and the target’s time-varying patterns. The336

predicted trend map is reconstructed using the forced pattern fingerprint and the pseudo-PCs.337

EOF-SLR and LDM-SLR methods first estimate each model’s forced response components338

(timeseries) in a basis of spatial patterns given by either ensemble EOF or linear dynamic mode339

(LDM) decomposition (Gavrilov et al. 2020, 2024) of multi-model ensemble simulations. Then340

a set of optimal fingerprinting patterns is trained to deduce the forced response from a single341

realization in this ensemble. These patterns are constructed to be robust to model uncertainty342

within the training ensemble, and can thus be applied to the unseen data.343

Anchor-OPLS is a generalization of the anchor regression framework for fingerprint extraction344

introduced by Sippel et al. (2021), where forced responses are predicted at every grid point and345

orthonormalised partial least squares (OPLS) is used instead of ordinary least squares.346

SNMP-OF is a combination of signal-to-noise maximizing pattern (SNMP) analysis (Ting et al.347

2009; Wills et al. 2020) with optimal fingerprinting (Hegerl et al. 1996); it finds SNMPs from348

the training models and then projects their optimal fingerprint onto observations, finally recom-349

puting a forced response pattern from regression of observations onto the resulting signal-to-noise350

maximizing timeseries. EnsFMP combines the two steps into one by applying SNMP analysis to351

numerous combinations of model ensemble members and observations. Unlike the other finger-352

printing methods in ForceSMIP, these two methods recompute a forced response pattern within353

observations, and they thus stick closer to the raw data.354

e. Machine learning methods: 3DUNet-Fingerprinters, UNet3D-LOCEAN, RandomForest, En-355

coderDecoder, ANN-Fingerprinters356

ML contributions to ForceSMIP include one based on a recently developed method (UNet3D-357

LOCEAN; Bône et al. 2024), and four methods newly developed for ForceSMIP, including one358
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that has recently been used to attribute the record-high 2023 SST (EncoderDecoder; Rader et al.359

2025). Architectures used include a type of convolutional neural network called a U-Net (3DUNet-360

Fingerprinters, UNet3D-LOCEAN), Encoder-Decoder neural networks (EncoderDecoder, ANN-361

Fingerprinters), and random forests (RandomForest). Two of the ML methods learn to remove362

the internal variability (UNet3D-LOCEAN, EncoderDecoder), and the other three learn to esti-363

mate the forced response (3DUNet-Fingerprinters, ANN-Fingerprinters, RandomForest). ANN-364

Fingerprinters additionally uses the year as one of the inputs. The ML methods used in this365

study vary in complexity (e.g., 𝑁 Parameters in Table 2) and employ different parameter tuning366

and training strategies. Interestingly, the U-Nets trained on the internal variability and the forced367

component exhibit different strengths across variables (Section 4).368

f. Reference methods: 4th-Order-Polynomial, 10yr-Lowpass, TrainingEM369

In addition to the methods submitted to ForceSMIP, we compare against 3 reference methods,370

which involve minimal processing of either the raw data or the training-data ensemble mean. Two371

of the reference methods are simple methods to remove high-frequency noise in the raw data.372

4th-Order-Polynomial estimates the forced response as a 4th-order-polynomial fit to timeseries of373

each variable at each grid point. It has been used to estimate the forced response in a seminal374

paper by Hawkins and Sutton (2009) and later tested in large ensembles by Lehner et al. (2020).375

10-yr-Lowpass estimates the forced response as all variability left after application of a 10-yr376

Lanczos lowpass filter.377

While the first two reference methods are based entirely on the data within the single realization378

of interest, the third reference method, TrainingEM, represents an opposite extreme where most379

information is taken from the training data. TrainingEM simply takes the multi-model ensemble380

mean of the 5 training models as the forced response estimate and rescales it by a constant so that381

it has the same GMST trend over 1950-2022 as the single realization of interest. This is similar382

to the scaling method introduced by Steinman et al. (2015) and evaluated by Frankcombe et al.383

(2015). TrainingEM thus represents a type of null hypothesis where climate models have a perfect384

estimate of the forced response, up to a rescaling based on differences in climate sensitivity.385
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4. Method Evaluation386

In order to evaluate the skill of the ForceSMIP methods in isolating the forced response in387

individual realizations of the climate system, we focus on their skill in determining the forced388

response in the 5 unseen climate models (i.e., those not in the training dataset) from a single389

member of their large ensembles. However, the results are not systematically different in the 4390

evaluation members that were part of the training data (Fig. S1). The forced response estimates391

include monthly values globally for 1950-2022, so there are many metrics on which they could be392

evaluated. We will focus here on skill in estimating long-term forced trends, the grid-scale temporal393

evolution of the forced response, and the forced response in an illustrative set of large-scale climate394

indices.395

a. Long-term trends396

Our method for evaluating method skill in isolating the forced component of long-term trends397

can be visualized in Figs. 1 and 2, showing estimates of forced 1980-2022 annual-mean SST398

and PR trends from a single evaluation member. The forced trend estimate from each method399

(panels d-l) is compared against the true forced response, as estimated by the ensemble mean of400

the corresponding large ensemble (panel b). For comparison, we also show how well the linear401

trend in the raw data from the evaluation member approximates the true forced response (panel a),402

which is a reference point we expect methods to improve upon. The difference between the full403

trend in the raw data and the ensemble-mean forced trend is the contribution of internal variability404

(panel c), which the methods aim to remove.405

We quantify the skill of each method’s estimate of the forced trend pattern f𝑖 compared to the406

true forced trend pattern f0 in terms of:407

1. the uncentered pattern correlation, or cosine similarity, 𝑟𝑖 = ⟨f𝑖, f0⟩ ∥f𝑖∥−1∥f0∥−1, where ⟨·, ·⟩408

indicates an area-weighted inner product and ∥ · ∥ =
√︁
⟨·, ·⟩ indicates an area-weighted inner-409

product norm,410

2. RMSE𝑖 = 𝑝−1∥f𝑖 − f0∥ normalized by the amplitude of the true forced trend pattern 𝜎0 =411

𝑝−1∥f0∥, where 𝑝 is the total number of grid cells and each method’s normalized RMSE is412

hereafter referred to as nRMSE𝑖, and413
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3. the amplitude ratio of the predicted and true forced trend patterns (𝜎𝑖/𝜎0).414

The root mean square over the 5 unseen-model evaluation members of each method’s nRMSE𝑖415

and forced trend pattern amplitude 𝜎𝑖 = ∥f𝑖∥ is plotted on a Taylor diagram (Figs. 1j and 2j).416

The colored shading shows nRMSE𝑖, the curved black arcs show contours of the amplitude ratio417

of the predicted and true forced trend patterns (𝜎𝑖/𝜎0), and the black rays show contours of the418

uncentered pattern correlation 𝑟𝑖. Because these three metrics are inter-related, the uncentered419

pattern correlation 𝑟𝑖 shown in the Taylor diagrams is determined from the other two variables by:420

𝑟𝑖 =
𝜎2
𝑖
+𝜎2

0 −RMSE2
𝑖

2𝜎𝑖𝜎0
=

1+ (𝜎𝑖/𝜎0)2 −nRMSE2
𝑖

2𝜎𝑖/𝜎0
. (1)

This equation is exact when applied to a single evaluation member but is approximate when applied421

to the averages over 5 members in the Taylor diagrams. The use of uncentered pattern correlation422

and RMSE strays from the convention for Taylor diagrams (Taylor 2001) and is chosen to keep the423

degree of global warming as part of the evaluation. Note also that the Taylor diagrams in this paper424

do not show the full quadrant; rather, they zoom in on the regions where the points are. Our variant425

on the Taylor diagram is partially inspired by the “solar diagram” of Wadoux et al. (2022), however,426

in our case the quantitative information remains the same as in a traditional Taylor diagram other427

than the use of uncentered metrics.428

One noteworthy observation from Figs. 1 and 2 is that methods that do not use pattern information429

from the training models (methods 1-17; shown with circular symbols in the Taylor diagrams;430

hereafter simple methods) estimate forced trends that look more like the raw trend from the431

evaluation member (Fig. 1e-f, cf. Fig. 1a; 2e-f, cf. Fig. 2a). On the other hand, methods that use432

pattern information from the training models (methods 18-30; shown with diamond symbols in433

the Taylor diagrams) estimate forced trends that look more like the ensemble-mean of the training434

models (Fig. 1g-i, cf. Fig. 1d; 2g-i, cf. Fig. 2d). This is especially true for SST, and we435

suspect that the reason for more diversity in forced precipitation trend estimates is that not all436

training models have the same forced precipitation response. Methods that use pattern information437

generally perform better in terms of nRMSE than the methods that do not, but they will be more438

influenced by any systematic biases in the training models, and they do not perform as well in terms439

of pattern correlation for precipitation.440
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Fig. 3. Taylor diagram of method skill for 1980-2022 trends in (a) SST, (b) surface air temperature, (c)

precipitation, and (d) sea level pressure. Colors, lines, and symbols as described in Fig. 1. Outlier methods

excluded from the plots are: (a) 9, 30; (b) 27; (c) none; (d) none.
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442

443

The Taylor diagrams for 1980-2022 trends in all 8 variables are shown in Fig. 3 and 4. For all449

variables, the majority of ForceSMIP methods are skillful, where we consider a method skillful if450

𝛿RMSE𝑖/RMSERAW < 𝛿𝑟𝑖/ 𝑟RAW, i.e., if the fractional reduction (improvement) in RMSE compared451

to the raw data is greater than any fractional reduction (deterioration) in pattern correlation (below452
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Fig. 4. Taylor diagram of method skill for 1980-2022 trends in (a) annual maximum daily maximum temper-

ature (TXx), (b) annual minimum daily minimum temperature (TNn), (c) annual maximum daily precipitation

(Rx1day), and (d) zonal-mean atmospheric temperature (zmTa). black lines, and symbols as described in Fig. 1.

Outlier methods excluded from the plots are: (a) 13, 27; (b) none; (c) none; (d) 9, 14, 15, 25. Note additionally

that methods 1, 13, 16, 20, 21, 24, 27, and 30 did not estimate the forced response in zmTa.
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the white lines in Fig. 3 and 4). Hence, a skillful method is required to reduce RMSEi compared453

to RMSERAW, while at the same time not deteriorating the pattern correlation too strongly. This454
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definition of “skillfulness” thus implements the trade-off between RMSE and pattern correlation455

seen for some variables, such as precipitation. This approach only considers whether methods456

are skillful on average within the five evaluation members, and the number of skillful methods is457

lower for individual evaluation members (Fig. S2) as a result of sampling variability and/or model458

structural differences.459

Skill for SST, T2m, TXx, and TNn are similar in an absolute sense, with nRMSE𝑖 between 0.3460

and 0.6 (i.e., 30-60% errors). However, there is more improvement compared to the raw data for461

TNn than for the other three surface-temperature variables, due to the smaller signal-to-noise ratio462

of TNn changes (as evident in the larger nRMSE of the raw data). The most skillful methods463

are generally similar across the 4 surface-temperature variables (i.e., methods 20, 22, 23, 24,464

25). There also tends to be a cluster of simple methods with modest but systematic improvement465

compared to the raw data. The skill for zonal-mean atmospheric temperature (zmTa) trends is an466

interesting case, because here the trend in the raw data is already such a skillful estimate of the467

forced response (nRMSERAW < 0.25) that only about half the methods can improve the skill further468

for this variable.469

The absolute skill of the methods for trends in PR, SLP, and Rx1day is lower than for the four470

surface-temperature variables (Figs. 3c,d, 4c; cf. Figs. 3a,b, 4a,b). However, the improvement in471

nRMSE compared to the raw data is much larger for these variables. This occurs because there472

is a larger internal variability contribution to the 1980-2022 trends in these variables, and simply473

reducing the amplitude of the raw data would reduce nRMSE. Some of the ML methods (e.g., 25,474

27) and one of the fingerprinting methods (24) even take the extreme approach of reducing the475

estimated forced response amplitude to near zero for these variables, which does nevertheless reduce476

nRMSE. The ability to improve nRMSE simply by reducing the amplitude of the estimated forced477

trend pattern means that we should also pay attention to pattern correlation, which is not influenced478

by the amplitude. Several of the simple methods consistently improve pattern correlation across479

these variables (e.g., 6, 7, 8, 12, 16), as does one neural network method (21). Of all variables,480

annual-mean PR shows the largest number of methods that reduce the pattern correlation compared481

to the raw data, illustrating the difficulty in isolate the forced response for this variable.482

Here, we have focused on 1980-2022 trends, due in part to recent literature about SST trends483

over this time period (e.g., Wills et al. 2022; Watanabe et al. 2024). However, we also evaluated484
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skill for other time periods, and the skill for 1950-2022 and 2000-2022 SST trends are compared485

to the skill for 1980-2022 trends in Fig. S3. Methods generally show comparable absolute skill486

across the three time periods, however this represents a much larger improvement compared to the487

raw data for the short-term trends (2000-2022). This shows that the ForceSMIP methods have even488

more added value for short-term trends, where there is more internal variability to remove.489
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Fig. 5. Skill summary scorecards for all methods’ skill in 1980-2022 trends in all variables: (a) 1−nRMSE,

where nRMSE is normalized by the amplitude of the true forced response as in the Taylor diagrams; (b) the

uncentered pattern correlation. The root mean square nRMSE and average uncentered pattern correlation are

computed over the 5 “unseen model” evaluation members. Grey indicates that the method did not include a

forced response estimate for zmTa. Stippling indicates metrics where the ForceSMIP method gives a more

skillful forced trend estimate than the raw data, where the skill of estimating the forced trend by the raw data is

shown on the left hand side for reference. Note that values less than −1 in (a) are cropped and the colorbar in (b)

increases linearly with the square of the correlation.

490

491

492

493

494

495

496

497

To more easily compare across methods and variables, Fig. 5 shows a scorecard for the two498

main skill metrics, nRMSE𝑖 and uncentered pattern correlation 𝑟𝑖. 1−nRMSE𝑖 is shown in place499
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of nRMSE𝑖 so that increased skill is positive in both panels. No single method stands out as most500

skillful across all variables. While the fingerprinting and ML methods that use pattern information501

from the training models (i.e., methods 18-30) generally stand out in terms of nRMSE, they tend to502

have lower pattern correlation than simple methods (especially methods 1-8, 12, and 16). The too503

low amplitude of some ML estimates is not apparent here, so it is important to keep in mind the504

Taylor diagrams as well (cf. Figs. 3 and 4). Methods that stand out in terms of consistency, with a505

skill improvement relative to the raw data in at least 13 of 14 rows (stippling in Fig. 5; excluding506

zmTa, which is not evaluated for all methods), are 2, 4-8, 12, 18-21, and 24-26, which includes507

at least one of each basic method category. The absolute skill of methods varies based on which508

evaluation member they are applied to (Figs. S1 and S2), but the methods’ skill relative to one509

another stays roughly the same across evaluation members. It is also important to note here that510

consistent skill in the average over 5 unseen models, as is shown in Fig. 5, does not necessarily511

translate into skill in all individual evaluation members (Figs. S1 and S2).512

There are a number of methods that have problems with specific variables despite skill in other513

variables. One more general problem is the failure of dynamical mode methods (e.g., 10, 11,514

13-15) applied directly to variables such as PR, SLP, and Rx1day that do not have the monthly or515

longer autocorrelation that is generally an underlying assumption in these methods. An apparently516

successful workaround is to apply the dynamical mode method to SST or another variable with517

large autocorrelation and then to use the covariance with other variables to get the forced response518

in the other variables, as was done by methods 8 and 12.519

b. Spatiotemporal variability and large-scale climate indices520

The long-term trends are only one way to evaluate the forced response estimates from the521

ForceSMIP methods, which include full spatiotemporal variability over 1950-2022. In this section522

we consider their skill for the spatiotemporal variability in the forced response, both at the grid523

scale and in selected large-scale climate indices.524

We first synthesize the ForceSMIP methods’ skill for grid-scale annual-mean spatiotemporal533

variability. Figure 6a shows 1− nRMSE, where nRMSE is the square root of the global-mean534

mean squared error in the grid-scale forced response estimate normalized by the square root535

of the global-mean mean squared amplitude of the true forced response (ensemble mean of the536
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corresponding large ensemble). Figure 6b shows the global-mean grid-point correlation of the537

forced response estimate and the corresponding true forced response. The absolute skill in both538

of these skill metrics is less than the absolute skill in long-term trends (cf. Fig. 5), however,539

the skill added by the ForceSMIP methods compared to the raw data is larger, and there is more540

widespread stippling, indicating improvement relative to the raw data. All methods show consistent541

improvement relative to the raw data across all variables in nRMSE, with a few exceptions in zmTa.542

Methods 1, 6-8, 12, 16, 21, 25, 29, and 30 additionally show improvement relative to the raw data543

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30

SST
T2m

PR
SLP

Rx1day
TXx
TNn

zmTa

1 - RMSE (normalized)

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30

SST
T2m

PR
SLP

Rx1day
TXx
TNn

zmTa

Correlation

0.2
0.4

0.6
0.7

0.8

0.9

1  

0 Raw Dataa

b

1 RegGMST
2 4th-Order-Polynomial
3 10yr-Lowpass
4 LFCA
5 LFCA-2
6 MF-LFCA
7 MF-LFCA-2
8 LIMnMCA
9 ICA-lowpass
10 LIMopt 
11 LIMopt-filter
12 Colored-LIMnMCA 
13 DMDc
14 GPCA
15 GPCA-DA
16 RegGMST-LENSem
17 MLR-Forcing
18 SNMP-OF
19 AllFinger
20 MonthFinger
21 3DUNet-Fingerprinters
22 EOF-SLR
23 LDM-SLR
24 Anchor-OPLS
25 UNet3D-LOCEAN
26 TrainingEM
27 RandomForest
28 EncoderDecoder
29 EnsFMP
30 ANN-Fingerprinters

Fig. 6. Skill summary scorecards for all methods’ globally averaged skill in 10-yr running-mean grid-point

variability in all variables: (a) one minus the normalized RMSE, normalized by the amplitude of the forced

response; (b) the global-mean correlation. The root mean square nRMSE and average correlation are computed

over the 5 “unseen model” evaluation members. Grey indicates that the method did not include a forced response

estimate for zmTa. Stippling indicates metrics where the ForceSMIP method has more skill than the raw data,

where the skill of estimating the forced response by the raw data is shown on the left hand side for reference.

Note that values less than −1 in (a) are cropped and the colorbar in (b) increases linearly with the square of the

correlation.
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across all variables (except zmTa) in correlation. The skill of methods relative to one another is544

overall quite similar for the spatiotemporal variability as for the long-term trends.545

To evaluate the ForceSMIP methods’ skill for large-scale climate indices, we choose 6 example546

indices: (1) Annual-mean global-mean surface air temperature (GMST), (2) annual-mean Niño3.4547

SST minus global-mean SST (GMSST), (3) the North Atlantic SST index (NASSTI) of the AMV,548

i.e., annual-mean SST averaged over 0-60◦N, 0-80◦W minus the global mean, (4) Sahel monsoon549

precipitation in MJJAS, averaged over 10-20◦N, 20◦W-10◦E, (5) DJF Aleutian low SLP averaged550

over 30-65◦N, 160◦E-140◦W, and (6) TXx averaged over Continental Europe (land in 40-55◦N,551

0-40◦E). A 10-yr running-mean is applied to indices 2-5 to filter out some of the high-frequency552

noise, which would otherwise persist even in the ensemble mean of a large ensemble.553

The skill of the ForceSMIP methods for these six large-scale indices is shown in Fig. 7. In560

general, there are larger and more systematic nRMSE reductions compared to the raw data than561

for the long-term trends in the corresponding variables (cf. Figs. 3 and 4). While there is562

improvement in the correlation skill compared to the raw data for almost all methods in GMST563

and Continental Europe TXx, there is more varied correlation skill across methods in the other564

four indices. However, for each index, there is a subset of methods that are substantially improving565

skill in terms of both nRMSE and correlation. Methods that consistently add skill compared to the566

raw data across all indices (3-8, 12, 14-16, 18, 22, 24, 25, and 29) include a wide range of method567

types, including both simple and complex methods.568

5. Estimating the Forced Response in Observations569

The underlying motivation for comparing StatML methods within ForceSMIP is to improve570

estimates of the forced response in observations. Now, armed with knowledge about which571

methods are skillful for which variables and metrics, we are ready to estimate the forced response572

in observations.573

Each ForceSMIP method was applied to ERSST5 and ERA5 reanalysis data in the same way it574

was applied to the evaluation members used for method evaluation in the previous section. Our575

goal in this section is to provide some examples of the forced response estimated by the ForceSMIP576

methods within this observational data. A follow-up paper will use method weighting to generate a577

definitive ForceSMIP forced response estimate including its spread across methods. It is important578
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Fig. 7. Taylor diagram showing skill for temporal variability of climate indices: (a) annual-mean GMST,
(b) 10-year running-mean Niño3.4 SST minus global mean SST, (c) 10-year running-mean NASSTI SST minus
global mean SST, (d) 10-year running-mean MJJAS Sahel precipitation, (e) 10-year running-mean DJF Aleutian
Low SLP, and (f) continental Europe (40-55◦N, 0-40◦W) TXx. Colors, lines, and symbols as described in Fig.
1, except with pattern nRMSE and pattern correlation replaced with nRMSE and correlation in these indices.
Outlier methods excluded from the plots are: (a) 13, 27, (b) 1, (c) none, (d) 20, 26, (e) none, (f) none.
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to note that observational datasets have non-negligible structural uncertainties (e.g., Menemenlis579

et al. 2025) and that the ForceSMIP forced response estimate does not sample these observational580

uncertainties.581

It is illustrative to first examine the forced responses for individual skillful methods. In Figs. 8,582

9, and 10, we show the forced and internal components of observed 1980-2022 trends in SST, PR,583

and SLP, respectively, as estimated by selected ForceSMIP methods, alongside the raw observed584

trends over this period. The internal components are diagnosed as the difference between the raw585

data and the estimated forced component. Methods are selected to illustrate the range of different586

forced trend estimates, based on an EOF analysis presented in Appendix A.587

The strong pattern observed in the 1980-2022 SST trend, with cooling in the East Pacific and590

Southern Ocean and intensified warming in the West Pacific and North Atlantic, unlike the more591

uniform East-Pacific intensified warming that climate models show for this period, has generated592

substantial interest from the climate science community (Wills et al. 2022; Seager et al. 2022;593

Watanabe et al. 2024; Simpson et al. 2025). This lack of agreement with models is apparent in the594

comparison in Fig. 8 of the full observed trend with the TrainingEM method (26), which is equal595

(up to an amplitude rescaling) to the ensemble mean of the 5 training models. The residual internal596

variability estimated by TrainingEM is large and has been shown to be larger than is consistent597

with internal variability in most climate models (Wills et al. 2022; Seager et al. 2022).598

Several of the other ForceSMIP methods shown have a smaller amplitude of estimated internal599

variability in 1980-2022 SST trends, indicating that they are estimating a forced response that is600

closer to the full observed trends than is the TrainingEM forced response. However, the degree to601

which individual methods’ forced response estimates are more similar to the full observed trends or602

to the TrainingEM forced response varies substantially. LFCA-2 is one end member, estimating that603

almost all of the observed trend over 1980-2022 is forced. EOF-SLR is another end member, with604

a forced response similar to TrainingEM except for reduced El-Niño-like warming and somewhat605

more warming in the Atlantic. GPCA and UNet3D-LOCEAN are in between these end members,606

but each with their own unique features. The differences across these methods, all of which607

are shown to be skillful in the method evaluation (Fig. 3a), illustrates the epistemic uncertainty608

in estimating the forced response from observations, where epistemic uncertainty refers to the609

uncertainty and potential systematic biases associated with the method used for forced response610
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Fig. 8. Forced and internal components of observed SST trends (1980-2022) for TrainingEM and selected

skillful methods, chosen as representative examples from the EOF analysis in Figure A1.

588

589

estimation. While EOF-SLR and UNet3D-LOCEAN are modestly more skillful than the other611

methods in the method evaluation, we cannot say with certainty which of these six forced response612

estimates is closer to the truth.613

There is even wider spread of forced response estimates for precipitation (Fig. 9; see also Fig.616

A2), ranging from MF-LFCA-2 estimating that most of the observed 1980-2022 trend is forced to617
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Fig. 9. Forced and internal components of ERA5 PR trends (1980-2022) for TrainingEM and selected skillful

methods, chosen as representative examples from the EOF analysis in Figure A2.

614

615

MonthFinger and TrainingEM estimating that almost none of it is. MF-LFCA and SNMP-OF are618

somewhere in between, with forced and internal contributions of similar amplitudes. It is worth619

noting that by focusing on forced responses that are robust across models, the estimated forced620

responses by TrainingEM and MonthFinger are smaller in amplitude than the forced precipitation621
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response in individual models (cf. Fig. 2b), due to structural differences in models’ forced622

responses.623

MF-LFCA-2 (7) MonthFinger (20)
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Fig. 10. Forced and internal components of ERA5 SLP trends (1980-2022) for TrainingEM and selected

skillful methods, chosen as representative examples from the EOF analysis in Figure A3.

624

625

The estimated 1980-2022 forced trends in SLP are all quite different from one another (Fig.626

10). They agree on the poleward shift of the Southern Hemisphere westerly winds indicated by627

the positive and negative bands of SLP trends north and south of ∼ 50◦S, but they have more than628
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a factor of four spread in the magnitude of this circulation change. Some methods show that the629

Aleutian low weakening is mostly forced (e.g., MF-LFCA-2, consistent with the SST estimate630

from LFCA-2 in Fig. 8) while others show it is almost entirely internal variability (MF-LFCA,631

UNet3D-LOCEAN, ANN-Fingerprinters). There is a similar lack of agreement on whether North632

Atlantic SLP trends are forced or unforced. The large uncertainty in the forced response of SLP633

is consistent with the literature (Knutson and Ploshay 2021). The potential for climate models to634

underestimate the amplitude of the forced SLP response, as would be evident in the comparison635

between TrainingEM and MF-LFCA-2, has been presented as a signal-to-noise paradox (Scaife636

and Smith 2018; Smith et al. 2020). However, our results show that the diagnosed magnitude of637

this problem is subject to considerable epistemic uncertainty in the forced SLP response.638

To get a sense for the average separation of 1980-2022 trends into forced and internal components639

by the ForceSMIP methods, we average the forced response estimates over all ForceSMIP methods640

determined to be skillful for each variable. Methods are included if the improvement in RMSE641

exceeds the deterioration of pattern correlation in the average over the 5 evaluation members642

(𝛿RMSE𝑖/RMSERAW < 𝛿𝑟𝑖/ 𝑟RAW; below the white lines in Fig. 3 and 4). This does not guarantee643

that methods are skillful for observations, because sampling variability and structural model-644

observations differences can influence the skillfulness assessment. Nevertheless, it provides a645

simple approach to visualize the average forced response in ForceSMIP, while excluding models646

that do not perform well for particular variables. Figs. 11 and S4 show the resulting ForceSMIP647

skillful-method mean (hereafter ForceSMIP mean) and the residual internal variability component648

of the trends. The forced trend estimated by TrainingEM, which gives a sense of what climate649

models say the forced response should be over this time period, is shown for comparison.650

The ForceSMIP-mean forced SST trend over 1980-2022 shows near-zero warming in the East656

Pacific and South Pacific, where the full observed SST trend shows cooling. The ForceSMIP-mean657

therefore attributes some but not all of the difference in 1980-2022 SST trend pattern between658

models and observations to internal variability. Similarly, the observed cooling of the Southern659

Ocean, which is not reproduced by models, is attributed to a combination of forced response and660

internal variability. The ForceSMIP-mean also shows stronger weakening of the Aleutian Low and661

stronger strengthening of the Amundsen Sea Low than TrainingEM, which are both similar to La662

Niña teleconnections. ForceSMIP also suggests a more La–Niña-like forced trend in precipitation,663
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CMIP6 Forced (TrainingEM) OBS Forced (ForceSMIP Mean) OBS Internal (ForceSMIP Mean)

SST

SLP

PR

TXx

TNn

Rx1day

Fig. 11. (center column) Mean estimates of the forced component of observed trends (1980-2022) over all

skillful ForceSMIP methods (defined as 𝛿RMSE𝑖/RMSERAW < 𝛿𝑟𝑖/ 𝑟RAW, i.e., below the white line in Figs. 3

and 4) for SST, SLP, PR, TXx, TNn, and Rx1day. Units are ◦C per 42 yr, Pa per 42 yr, or mm day−1 per 42 yr

accordingly. (right column) The residual trends attributed to internal variability. (left column) The TrainingEM

reference method, obtained from the multi-model-mean of the five training models, is shown for comparison.
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with a much larger amplitude than the estimate by TrainingEM. However, as noted previously, the664

TrainingEM estimate for precipitation is smaller than the forced response in individual models665

because it focuses on the common response across all 5 training models.666

The ForceSMIP-mean 1980-2022 forced trends in T2m, TXx, and TNn are broadly similar over667

ocean regions (Figs. 11 and S4), where they show a more La-Niña-like forced response than668

TrainingEM and less warming in the Kuroshio-Oyashio extension, consistent with what was found669

for SST. The forced trend in TXx shows more warming than the forced trend in T2m in tropical670

land regions and less in high-latitude land regions, whereas the opposite is true for the forced trend671

in TNn. This is consistent with the reduction (increase) in temperature variability in high-latitude672

(tropical) land regions (Kotz et al. 2021), and is also seen in TrainingEM. TXx and TNn both673

have larger estimated contributions of internal variability to 1980-2022 trends than does T2m,674

illustrating the added value of the ForceSMIP methods for noisy extreme-event statistics. Rx1day675

has by far the largest estimated contribution of internal variability to 1980-2022 trends, though676

the estimated forced response is still larger than that estimated from TrainingEM. Overall, despite677

some methods being trained based on climate models, on average ForceSMIP estimates a forced678

response that preserves some of the unique aspects of observed trends.679

To visualize the ForceSMIP-estimated forced responses in the six climate indices, Figure 12 shows680

the likely (66%) range (i.e., the 17th and 83rd percentiles) of the ForceSMIP methods determined681

to be skillful, as well as TrainingEM and five example methods. Methods are considered skillful682

and thus included in the likely range if they show a fractional reduction in nRMSE that exceeds683

any fractional reduction in their correlation (below the white lines in Fig. 7). Example methods684

are chosen that have varying complexity, high skill across most variables, and produce different685

forced response estimates from one another.686

Compared to the raw data, all skillful methods smooth out some of the interannual variability692

in GMST (Fig. 12a). On a quantitative level, the 66% uncertainty range in the estimated forced693

1950-2022 GMST trend is 0.89-1.07◦C per 72 yr. The smoothing of interannual variability is even694

more important for metrics such as Continental Europe TXx, where the forced response estimates695

are all much smoother than the raw data (Fig. 12f). Methods consistently attribute the multi-year696

negative excursion between 1975 and 1980 to internal variability. The ratio of estimated forced697

trends in Continental Europe TXx and GMST has a 66% range of 1.89-2.79.698
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While the forced responses in GMST and Continental Europe TXx could be guessed to some699

degree of accuracy by simply smoothing the raw data, estimating the forced components of the700

other four indices is much more challenging. The ForceSMIP estimated observed forced response701

in 10-yr running-mean Niño3.4 (minus GMSST) ranges from increasing (El-Niño-like warming)702

in Anchor-OPLS and TrainingEM to monotonically decreasing (La-Niña-like warming) in MF-703

LFCA and SNMP-OF (Fig. 12b), with MF-LFCA-2 even showing a strong increase through 1980704

followed by a strong decrease. Nevertheless, all methods agree that the large negative excursion in705

the early 1970s and the large positive excursion in the early 1990s resulted from internal variability.706
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Skillful methods are defined as those with a fractional reduction in nRMSE that exceeds any fractional reduction

in their correlation (below the white lines in Fig. 7).
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The 66% range in the estimated 1950-2022 forced trend in Niño3.4 minus GMSST is -0.27-0.10◦C707

per 72 yr, indicating that even the sign of the long-term forced trend remains uncertain.708

The estimates of how much the AMV is forced range from almost all of it to none of it, as well709

as everything in between (Fig. 12c). ForceSMIP thus helps to explain why some research has710

suggested that the AMV is mostly forced (Booth et al. 2012; Wills et al. 2020; He et al. 2023)711

while other research has suggested that it is mostly internal variability (Ting et al. 2009; Zhang712

et al. 2013; Qin et al. 2020; Latif et al. 2022) by demonstrating that either result is within the713

range of epistemic uncertainty. Interestingly, the two end members with most and least forced714

AMV are MF-LFCA and MF-LFCA-2, which differ only in the number of low-frequency patterns715

included. This illustrates how the hyperparameter sensitivity of the LFCA method may actually716

help to quantify the epistemic uncertainty in the forced response estimate. Given the association717

between the AMV and Sahel precipitation (Zhang and Delworth 2006), it is not surprising that718

there is also a large spread in the forced response estimates for Sahel precipitation (Fig. 12d).719

What is interesting however is that all of the ForceSMIP estimates either show a drying or a much720

weaker wettening trend than TrainingEM. This suggests that CMIP6 models, at least those used721

for training, have systematic discrepancies in Sahel precipitation trends. Finally, the ForceSMIP722

methods consistently show a small forced response in the Aleutian Low, attributing its large decadal723

excursions to internal variability (Fig. 12e).724

Overall, ForceSMIP provides an ensemble of estimates of the observed forced response, and we725

have highlighted cases where there are consistent differences from the forced response in climate726

models (e.g., the La-Niña-like forced response in observations) as well as cases where epistemic727

uncertainty limits the ability to draw conclusions (e.g., on the amplitude of forced AMV).728

6. Conclusions, Discussion, and Outlook729

We have demonstrated that many different types of StatML methods exhibit skill in estimating730

the forced response from individual ensemble members of a climate model large ensemble, where731

skill means that they give a better forced response estimate than the raw data. Skillful methods732

include simple regression approaches, LFCA, LIM-based methods, as well as fingerprinting and733

ML methods custom built for the ForceSMIP project. Methods are most skillful in absolute734

terms for temperature responses, such as in SST and surface air temperature, but the added value735

36



of these methods compared to the raw data is largest for responses in fields with large amplitude736

internal variability such as SLP, precipitation, and extreme-event indices. The ForceSMIP methods737

are skillful for long-term regional-scale trends (e.g., over 1980-2022), grid-scale spatiotemporal738

variability, and large-scale climate indices. No single method outperforms the others across all739

variables, but rather the most skillful methods vary depending on the metric of evaluation. The740

method skill in the model evaluation data may differ from the skill when applied to observational741

data due to systematic model-observations differences, e.g., due to model trend discrepancies742

(Wills et al. 2022) or the signal-to-noise paradox (Scaife and Smith 2018), but by testing skill743

across multiple climate models, we have attempted to characterize this potential sensitivity to744

structural differences.745

Armed with an array of skillful methods for forced response estimation, we investigated the746

forced response in observations in Section 5. We found that the ForceSMIP methods systematically747

estimate that the observed forced response is more La-Niña-like than indicated by models, with a748

local minimum in warming in the Southeast Pacific, but also that the discrepancy in 1980-2022 SST749

trends between observations and models is partly due to internal variability. The observed forced750

response obtained from the average of skillful ForceSMIP methods also exhibits La-Niña-like751

teleconnections in other variables, including SLP and precipitation. Despite these commonalities,752

there is a large spread in the estimated forced SST trend pattern across methods that display similar753

skill in the model evaluation data, and an even wider spread of forced responses for SLP and754

precipitation. The spread across estimates of the forced response is sufficiently large that many755

statements about the relative contributions of external forcing and internal variability (for example756

to the AMV) cannot be made with great certainty. Importantly, these conclusions are all subject to757

any biases in the ERA5 and ERSST5 observational products they are based on.758

Overall, ForceSMIP suggests that there are systematic differences in the forced response between759

climate models and observations (e.g., due to model structural errors or observational uncertainty)760

while also illustrating the intrinsic epistemic uncertainty in estimating the forced response from761

observations. The epistemic uncertainty in the extent to which multi-decadal SST fluctuations and762

regional details of trend patterns are forced or unforced is important to consider in the context of763

climate change attribution, model evaluation, and climate impact assessments.764
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a. Which method should I use?765

At this point, you may be wondering, which method should I use for forced response estimation766

in my own work? While the method evaluation in Figs. 3-7 may give some guidance, it’s also767

possible that this paper did not consider your metric of interest. Furthermore, since the relative768

skill of methods varies across variables and evaluation metrics and there are almost always many769

good method choices for any given evaluation metric, we do not think it makes sense to give an770

overall ranking of methods. Nevertheless, we can give a few recommendations:771

1. Use more than one type of method to get a better sense of how the forced response estimate772

varies across methods. It’s worth keeping in mind that simple methods tend to stay closer773

to the observed trends, whereas most fingerprinting and ML methods will give observational774

forced response estimates more similar to the forced response in the climate models used for775

training, and will thus be more subject to any systematic biases in the training dataset.776

2. Either use methods that generalize well across metrics or train/test the methods you use777

for your metric of interest within a large ensemble dataset. The diversity of variables and778

metrics considered by ForceSMIP makes it likely that methods consistently showing skill in779

ForceSMIP (e.g., as indicated by stippling in Figs. 5 and 6) will generalize well to other780

applications.781

3. The ForceSMIP evaluation dataset (Wills et al. 2025) is a useful resource for evaluating new782

methods and/or for evaluating which methods work best for a specific application of interest.783

Finally, another relevant consideration is that the ML methods would all need to be re-trained for784

other applications, whereas most of the other methods work out of the box and do not need further785

customization. However, the need to train ML methods can also be an advantage, because it means786

they will be tailored for the application of interest.787

b. Lessons for further method development788

Several lessons can be learned from the successes and failures of individual ForceSMIP methods.789

One important lesson is that methods focused on reducing RMSE or related metrics may end up790

guessing a near-zero forced response in cases where internal variability is larger than the forced791

response. To control against this, methods could expand the skill metrics they consider, for example792
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by incorporating correlation or amplitude-error metrics and computing skill metrics on different793

timescales. This could draw on the experiences of the machine-learning weather prediction794

community (e.g., Nathaniel et al. 2024), which is grappling with similar issues. Some methods795

may also give better forced response estimates if they were reformulated to explicitly estimate796

both forced and unforced climate variations, as was already done in UNet3D-LOCEAN (see also797

Po-Chedley et al. 2022).798

An additional important consideration is that the ML methods are by design more trainable to799

optimize for a specific task. We intentionally did not specify exact evaluation targets in advance for800

this phase of ForceSMIP, to avoid all methods overfitting to particular metrics. Further development801

of these methods can now focus on correcting for some of the problems displayed in this round of802

evaluation. Future work should focus on cataloging a comprehensive set of forced response metrics803

of interest, so that methods can be trained to optimize across many relevant metrics at once.804

Finally, one method-specific but clear lesson is that — perhaps to no great surprise — LIMs only805

perform well for variables that have sufficiently large autocorrelation on the timescale of interest806

(monthly anomalies in our case). This is exemplified by the much higher skill of LIMnMCA and807

Colored-LIMnMCA compared to other LIM-based methods for variables such as precipitation,808

SLP, and Rx1day. What’s different about these two methods is that they applied a LIM to SST809

and then used maximum covariance analysis to identifying the covarying forced patterns in other810

variables. Another approach could be to merge each field variable with SST and apply a joint811

analysis to both fields at once. This approach was used for MF-LFCA, where it led to modest812

improvement in skill for precipitation and SLP over the one-field-at-time LFCA. We highlight813

these cases due to the clean comparisons they offer, but several other methods used multiple fields814

at once (Table 1). Many of the methods that analyzed one field variable at a time could likely be815

improved by applying them to two or more field variables at a time, especially if the additional816

variable is a field with a clear forced response, such as SST.817

c. An observational forced response estimate and its applications818

A primary goal of ForceSMIP is to generate a forced response in observations, including a819

quantification of the associated epistemic uncertainty, i.e., uncertainty from different methods of820

estimation getting different answers. In this study, we have provided one such estimate: a 30-821
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method ensemble of different forced response estimates (openly available on Zenodo; Wills et al.822

2025). We additionally quantified the expected error based on evaluation within large ensembles823

and gave demonstrations of the types of information that can be obtained from such a multi-method824

ensemble, showing both differences in the estimated forced response across methods (Figs. 8-10)825

as well as the multi-method-mean forced response estimate for skillful methods (Fig. 11). The826

method weighting is intentionally kept simple in this paper, with methods given full weight for skill827

above a threshold and zero weight otherwise. A follow-up paper will apply a systematic method828

weighting scheme, following Merrifield et al. (2023), to provide a skill-weighted forced response829

estimate and uncertainty range. We also encourage others to generate their own forced response830

estimates from this dataset that are customized to specific applications.831

We foresee many possible applications of an observational forced response estimate with un-832

certainty quantification. One set of applications is for model evaluation. An observational forced833

response from ForceSMIP could be combined with an estimate of the residual variance due to834

estimation uncertainty and internal variability, e.g., based on the nRMSE evaluated in Section 4,835

and this would then provide a comparison point for evaluating forced trends in models against836

observations (cf. Simpson et al. 2025). The flip-side of evaluating forced trends in models is837

evaluating their amplitude of internal decadal variability, which has been suggested to be too weak838

in some regions based on instrumental and paleoclimate data (Laepple and Huybers 2014; Dee839

et al. 2017; Laepple et al. 2023). ForceSMIP can help to evaluate whether there are discrepancies840

in forced or internal multi-decadal variance compared to large ensembles. However, our results841

already suggest that, for metrics with large multi-decadal variability such as the AMV, the separa-842

tion between forced and internal components remains extremely challenging, with some methods843

estimating a forced response more like the raw observations and some methods estimating a forced844

response more like the ensemble mean of the training models. In these cases, it will remain diffi-845

cult to distinguish between model discrepancies in the forced response and model discrepancies in846

internal variability.847

Another set of applications of forced response estimates from ForceSMIP is for monitoring848

internal climate variability and generating observational large ensembles (McKinnon and Deser849

2018, 2021; Deser and Phillips 2023a). Indices of internal variability, where the forced response850

is often removed either by removing the linear trend or by subtracting GMSST, risk mislabeling851
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episodic or non-monotonic changes and can increasingly be influenced by climate change. For852

example, Deser and Phillips (2023b) show how not fully removing the forced response from indices853

of the AMV can lead to spurious implied connections with the tropical Pacific. We therefore suggest854

that the ForceSMIP forced response, if continuously updated, could serve as a standard estimate855

of the forced response to remove from indices of internal variability such as ENSO, AMV, PDO,856

and NAO and could help to consider how epistemic uncertainty in the forced response influences857

analyses of internal variability. Removal of the forced response also allows for generation of an858

observational large ensemble, e.g., using the phase randomization approach of McKinnon and859

Deser (2018, 2021). Such an observational large ensemble can help to explore long-term trends860

and extreme events that could have happened in the real world under different phasing of internal861

variability (e.g., as in Deser and Phillips 2023a).862

Underlying all of these applications of ForceSMIP observational forced response estimates is863

the intrinsic interest in the observational forced response itself, which can help to understand and864

communicate how anthropogenic activities have affected historical climate and give a glimpse into865

the changes expected in the near future.866
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Analysis of Inter-Method Variance911

In order to illustrate the inter-method differences (i.e., epistemic uncertainty) in estimated forced917

trends, we perform an EOF analysis on the forced trends estimated by skillful methods. Methods918

are included if 𝛿RMSE𝑖/RMSERAW < 𝛿𝑟𝑖/ 𝑟RAW (below the white lines in Fig. 3). The results919

are shown for the EOF analysis of estimated 1980-2022 forced trends in SST, PR, and SLP in920

Figs. A1, A2, and A3, respectively. Panels (a) and (b) show the EOF patterns and the percentage921

of the variance they explain. Panels (c) show the corresponding principal components, i.e., the922

contribution of each EOF to the forced trend estimated by each method. The distribution of923

principal components are used to inform the selection of methods shown in Figs. 8-10, which are924

highlighted with red symbols in panels (c) of Figs. A1-A3.925
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Fig. A1. Inter-method EOF analysis of estimated forced SST trends over 1980-2022, including only skillful

methods (defined as 𝛿RMSE/RMSERAW < 𝛿𝑟/ 𝑟RAW, i.e., below the white line in Figs. 3 and 4). (a) Inter-method

EOF1, (b) inter-method EOF2, and (c) the principal component amplitudes for each method. The percentage

of total variance explained by each EOF is shown in the title of (a) and (b). (d) Total inter-method variance,

expressed as a standard deviation. Red symbols in (c) indicate methods shown in Fig. 8.
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Estimated 1980-2022 forced trends in SST differ from one another in a pattern (EOF1) similar to930

what has been called the Interdecadal Pacific Oscillation (IPO; Power et al. 1999), indicating that931

some methods estimate the IPO to be mostly forced, while others do not. Methods also differ in932

their estimates of the amount of forced warming in the Northern Hemisphere ocean basins (EOF2).933

The net result is that there is uncertainty in the forced SST trend in the East Pacific, Southern934

Ocean, Kuroshio-Oyashio Extension, and subpolar North Atlantic (Fig. A1d).935

The EOF analysis for estimated 1980-2022 forced trends in PR (Fig. A2) shows a large fraction936

of variance explained by EOF1, which resembles the full observed trend (Fig. 9). The amplitude937

of PC1 shows clusters near −1 and 1.5 (Fig. A2c), which are methods estimating that very little or938

most of the observed trend is forced, respectively.939

The leading EOF of estimated 1980-2022 forced trends in SLP (Fig. A3a) includes positive940

anomalies in the Aleutian low region and South Pacific and negative anomalies around Antarctic,941

resembling the SLP pattern associated with the IPO. Combined with EOF2 (Fig. A3b), the net942

result is uncertainty in the midlatitudes in all ocean basins as well as around Antarctica (Fig. A3d).943
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