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ABSTRACT: Anthropogenic climate change is unfolding rapidly, yet its regional manifestation

can be obscured by internal variability. A primary goal of climate science is to identify the

externally forced climate response from amongst the noise of internal variability. Separating the

forced response from internal variability can be addressed in climate models by using a large

ensemble to average over different possible realizations of internal variability. However, with

only one realization of the real world, it is a major challenge to isolate the forced response in

observations. In the Forced Component Estimation Statistical Method Intercomparison Project

(ForceSMIP), contributors used existing and newly developed statistical and machine learning

methods to estimate the forced response over 1950-2022 within individual realizations of the

climate system. Participants used neural networks, linear inverse models, fingerprinting methods,

and low-frequency component analysis, among other approaches. These methods were trained on

large ensemble from multiple climate models and then applied to observations. Here we evaluate

method performance within large ensembles and investigate the estimates of the forced response in

observations. Our results show that many different types of methods are skillful for estimating the

forced response, though the relative skill of individual methods varies depending on the variable

and evaluation metric. Methods with comparable skill in models can give a wide range of estimates

of the forced response in observations, illustrating the epistemic uncertainty in forced response

estimates. ForceSMIP gives new insights into the forced response in observations, its uncertainty,

and methods for its estimation.
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SIGNIFICANCE STATEMENT: The ForceSMIP project aims to reduce uncertainty in estimates50

of the climate response to anthropogenic and other external forcing and to evaluate statistical and51

machine learning methods designed to estimate the forced response from individual realizations of52

the climate system. New and existing statistical and machine learning methods are evaluated within53

climate models, for which the forced response is known. Applying these methods to observations54

gives an estimate of the real-world forced response. The observational forced response estimate55

agrees with climate models on the large-scale features but also shows discrepancies that give56

insights into responses that may not be simulated well by climate models. In some regions with57

large internal variability, such as the North Atlantic ocean, it remains difficult to determine the58

relative contributions of anthropogenic forcing and internal variability to historical changes.59

1. Introduction60

Climate variability and change is composed of forced and unforced components. The forced61

component of climate change, or forced response, includes all spatiotemporal changes in climate in62

response to external forcing. Here we consider the net response to forcing from greenhouse gasses,63

anthropogenic aerosols, land-use change, stratospheric ozone, and natural forcing (e.g., volcanic64

sulfur emissions and solar variability). The unforced component is due to internal variability of65

the climate system, for example due to modes of climate variability such as the El Niño-Southern66

Oscillation (ENSO), Atlantic multi-decadal variability (AMV), and the North Atlantic Oscillation67

(NAO). In some regions or variables that are prone to large internal variability, the unforced68

component can be comparable in magnitude to or larger than the forced component, even in multi-69

decadal trends (Deser et al. 2012, 2014; Lehner et al. 2020). Accurate estimation of the forced and70

unforced components of regional climate change is critical for the attribution of historical climate71

changes and the characterization and understanding of climate variability and extremes.72

In climate models, the forced component can be isolated using large ensembles, where the same73

climate model is run many times with the same forcing but differences in initial conditions, leading74

to differences in the phasing of internal variability. For a climate measure of interest, the ensemble75

mean of a large ensemble gives an estimate of the forced response, with larger ensembles needed76

for variables with lower signal-to-noise ratio (Milinski et al. 2020). Assuming linear additivity of77

the forced and unforced components, the difference of an individual realization from the ensemble78
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mean gives the contribution of internal variability. An example is shown for 1980-2022 SST trends79

from a single member of the ACCESS-ESM1-5 large ensemble in Fig. 1, where the full trend (Fig.80

1a) is separated into forced and unforced components (Fig. 1b and c, respectively) based on the81

ensemble mean. Large ensembles are now a widespread tool used for climate change attribution,82

climate projections, and studies of climate variability and extremes (Deser et al. 2020). However,83

there is only a single realization of the actual climate system, and it is therefore substantially84

harder to separate observed climate change into forced and unforced components, which is critical85

for evaluating climate models and understanding discrepancies between models and observations86

(Wills et al. 2022; Blackport and Fyfe 2022; Simpson et al. 2025).87

Individual studies have used one or more statistical methods to estimate the forced response in106

observations for various applications. For example, separating the forced and unforced component107

of AMV and the associated Sahel rainfall variability has received particular attention (Ting et al.108

2009; Booth et al. 2012; Zhang et al. 2013; Frankcombe et al. 2015; Bellucci et al. 2017; Frankignoul109

et al. 2017; Wills et al. 2020; Qin et al. 2020; Latif et al. 2022; He et al. 2023). By using different110

methods to estimate the forced response, these studies have reached widely differing conclusions111

ranging from the AMV is mostly forced (Booth et al. 2012; Wills et al. 2020; He et al. 2023)112

to the AMV is mostly internal variability (Zhang et al. 2013; Ting et al. 2009; Qin et al. 2020;113

Latif et al. 2022), although many of these studies acknowledge the uncertainty in this conclusion.114

There are also a range of conclusions on the forced and unforced contributions to the multi-decadal115

modulation of the global warming rate (DelSole et al. 2011; Dai et al. 2015; Stolpe et al. 2017;116

Kravtsov et al. 2018) and multi-decadal changes in the Pacific SST pattern (Olonscheck et al. 2020;117

Wills et al. 2022; Seager et al. 2022; Rugenstein et al. 2023) and the Aleutian low (Smith et al.118

2016; Oudar et al. 2018), among other climate indices. All of these questions would benefit from119

a systematic comparison of methods for estimating the forced response in observations, and this is120

what the Forced Component Estimation Statistical Method Intercomparison Project (ForceSMIP)121

aims to do.122
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Fig. 1. Illustration of selected methods and how they are evaluated in ForceSMIP using climate model large
ensembles. ForceSMIP participants generated a forced response estimate for each of 10 unlabeled evaluation
members. While the forced response estimate includes spatiotemporal variations across 8 variables over 1950-
2022, here each panel shows 1980-2022 annual-mean SST trends: (a) A single evaluation member (1B) from
a large ensemble, which after the submissions was revealed to be from ACCESS-ESM1-5. (b) The “correct
answer” is thus estimated from the 40-member ensemble mean of ACCESS-ESM1-5. (c) The internal variability
contribution to the trend in (a) is computed as (a) - (b). (d) The TrainingEM method is rescaled from the ensemble
mean of the training models and does not use information from ACCESS-ESM1-5 other than the global-mean
surface temperature trend. It is a reference method meant to illustrate the forced response that would be estimated
from a multi-model ensemble mean. (e)-(i) Forced response estimates from selected ForceSMIP methods, with
names and numbers in the titles corresponding to those in Table 1. (j) Taylor diagram showing root mean square
error (RMSE) normalized by the root-mean-square-amplitude of the ensemble mean (colors), the root-mean-
square-amplitude normalized by the root-mean-square-amplitude of the ensemble mean, i.e., 𝜎𝑖/𝜎REF (black
arcs), and the uncentered pattern correlation 𝑟𝑖 (black rays). Each method is shown as a symbol with numbers
corresponding to those in Table 1; diamonds show methods that use pattern information from the training models;
circles show methods that do not. The raw data (a) is shown as a white star, and the dashed white line shows
𝛿RMSE𝑖/RMSERAW = 𝛿𝑟𝑖/ 𝑟RAW. The skill metrics are averaged over the 5 “unseen model” evaluation members
as explained in the text.
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Table 1. Statistical and machine learning methods for forced response estimation submitted to ForceSMIP

Tier 1. Included is information about the institutions involved in developing the methods, a rough categorization

of the method type (NN = neural network), whether the method uses pattern information from the training

models, whether the method is applied to multiple field variables at once (e.g., using the SST forced response to

inform the precipitation forced response), and the number of tunable parameters in the method (i.e., parameters

which can be influenced by the training models; reported by the method contributor). Methods are ordered by

the number of tunable parameters, and this numbering is used throughout the text and figures.

123

124

125

126

127

128

129

# Name Institution(s) Type of Method Pattern Information Multi-Field 𝑁 Parameters

1 RegGMST NCAR Regression No Yes 0

2 4th-Order-Polynomial N/A Reference No No 0

3 10yr-Lowpass N/A Reference No No 0

4 LFCA ETHZ LFCA No No 2

5 LFCA-2 ETHZ LFCA No No 2

6 MF-LFCA ETHZ LFCA No Yes 2

7 MF-LFCA-2 ETHZ LFCA No Yes 2

8 LIMnMCA Cornell, Tohoku LIM No Yes 2

9 ICA-lowpass MPI-M Other No No 3

10 LIMopt ETHZ LIM No No 3

11 LIMopt-filter ETHZ LIM No No 4

12 Colored-LIMnMCA Cornell, Tohoku LIM No Yes 5

13 DMDc Valencia LIM No No 75

14 GPCA Valencia Causal Inference No No 88

15 GPCA-DA Valencia Causal Inference No Yes 89

16 RegGMST-LENSem NCAR Regression No Yes 876

17 MLR-Forcing LLNL Regression No Yes 1.1e4

18 SNMP-OF ETHZ Fingerprinting Yes Yes 1.0e4

19 AllFinger LLNL, WHOI, UCLA Fingerprinting Yes No 1.0e4

20 MonthFinger LLNL, WHO, UCLA Fingerprinting Yes No 1.2e5

21 3DUNet-Fingerprinters UCLA, LLNL, WHOI NN Yes No 5.4e5

22 EOF-SLR IAP, Milwaukee Fingerprinting Yes No O(1e6)

23 LDM-SLR IAP, Milwaukee Fingerprinting Yes No O(1e6)

24 Anchor-OPLS Valencia Regression Yes No 2.1e6

25 UNet3D-LOCEAN LOCEAN NN Yes Yes 2.7e6

26 TrainingEM N/A Reference Yes Yes 9.1e6

27 RandomForest UCLA Random Forest Yes No 1.0e7

28 EncoderDecoder CSU NN Yes No 2.3e7

29 EnsFMP ETHZ Fingerprinting Yes Yes 4.5e7

30 ANN-Fingerprinters LLNL NN Yes No 1e16
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Large ensembles provide a perfect-model testbed for methods that estimate the forced response130

from individual ensemble members, because their ensemble mean gives a good estimate of the131

true forced response in that model. This has been the approach of several previous studies, which132

have developed statistical or machine learning (StatML) methods to estimate the forced response133

in single realizations, evaluated them using large ensembles, and then applied them to observations134

(Deser et al. 2014; Frankcombe et al. 2015; Frankignoul et al. 2017; Sippel et al. 2019; Wills135

et al. 2020; Bône et al. 2024; Rader et al. 2025). However, these studies have generally focused on136

one or two methods compared to some simple reference methods, and there has been no broader137

systematic intercomparison of methods. Furthermore, these studies have primarily targeted surface138

temperature and/or precipitation, and it is not clear how well the methods used generalize to other139

climate variables. ForceSMIP aims to systematically compare various StatML methods for forced140

response estimation across multiple variables in a common framework. Here we both assess which141

methods are skillful within the large ensemble testbed and assess the spread of estimated forced142

responses in observations.143

The rest of the paper is organized as follows. In Section 2, we present the ForceSMIP framework144

and the climate model large ensemble and observational datasets used. In Section 3, we describe145

the 30 StatML methods that have been submitted to ForceSMIP. In Section 4, we evaluate the146

skill of methods for the spatial patterns of long-term trends across multiple variables, grid-scale147

spatiotemporal variability, and the temporal evolution of selected climate indices. In Section 5,148

we show examples of the forced responses in observations based on the most skillful methods.149

Finally, in Section 6, we draw conclusions and discuss implications, potential applications, and150

future directions.151

2. ForceSMIP Framework and Data152

The overarching idea of ForceSMIP is that community contributors develop and train StatML153

methods to estimate the forced response from single ensemble members and then apply them to154

model-based evaluation data and observations. The methods are then evaluated based on their155

forced response estimates in the model-based evaluation data, where the true forced response is156

known. Finally, the observational forced response estimates can be compared across methods that157

have proven skillful in the model testbed.158
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In order to train their methods, contributors were provided with data from 5 climate model large159

ensembles (Table 2). The identity of these training models was revealed to the participants. Data160

from all ensemble members of the historical and future scenario simulations was provided for 8161

climate variables over 1850-2100: sea-surface temperature (SST), 2-meter air temperature (T2m),162

precipitation (PR), sea-level pressure (SLP), monthly-maximum of daily precipitation (monmaxpr),163

monthly-maximum of daily-maximum temperature (monmaxtasmax), monthly-minimum of daily-164

minimum temperature (monmintasmin), and zonal-mean atmospheric temperature (zmTa). The165

first four variables were taken from monthly outputs of tos, tas, pr, and psl, respectively, using the166

naming conventions of CMIP6 (Eyring et al. 2016). The remaining four variables were processed167

from daily output of pr, tasmax, and tasmin and monthly output of ta, respectively. All variables168

were interpolated to a common 2.5◦ grid following Brunner et al. (2020). Four of the variables were169

then additionally processed with CDO (Schulzweida 2023) commands to make derived variables:170

daily pr with monmax to make monmaxpr, daily tasmax with monmax to make monmaxtasmax,171

daily tasmin with monmin to make monmintasmin, and montly ta with zonmean to make zmTa,172

where monmax takes a monthly maximum, monmin takes a monthly minimum, and zonmean takes173

a zonal mean. After this processing, all variables have two spatial dimensions (lat and pressure for174

zmTa; lat and lon for all others) and monthly time resolution.175

After developing and training their methods, the contributors submitted: (1) descriptions and184

basic information about their methods, (2) their method code, and (3) output from application of185

their method to estimate the forced response across all variables in 10 evaluation members over the186

period 1950-2022. For the purposes of ForceSMIP, we use a broad definition of the forced response:187

it includes all spatiotemporal variations in the ensemble mean, thus including climate variations188

due to natural climate forcings (e.g., volcanic eruptions and solar variability) and anthropogenic189

influences (e.g., anthropogenic emissions of greenhouse gases and aerosols). Contributors therefore190

had to submit forced response estimates for all variables at monthly time resolution for all points191

on the 2.5◦ analysis grid. Nevertheless, much of the discussion in the hackathon that preceded192

the method submission focused on 1950-2022 trends or 1980-2022 trends, and many participants193

focused on skill metrics like the pattern correlation and root-mean-square error (RMSE) in long-194

term linear trends, as shown in Figs. 1 and 2. These figures will be discussed in more detail in195

Section 4, but the overall idea is that by applying StatML to a single ensemble member (for which196
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Table 2. Large ensemble and observational data used in ForceSMIP. The first 5 models are the training

models and the next 5 models are “unseen models”, which are the source of the evaluation members 1B, 1D,

1E, 1G, and 1J used for method evaluation in this paper. Evaluation member 1I is the observational data. “Total

Members” indicates the number of members used to compute the ensemble mean, with the number in parenthesis

indicating the number of future scenario members if it is different than the number of historical simulation

members. CESM2 members are those with smoothed biomass burning (Rodgers et al. 2021). Note that due to

data problems for zmTa in some members of EC-Earth3, only 13 (51) of the total ensemble members were used

to compute the ensemble mean for this variable.

176

177

178

179

180

181

182

183

Model Evaluation Member Total Members Future Scenario Reference

CanESM5 1C (r20i1p2f1) 25 SSP585 Swart et al. (2019)

CESM2 1F (LE 1281.019) 50 SSP370 Rodgers et al. (2021)

MIROC6 1H (r11i1p1f1) 50 SSP585 Tatebe et al. (2019)

MIROC-ES2L N/A 30 SSP245 Hajima et al. (2020)

MPI-ESM1-2-LR 1A (r23i1p1f1) 30 SSP585 Olonscheck et al. (2023)

ACCESS-ESM1-5 1B (r10i1p1f1) 40 SSP585 Ziehn et al. (2020)

EC-Earth3 1D (r6i1p1f1) 18 (58) SSP585 Wyser et al. (2021)

GFDL-SPEAR-MED 1E ( r3i1p1f1) 30 SSP585 Delworth et al. (2020)

IPSL-CM6A-LR 1G (r3i1p1f1) 33 (11) SSP245 Boucher et al. (2020)

NorCPM1 1J (r4i1p1f1) 30 SSP245 Bethke et al. (2021)

ERA5/ERSST5 1I 1 N/A Hersbach et al. (2020); Huang et al. (2017)

the trends over 1980-2022 are shown in Figs. 1a and 2b), the forced response estimates submitted197

by ForceSMIP contributors (Figs. 1d-i and 2d-i) should approximate as closely as possible the198

ensemble mean of the corresponding large ensemble (Figs. 1b and 2b) by removing the internal199

variability (Figs. 1c and 2c). The 1980-2022 trends shown here are just one way in which the200

spatiotemporally resolved forced response estimates are evaluated in Section 4.201

The evaluation members are individual ensemble members of 9 different climate models (Table202

2) and observational and reanalysis data that has been processed equivalently to the model data.203

All evaluation members had the metadata removed so that it was not possible to determine which204

dataset they came from. Only two of the ForceSMIP organizers (C. Deser and A. Phillips) knew205

the identity of these evaluation members. Of the 9 model-based evaluation members, 5 were from206

unseen models that were not among the training models. The method evaluation in Section 4 will207

primarily rely on these 5 unseen-model evaluation members. The forced response estimates for208
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the evaluation members will be evaluated against the ensemble means computed over all available209

ensemble members. Note that for two models (EC-Earth3 and IPSL-CM6A-LR), there are a210

different number of historical and future scenario members, and in these cases the ensemble mean211

is computed separately in the historical and scenario simulations and then concatenated. The212

ensemble mean against which methods are evaluated will still have some internal variability in it,213

which may lead to a slight underestimation of method skill.214
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Data from observations and reanalysis are included as one of the evaluation members (1I), so215

that the methods can be evaluated and applied to observations in a single round of forced response216

submissions. This initial round of “Tier 1” ForceSMIP submissions focuses on 1950-2022, which217

was chosen based on the availability of reanalysis data over this period. As such, all “observational”218

data in Tier 1 except SST is actually from ERA5 reanalysis (Hersbach et al. 2020). Daily tasmax,219

tasmin, and pr were computed from ERA5 hourly 2-meter temperature and rainfall data, and the220

other variables were computed from monthly ERA5 data. SST is from the NOAA Extended221

Reconstructed SST version 5 (ERSST5; Huang et al. (2017)). Accordingly, the observational222

forced response estimates from ForceSMIP Tier 1 will be subject to any biases present in the223

ERA5 and ERSST5 datasets. Subsequent Tiers of ForceSMIP will focus on different time periods,224

1900-2023 and 1979-2023, on which different sets of observational data are available.225

While the training data, evaluation methods, and forced response estimates are all available at226

monthly temporal resolution, all analysis in this paper focuses on annual or seasonal averages (for227

SST, T2m, PR, SLP, and zmTA), annual maximums, and annual minimums. The annual maximum228

of monmaxtasmax is called TXx, the annual maximum of monmaxpr is called Rx1day, and the229

annual minimum of monmintasmin is called TNn, following standard conventions in the study of230

extreme events (Zhang et al. 2011).231

3. Statistical and Machine Learning Methods for Forced Response Estimation232

Thirty StatML methods were submitted to this first tier of the ForceSMIP project. They comprise233

a diverse mix of approaches including linear regression on global-mean temperature or forcing234

timeseries, low-frequency component analysis (LFCA), linear dynamical mode methods such as235

linear inverse models (LIMs), linear fingerprinting methods, and neural networks or other machine236

learning (ML) methods (Table 1). This includes both established methods (e.g., LFCA; Wills et al.237

(2020), LIMopt; Frankignoul et al. (2017), and regression on global-mean surface temperature;238

Ting et al. (2009); Deser and Phillips (2021)) and methods newly created for ForceSMIP. The239

development of many of these methods began at a hackathon held at NCAR and ETH Zurich in240

August 2023. These methods are briefly summarized in the following subsections, with key details241

listed in Table 1. In Table 1 and throughout the text, methods are ordered by their number of242

tunable parameters, which range from 0 to O(107) or higher. More detailed information about all243

12



methods can be found in the Supplementary Material, and code for all methods can be found at244

https://github.com/ForceSMIP/tier1-methods (a persistent identifier will be issued upon245

publication).246

a. Linear regression on global-mean temperature or forcing timeseries: RegGMST, RegGMST-247

LENSem, MLR-Forcing248

Many studies of internal variability, including ENSO, AMV, and the Pacific Decadal Oscilla-249

tion (PDO), remove anomalies associated with global-mean sea-surface temperature (GMSST)250

or global-mean surface temperature (GMST) changes when defining indices of this variability251

(Trenberth and Shea 2006; Ting et al. 2009; Frankignoul et al. 2017; Deser and Phillips 2021).252

Underlying these approaches is an implicit estimation of the forced response based on GMSST or253

GMST, under the assumption that those globally aggregated metrics are good proxies of the forced254

response. In ForceSMIP, two methods, RegGMST and RegGMST-LENSem, estimate the forced255

response by regressing each field onto a timeseries of GMST and combining that regression pattern256

with the GMST timeseries. RegGMST uses regression on GMST from the target evaluation mem-257

ber and RegGMST-LENSem uses regression on the ensemble-mean GMST from the 50 CESM2258

large ensemble members (Deser and Phillips 2023b).259

A similar approach is to regress each field onto timeseries representing important external forcings260

or internal variability. The method MLR-forcing uses a multiple-linear-regression approach to261

regress each field onto regional aerosol forcing timeseries and timeseries representing the response262

to various forcings (including greenhouse gasses, volcanic emissions, and solar forcing) and on263

detrended Niño3.4 indices, estimating the forced response as the components associated with the264

forcing timeseries.265

b. Low-frequency component analysis: LFCA, LFCA-2, MF-LFCA, MF-LFCA-2, ICA-lowpass266

Low-frequency component analysis (LFCA) is a method to objectively identify the slowest evolv-267

ing spatial patterns in a dataset, using linear discriminant analysis applied to principal components268

to find patterns that maximize the ratio of low-frequency to total variance (Schneider and Held269

2001; Wills et al. 2018, 2020). It has been used both to study decadal climate variability (e.g.,270

Wills et al. 2019) and to separate forced and unforced components of climate change (Wills et al.271
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2020). Its usage as a method to separate forced and unforced components is based on the under-272

standing that the forced response evolves on a longer timescale than most internal variability, i.e.,273

it is using timescale separation to separate forced and unforced components. The application of274

LFCA in ForceSMIP follows Wills et al. (2020), using a 10-year lowpass filter and including 1 or 2275

low-frequency patterns in the forced response estimate (methods LFCA and LFCA-2, respectively).276

Additionally, the methods MF-LFCA and MF-LFCA-2 apply the same method to two variables at277

a time by combining each field with SST, or in the case of SST, combining it with T2m, with each278

field normalized by the trace of its covariance matrix.279

While not a form of LFCA, the ICA-lowpass method uses independent component analysis280

(Hyvärinen and Oja 2000), which similarly finds linear combinations of a chosen set of principal281

components that maximize a variance criterion, in this case the statistical independence of the282

principal components. ICA-lowpass applies independent component analysis to lowpass filtered283

data and identifies the forced pattern based on its spatial uniformity, under the assumption that the284

spatial scales of forced climate change are larger than those of internal variability.285

c. Linear dynamical mode methods: LIMopt, LIMopt-filter, LIMnMCA, Colored-LIMnMCA,286

DMDc, GPCA, GPCA-DA287

Linear dynamical mode methods aim to describe the spatiotemporal variability in a dataset by288

a set of linear dynamical equations, which determine the evolution of a field from one timestep289

to the next. The specific case of the Linear Inverse Model (LIM), where the evolution operator is290

determined from lagged covariance information, is widely used in climate science (Penland and291

Sardeshmukh 1995; Alexander et al. 2008). The concept of a least damped mode of a LIM was292

introduced by Penland and Sardeshmukh (1995) and has been used to separate the ENSO-related293

or forced variations in a dataset (Compo and Sardeshmukh 2010; Solomon and Newman 2012;294

Frankignoul et al. 2017; Xu et al. 2022). For ForceSMIP, the LIMopt and LIMopt-filter methods295

apply the method LIM optimal perturbation pattern and LIM optimal perturbation filter method296

of Frankignoul et al. (2017) (see also Wills et al. 2020). The LIMnMCA and ColoredLIMnMCA297

methods combined a similar approach applied to SST with a maximum covariance analysis to find298

the covariations between SST and the other ForceSMIP variables, an extra step which we will show299

made it much more successful than other linear dynamical mode methods for non-temperature300
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variables (i.e., PR, SLP, and Rx1day). ColoredLIMnMCA differs from LIMnMCA by the use of a301

LIM for colored Gaussian noise (Lien et al. 2025).302

The DMDc is similar in approach to LIMopt, but with a generalization of LIM to include a303

linear forcing component (Proctor et al. 2016). Similarly, GPCA and GPCA-DA are based on the304

representation of the data as a combination of an autoregressive process and a forced response,305

where the forced response is estimated by the “direct Granger effect” of the exogenous forcing306

signal, and are an extension of the method presented in Varando et al. (2022). Like MLR-Forcing,307

these methods employ additional forcing timeseries. Compared to GPCA, GPCA-DA additionally308

uses empirical orthogonal functions (EOFs) of SLP to control against the internal variability they309

may represent.310

d. Linear fingerprinting methods: AllFinger, MonthFinger, SNMP-OF, EOF-SLR, LDM-SLR,311

Anchor-OPLS, EnsFMP312

Broadly speaking, linear fingerprinting methods use model-based forced response patterns as313

an initial guess of the forced response and then estimate the contribution of this pattern to the314

observations (or an individual ensemble member treated like observations). While traditional315

uses of fingerprinting for detection and attribution generally aim to find a timeseries indicating316

the amplitude of the forced response pattern compared to internal variability, the fingerprinting317

methods in ForceSMIP additionally combine that timeseries with an estimate of the forced pattern.318

AllFinger and MonthFinger are derived from pattern-based fingerprint analyses (Hasselmann319

1979; Santer et al. 2023), where the forced pattern fingerprint is obtained by averaging across models320

and extracting the leading EOF (amplifying the signal and reducing the noise). Observations—or321

individual model realizations—are projected onto the fingerprint to create a pseudo-PC time322

series, measuring the similarity between the fingerprint and the target’s time-varying patterns. The323

predicted trend map is reconstructed using the forced pattern fingerprint and the pseudo-PCs.324

EOF-SLR and LDM-SLR methods first estimate each model’s forced response components325

(timeseries) in a basis of spatial patterns given by either ensemble EOF or linear dynamic mode326

(LDM) decomposition (Gavrilov et al. 2020, 2024) of multi-model ensemble simulations. Then327

a set of optimal fingerprinting patterns is trained to deduce the forced response from a single328
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realization in this ensemble. These patterns are constructed to be robust to model uncertainty329

within the training ensemble, and can thus be applied to the unseen data.330

Anchor-OPLS is a generalization of the anchor regression framework for fingerprint extraction331

introduced by Sippel et al. (2021), where forced responses are predicted at every grid point and332

orthonormalised partial least squares (OPLS) is used instead of ordinary least squares.333

SNMP-OF is a combination of signal-to-noise maximizing pattern (SNMP) analysis (Ting et al.334

2009; Wills et al. 2020) with optimal fingerprinting (Hegerl et al. 1996); it finds SNMPs from the335

training models and then projects their optimal fingerprint onto observations, finally recomputing336

a pattern from regression of observations onto the resulting signal-to-noise maximizing timeseries.337

EnsFMP attempts to combine the two steps into one by applying SNMP analysis to numerous338

combinations of model ensemble members and observations. Unlike the other fingerprinting339

methods in ForceSMIP, these two methods recompute a forced response pattern within observations,340

and they thus stick closer to the raw data.341

e. Machine learning methods: 3DUNet-Fingerprinters, UNet3D-LOCEAN, RandomForest, En-342

coderDecoder, ANN-Fingerprinters343

ML contributions to ForceSMIP include one based on a recently developed method (UNet3D-344

LOCEAN; Bône et al. 2024), and four methods newly developed for ForceSMIP, including one345

that has recently been used to attribute the record-high 2023 SST (EncoderDecoder; Rader et al.346

2025). Architectures used include a type of convolutional neural network called a U-Net (3DUNet-347

Fingerprinters, UNet3D-LOCEAN), Encoder-Decoder neural networks (EncoderDecoder, ANN-348

Fingerprinters), and random forests (RandomForest). Two of the ML methods learn to remove349

the internal variability (UNet3D-LOCEAN, EncoderDecoder), and the other three learn to esti-350

mate the forced response (3DUNet-Fingerprinters, ANN-Fingerprinters, RandomForest). ANN-351

Fingerprinters additionally uses the year as one of the inputs. The ML methods used in this352

study vary in complexity (e.g., 𝑁 Parameters in Table 2) and employ different parameter tuning353

and training strategies. Interestingly, the U-Nets trained on the internal variability and the forced354

component exhibit different strengths across variables (Section 4).355
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f. Reference methods: 4th-Order-Polynomial, 10yr-Lowpass, TrainingEM356

In addition to the methods submitted to ForceSMIP, we compare against 3 reference methods,357

which involve minimal processing of either the raw data or the training-data ensemble mean. Two358

of the reference methods are simple methods to remove high-frequency noise in the raw data.359

4th-Order-Polynomial estimates the forced response as a 4th-order-polynomial fit to timeseries of360

each variable at each grid point. It has been used to estimate the forced response in a seminal361

paper by Hawkins and Sutton (2009) and later tested in large ensembles by Lehner et al. (2020).362

10-yr-Lowpass estimates the forced response as all variability left after application of a 10-yr363

Lanczos lowpass filter.364

While the first two reference methods are based entirely on the data within the single realization365

of interest, the third reference method, TrainingEM, represents an opposite extreme where most366

information is taken from the training data. TrainingEM simply takes the multi-model ensemble367

mean of the 5 training models as the forced response estimate and rescales it by a constant so that368

it has the same GMST trend over 1950-2022 as the single realization of interest. This is similar369

to the scaling method introduced by Steinman et al. (2015) and evaluated by Frankcombe et al.370

(2015). TrainingEM thus represents a type of null hypothesis where climate models have a perfect371

estimate of the forced response, up to a rescaling based on differences in climate sensitivity.372

4. Method Evaluation373

In order to evaluate the skill of the ForceSMIP methods in isolating the forced response in374

individual realizations of the climate system, we focus on their skill in determining the forced375

response in the 5 unseen climate models (i.e., those not in the training dataset) from a single376

member of their large ensembles. However, the results are not systematically different in the 4377

evaluation members that were part of the training data (Fig. S1). The forced response estimates378

include monthly values globally for 1950-2022, so there are many metrics on which they could be379

evaluated. We will focus here on skill in estimating long-term forced trends, the grid-scale temporal380

evolution of the forced response, and the forced response in an illustrative set of large-scale climate381

indices.382
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a. Long-term trends383

Our method for evaluating method skill in isolating the forced component of long-term trends384

can be visualized in Figs. 1 and 2, showing estimates of forced 1980-2022 annual-mean SST385

and PR trends from a single evaluation member. The forced trend estimate from each method386

(panels d-l) is compared against the true forced response, as estimated by the ensemble mean of387

the corresponding large ensemble (panel b). For comparison, we also show how well the linear388

trend in the raw data from the evaluation member approximates the true forced response (panel a),389

which is a reference point we expect methods to improve upon. The difference between the full390

trend in the raw data and the ensemble-mean forced trend is the contribution of internal variability391

(panel c), which the methods aim to remove.392

We quantify the skill of each method’s estimate of the forced trend pattern f𝑖 compared to the393

true forced trend pattern f0 in terms of:394

1. the uncentered pattern correlation, or cosine similarity, 𝑟𝑖 = ⟨f𝑖, f0⟩ ∥f𝑖∥−1∥f0∥−1, where ⟨·, ·⟩395

indicates an area-weighted inner product, ∥ · ∥ = 𝑝−1
√︁
⟨·, ·⟩ indicates an area-weighted inner-396

product norm, and 𝑝 is the total number of grid cells,397

2. RMSE𝑖 = ∥f𝑖 − f0∥ normalized by the amplitude of the true forced trend pattern 𝜎0 = ∥f0∥,398

where each method’s normalized RMSE is hereafter referred to as nRMSE𝑖, and399

3. the amplitude ratio of the predicted and true forced trend patterns (𝜎𝑖/𝜎0).400

The root mean square over the 5 unseen-model evaluation members of each method’s nRMSE𝑖401

and forced trend pattern amplitude 𝜎𝑖 = ∥f𝑖∥ is plotted on a Taylor diagram (Figs. 1j and 2j).402

The colored shading shows nRMSE𝑖, the curved black arcs show contours of the amplitude ratio403

of the predicted and true forced trend patterns (𝜎𝑖/𝜎0), and the black rays show contours of the404

uncentered pattern correlation 𝑟𝑖. Because these three metrics are inter-related, the uncentered405

pattern correlation 𝑟𝑖 shown for each method in the Taylor diagrams is determined from the other406

two variables by:407

𝑟𝑖 =
𝜎2
𝑖
+𝜎2

0 −RMSE2
𝑖

2𝜎𝑖𝜎0
=

1+ (𝜎𝑖/𝜎0)2 −nRMSE2
𝑖

2𝜎𝑖/𝜎0
. (1)

This equation is exact when applied to a single evaluation member but is approximate when applied408

to the averages over 5 members in the Taylor diagrams. Note that the Taylor diagrams in this paper409
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do not show the full quadrant, as is traditional (Taylor 2001). Rather, they zoom in on the regions410

where the points are. Our variant on the Taylor diagram is partially inspired by the “solar diagram”411

of Wadoux et al. (2022), however, in our case the quantitative information remains the same as in412

a traditional Taylor diagram.413

One noteworthy observation from Figs. 1 and 2 is that methods that do not use pattern information414

from the training models (methods 1-17; shown with circular symbols in the Taylor diagrams;415

hereafter simple methods) estimate forced trends that look more like the raw trend from the416

evaluation member (Fig. 1e-f, cf. Fig. 1a; 2e-f, cf. Fig. 2a). On the other hand, methods that use417

pattern information from the training models (methods 18-30; shown with diamond symbols in418

the Taylor diagrams) estimate forced trends that look more like the ensemble-mean of the training419

models (Fig. 1g-i, cf. Fig. 1d; 2g-i, cf. Fig. 2d). This is especially true for SST, and we suspect420

that the reason for more diversity in forced precipitation trends is that not all training models have421

the same forced precipitation response. Methods that use pattern information generally perform422

better in terms of nRMSE than the methods that do not, but they will be more influenced by423

any systematic biases in the training models, and they do not perform as well in terms of pattern424

correlation for precipitation.425

The Taylor diagrams for 1980-2022 trends in all 8 variables are shown in Fig. 3 and 4. For all434

variables, the majority of ForceSMIP methods are skillful, where we consider a method skillful if435

𝛿RMSE𝑖/RMSERAW < 𝛿𝑟𝑖/ 𝑟RAW, i.e., if the fractional reduction (improvement) in RMSE compared436

to the raw data is greater than any fractional reduction (deterioration) in pattern correlation (below437

the white lines in Fig. 3 and 4). Hence, a skillful method is required to reduce 𝑅𝑀𝑆𝐸i compared438

to 𝑅𝑀𝑆𝐸RAW, while at the same time not deteriorating the pattern correlation too strongly. This439

definition of “skillfulness” thus implements the trade-off seen for some variables, such as precipi-440

tation, where a reduction in RMSE may be compensated by a deterioration of pattern correlation.441

Skill for SST, T2m, TXx, and TNn are similar in an absolute sense, with nRMSE𝑖 between 0.3442

and 0.6 (i.e., 30-60% errors). However, there is more improvement compared to the raw data443

for TNn than for the other three surface-temperature variables, due to the larger signal-to-noise444

ratio of TNn changes (not shown). The most skillful methods are generally similar across the 4445

surface-temperature variables (i.e., methods 22, 23, 24, 25). There also tends to be a cluster of446

simple methods with modest but systematic improvement compared to the raw data.447
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Fig. 3. Taylor diagram of method skill for 1980-2022 trends in (a) SST, (b) surface air temperature, (c)

precipitation, and (d) sea level pressure. Colors, lines, and symbols as described in Fig. 1. Outlier methods

excluded from the plots are: (a) 9, 30; (b) 27; (c) none; (d) none.

426

427

428

The absolute skill of the methods for trends in PR, SLP, and Rx1day is lower than for the four448

surface-temperature variables (Figs. 3c,d, 4c; cf. Figs. 3a,b, 4a,b). However, the improvement in449

nRMSE compared to the raw data is much larger for these variables. This occurs because there450

is a larger internal variability contribution to the 1980-2022 trends in these variables, and simply451
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Fig. 4. Taylor diagram of method skill for 1980-2022 trends in (a) annual maximum daily maximum temper-

ature (TXx), (b) annual minimum daily minimum temperature (TNn), (c) annual maximum daily precipitation

(Rx1day), and (d) zonal-mean atmospheric temperature (zmTa). black lines, and symbols as described in Fig. 1.

Outlier methods excluded from the plots are: (a) 13, 27; (b) none; (c) none; (d) 9, 14, 15, 25. Note additionally

that methods 1, 13, 16, 20, 21, 24, 27, and 30 did not estimate the forced response in zmTa.
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reducing the amplitude of the raw data would reduced nRMSE. Some of the ML methods (e.g.,452

25, 27) and one of the fingerprinting methods (24) even take the extreme approach of reducing453
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the estimated forced response amplitude to near zero for these variables, which does nevertheless454

reduce nRMSE. The ability to improve nRMSE simply by reducing the amplitude of the estimated455

forced trend pattern means that we should also pay attention to pattern correlation, which is456

not influenced by the amplitude. Several of the simple methods consistently improve pattern457

correlation across these variables (e.g., 6, 7, 8, 12, 16), as does one neural network method (20).458

Of all variables, annual-mean precipitation (PR) shows the largest number of methods that reduce459

the pattern correlation compared to the raw data, illustrating the difficulty in isolate the forced460

response for this variable.461

The skill for zonal-mean atmospheric temperature (zmTa) trends is an interesting case, because462

here the trend in the raw data is already such a skillful estimate of the forced response (nRMSERAW <463

0.25) that only about half the methods can improve the skill further for this variable.464

Here, we have focused on 1980-2022 trends, due in part to recent literature about SST trends465

over this time period (e.g., Wills et al. 2022). However, we also evaluated skill for other time466

periods, and the skill for 1950-2022 and 2000-2022 trends in SST are compared to the skill for467

1980-2022 trends in Fig. S2. Methods generally show comparable absolute skill across the three468

time periods, however this represents a much larger improvement compared to the raw data for the469

short-term trends (2000-2022). This shows that the ForceSMIP methods have even more added470

value for short-term trends.471

To more easily compare across methods and variables, Fig. 5 shows a scorecard for the two480

main skill metrics, nRMSE𝑖 and uncentered pattern correlation 𝑟𝑖. 1−nRMSE𝑖 is shown in place481

of nRMSE𝑖 so that increased skill is positive in both panels. No single method stands out as most482

skillful across all variables. While the fingerprinting and ML methods that use pattern information483

from the training models (i.e., methods 18-30) generally stand out in terms of nRMSE, they tend484

to have lower pattern correlation than simple methods (especially methods 1-8, 12, and 16). The485

too low amplitude of some ML estimates is not apparent here, so it is important to keep in mind486

the Taylor diagrams as well (cf. Figs. 3 and 4). There are a number of methods that have problems487

with specific variables despite skill in other variables. One more general problem is the failure of488

dynamical mode methods (e.g., 10, 11, 13, 14, 15) applied directly to variables such as PR, SLP,489

and Rx1day that do not have the monthly or longer autocorrelation that generally underlies these490

methods. An apparently successful workaround is to apply the dynamical mode method to SST or491
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Fig. 5. Skill summary scorecards for all methods’ skill in 1980-2022 trends in all variables: (a) one minus

the normalized RMSE, normalized by the amplitude of the forced response, as in the Taylor diagrams; (b) the

uncentered pattern correlation. The root mean square nRMSE and average uncentered pattern correlation are

computed over the 5 “unseen model” evaluation members. Grey indicates that the method did not include a

forced response estimate for zmTa. Stippling indicates metrics where the ForceSMIP method gives a more

skillful forced trend estimate than the raw data, where the skill of estimating the forced trend by the raw data is

shown on the left hand side for reference. Note that values less than −1 in (a) are cropped and the colorbar in (b)

increases linearly with the square of the correlation.
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479

another variable with large autocorrelation and then to use the covariance with other variables to492

get the forced response in the other variables, as was done by methods 8 and 12. Methods that stand493

out in terms of consistency, with a consistent skill improvement relative to the raw data (stippling494

in Fig. 5), are 7, 20, 24, 26, and 29, which includes the TrainingEM reference method (26). The495

absolute skill of methods varies based on which evaluation member they are applied to (Fig. S1),496

but the relative skill of methods relative to one another stays roughly the same across evaluation497

members.498
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b. Spatiotemporal variability and large-scale climate indices499

The long-term trends are only one way to evaluate the forced response estimates from the500

ForceSMIP methods, which include full spatiotemporal variability over 1950-2022. In this section501

we consider their skill for the spatiotemporal variability in the forced response, both at the grid502

scale and in selected large-scale climate indices.503

We first synthesize the ForceSMIP methods’ skill for grid-scale annual-mean spatiotemporal512

variability. Figure 6a shows 1− nRMSE, where nRMSE is the global-mean RMSE in the grid-513
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Fig. 6. Skill summary scorecards for all methods’ globally averaged skill in 10-yr running-mean grid-point

variability in all variables: (a) one minus the normalized RMSE, normalized by the amplitude of the forced

response; (b) square-root of global-mean correlation squared. The root mean square nRMSE and average

correlation are computed over the 5 “unseen model” evaluation members. Grey indicates that the method did

not include a forced response estimate for zmTa. Stippling indicates metrics where the ForceSMIP method has

more skill than the raw data, where the skill of estimating the forced response by the raw data is shown on the

left hand side for reference. Note that values less than −1 in (a) are cropped and the colorbar in (b) increases

linearly with the square of the correlation.
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scale forced response estimate normalized by the global-mean root-mean-square amplitude of514

the true forced response, estimated by the ensemble mean of the corresponding large ensemble.515

Figure 6b shows the global-mean grid-point correlation of the forced response estimate and the516

corresponding true forced response (ensemble mean). The absolute skill in both of these skill517

metrics is less than the absolute skill in long-term trends (cf. Fig. 5), however, the skill added by518

the ForceSMIP methods compared to the raw data is larger, and there is more widespread stippling,519

indicating improvement relative to the raw data. All methods show consistent improvement relative520

to the raw data across all variables in nRMSE, with a few exceptions in zmTa. Methods 1, 6-8, 12,521

16, 21, 25, 29, and 30 additionally show improvement relative to the raw data across all variables522

(except zmTa) in correlation. The skill of methods relative to one another is overall quite similar523

for the spatiotemporal variability as for the long-term trends.524

To evaluate the ForceSMIP methods’ skill for large-scale climate indices, we choose 6 example525

indices: (1) Annual-mean global-mean surface air temperature (GMST), (2) annual-mean Niño3.4526

SST minus global-mean SST (GMSST), (3) the North Atlantic SST index (NASSTI) of the AMV,527

i.e., annual-mean SST averaged over 0-60◦N, 0-80◦W minus the global mean, (4) Sahel monsoon528

precipitation in MJJAS, averaged over 10-20◦N, 20◦W-10◦E, (5) DJF Aleutian low SLP averaged529

over 30-65◦N, 160◦E-140◦W, and (6) TXx averaged over Continental Europe (land in 40-55◦N,530

0-40◦E). A 10-yr running-mean is applied to indices 2-5 to filter out some of the high-frequency531

noise, which would otherwise persist even in the ensemble mean of a large ensemble.532

The skill of the ForceSMIP methods for these six large-scale indices is shown in Fig. 7. In539

general, there are larger and more systematic nRMSE reductions compared to the raw data than540

for the long-term trends in the corresponding variables (cf. Figs. 3 and 4). While there is541

improvement in the correlation skill compared to the raw data for almost all methods in GMST542

and Continental Europe TXx, there is more varied correlation skill across methods in the other543

four indices. However, for each index, there is a subset of methods that are substantially improving544

skill in terms of both nRMSE and correlation. Methods that consistently add skill compared to the545

raw data across all indices (3-8, 12, 14-16, 18, 22, 24, 25, and 29) include a wide range of method546

types, including both simple and complex methods.547
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Fig. 7. Taylor diagram showing skill for annual-mean temporal variability of climate indices: (a) GMST,
(b) 10-year running-mean Niño3.4 SST minus global mean SST, (c) 10-year running-mean NASSTI SST minus
global mean SST, (d) 10-year running-mean MJJAS Sahel precipitation, (e) 10-year running-mean DJF Aleutian
Low SLP, and (f) continental Europe (40-55◦N, 0-40◦W) TXx. Colors, lines, and symbols as described in Fig.
1, except with pattern nRMSE and pattern correlation replaced with nRMSE and correlation in these indices.
Outlier methods excluded from the plots are: (a) 13, 27, (b) 1, (c) none, (d) 20, 26, (e) none, (f) none.
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5. Estimating the Forced Response in Observations548

The underlying motivation for comparing StatML methods within ForceSMIP is to improve549

estimates of the forced response in observations. Now, armed with knowledge about which550

methods are skillful for which variables and metrics, we are ready to estimate the forced response551

in observations.552

Each ForceSMIP method was applied to observational/reanalysis data in the same way it was553

applied to the evaluation members used for method evaluation in the previous section. Our goal554

in this section is to provide some examples of the observational forced responses estimated by555

the ForceSMIP methods; a follow-up paper will use method weighting to generate a definitive556

ForceSMIP forced response estimate with uncertainties. It is illustrative to first examine the forced557

responses for individual skillful methods. In Figs. 8, 9, and 10, we show the forced and internal558

components of observed 1980-2022 trends in SST, PR, and SLP, respectively, as estimated by559

selected ForceSMIP methods, alongside the raw observed trends over this period. Methods are560

selected to illustrate the range of different forced trend estimates, based on an EOF analysis in561

Appendix A.562

The strong pattern observed in the 1980-2022 SST trend, with cooling in the East Pacific and565

Southern Ocean and intensified warming in the West Pacific and North Atlantic, unlike the more566

uniform East-Pacific intensified warming the climate models show for this period, has generated567

substantial interest from the climate science community (Wills et al. 2022; Seager et al. 2022;568

Watanabe et al. 2024; Simpson et al. 2025). This lack of agreement with models is apparent in569

the comparison in Fig. 8 with the TrainingEM method (26), which is equal (up to an amplitude570

rescaling) to the ensemble mean of the 5 training models. The residual internal variability estimated571

by TrainingEM is large, and has been shown to be larger than is consistent with internal variability572

in most climate models (Wills et al. 2022; Seager et al. 2022).573

Several of the other ForceSMIP methods shown have a smaller amplitude of estimated internal574

variability in 1980-2022 SST trends, indicating that they are estimating a forced response that is575

closer to the full observed trends than is the TrainingEM forced response. However, the degree to576

which individual methods’ forced response estimates are more similar to the full observed trends or577

to the TrainingEM forced response varies substantially. LFCA-2 is one end member, estimating that578

almost all of the observed trend over 1980-2022 is forced. EOF-SLR is another end member, with579
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Fig. 8. Forced and internal components of observed SST trends (1980-2022) for TrainingEM and selected

skillful methods, chosen as representative examples from the EOF analysis in Figure A1.

563

564

a forced response similar to TrainingEM except for reduced El-Niño-like warming and somewhat580

more warming in the Atlantic. GPCA and UNet3D-LOCEAN are in between these end members,581

but each with their own unique features. The differences across these methods, all of which582

are shown to be skillful in the method evaluation (Fig. 3a), illustrates the epistemic uncertainty583

in estimating the forced response from observations, where epistemic uncertainty refers to the584
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uncertainty and potential systematic biases associated with the method used for forced response585

estimation. While EOF-SLR and UNet3D-LOCEAN are modestly more skillful than the other586

methods in the method evaluation, we cannot say with certainty which of these six forced response587

estimates is closer to the truth.588

MF-LFCA-2 (7) RegGMST-LENSem (16)

3DUNet-Fingerprinters (21) TrainingEM (26)MonthFinger (20)

Observed PR Trend (1980-2022) (mm day -1 per 42 yr)

Fo
rc

ed
 E

st
im

at
e

In
te

rn
al

 (R
es

id
ua

l)
Fo

rc
ed

 E
st

im
at

e
In

te
rn

al
 (R

es
id

ua
l)

MF-LFCA (6)

Fig. 9. Forced and internal components of observed PR trends (1980-2022) for TrainingEM and selected

skillful methods, chosen as representative examples from the EOF analysis in Figure A2.
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There is even wider spread of forced response estimates for precipitation (Fig. 9; see also Fig.591

A2), ranging from MF-LFCA-2 estimating that most of the observed 1980-2022 trend is forced to592

MonthFinger and TrainingEM estimating that almost none of it is. MF-LFCA and SNMP-OF are593

somewhere in between, with forced and internal contributions of similar amplitudes. It is worth594

noting that by focusing on forced responses that are robust across models, the estimated forced595

responses by TrainingEM and MonthFinger are smaller in amplitude than the forced precipitation596

response in individual models (cf. Fig. 2b), due to structural differences in models’ forced597

responses.598

The estimated 1980-2022 forced trends in SLP are all quite different from one another (Fig.601

10). They agree on the poleward shift of the Southern Hemisphere westerly winds indicated by602

the positive and negative bands of SLP trends north and south of ∼ 50◦S, but they have more603

than a factor of four spread in the magnitude of this circulation change. Some methods show604

that the Aleutian low weakening is mostly forced (MF-LFCA-2, consistent with the SST estimate605

from LFCA-2 in Fig. 8) while others show it is almost entirely internal variability (MF-LFCA,606

UNet3D-LOCEAN, ANN-Fingerprinters). There is a similar lack of agreement on whether North607

Atlantic SLP trends are forced or unforced. The large uncertainty in the forced response of SLP is608

consistent with the literature (Knutson and Ploshay 2021).609

To get a sense for the average separation of 1980-2022 trends into forced and internal components610

by the ForceSMIP methods, we average the forced response estimates over all ForceSMIP methods611

determined to be skillful for each variable. Methods are included if the improvement in RMSE612

exceeds the deterioration of pattern correlation (𝛿RMSE𝑖/RMSERAW < 𝛿𝑟𝑖/ 𝑟RAW; below the white613

lines in Fig. 3 and 4). Figs. 11 and and S3 show the forced trend averaged over these skillful614

methods, the residual internal variability component of the trends, and the forced trend estimated615

by TrainingEM, which gives a sense of what climate models say the forced response should be616

over this time period.617

The ForceSMIP-skillful-method-mean (hereafter ForceSMIP-mean) forced SST trend over 1980-623

2022 shows near-zero warming in the East Pacific and South Pacific, where the full observed SST624

trend shows cooling. The ForceSMIP-mean therefore attributes some but not all of the difference625

in 1980-2022 SST trend pattern between models and observations to internal variability. Similarly,626

the observed cooling of the Southern Ocean, which is not reproduced by models, is attributed627
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Fig. 10. Forced and internal components of observed SLP trends (1980-2022) for TrainingEM and selected

skillful methods, chosen as representative examples from the EOF analysis in Figure A3.

599

600

to a combination of forced response and internal variability. The ForceSMIP-mean also shows628

stronger weakening of the Aleutian Low and stronger strengthening of the Amundsen Sea Low629

than TrainingEM, which are both similar to La Niña teleconnections. ForceSMIP also suggests a630

more La–Niña-like forced trend in precipitation, with a much larger amplitude than the estimate by631

TrainingEM. However, as noted previously, the TrainingEM estimate for precipitation is smaller632
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CMIP6 Forced (TrainingEM) OBS Forced (ForceSMIP Mean) OBS Internal (ForceSMIP Mean)

SST

SLP

PR

TXx

TNn

Rx1day

Fig. 11. (center column) Mean estimates of forced trends (1980-2022) over all skillful ForceSMIP methods

(defined as 𝛿RMSE𝑖/RMSERAW < 𝛿𝑟𝑖/ 𝑟RAW, i.e., below the white line in Figs. 3 and 4) for SST, SLP, precipitation,

TXx, TNn, and Rx1day. Units are ◦C per 42 yr, Pa per 42 yr, or mm day−1 per 42 yr accordingly. (right column)

The residual trends attributed to internal variability. (left column) The TrainingEM reference method, obtained

from the multi-model-mean of the five training models, is shown for comparison.
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than the forced response in individual models because it focuses on the common response across633

all 5 training models.634

The ForceSMIP-mean 1980-2022 forced trends in T2m, TXx, and TNn are broadly similar over635

ocean regions (Figs. 11 and S3), where they show a more La-Niña-like forced response than636

TrainingEM and less warming in the Kuroshio-Oyashio extension, consistent with what was found637

for SST. The forced trend in TXx shows more warming than the forced trend in T2m in tropical638

land regions and less in high-latitude land regions, whereas the opposite is true for the forced trend639

in TNn. This is consistent with the reduction (increase) in temperature variability in high-latitude640

(tropical) land regions (Kotz et al. 2021), and is also seen in TrainingEM. TXx and TNn both641

have larger estimated contributions of internal variability to 1980-2022 trends than does T2m,642

illustrating the added value of the ForceSMIP methods for noisy extreme-event statistics. Rx1day643

has by far the largest estimated contribution of internal variability to 1980-2022 trends, though the644

estimated forced response is still larger than that estimated from TrainingEM.645

To visualize the ForceSMIP-estimated forced responses in the six climate indices, Figure 12646

shows the likely (66%) range (i.e., the 17th and 83rd percentiles) of the ForceSMIP methods647

determined to be skillful compared to the raw observed data , as well as TrainingEM and five648

example methods. Methods are considered skillful and thus included in the likely range if they649

show a fractional reduction in nRMSE that exceeds any fractional reduction in their correlation650

(below the white lines in Fig. 7). Example methods are chosen that have varying complexity, high651

skill across most variables, and produce different forced response estimates from one another.652

Compared to the raw data, all skillful methods smooth out some of the interannual variability in657

GMST (Fig. 12a). On a quantitative level, there is a 66% uncertainty range in the estimated forced658

1950-2022 GMST trend of 0.89-1.07◦C per 72 yr. The smoothing out of interannual variability659

is even more important for metrics such as Continental Europe TXx, where the forced responses660

estimates are all much smoother than the raw data (Fig. 12f). Methods consistently attribute the661

multi-year negative excursion between 1975 and 1980 to internal variability. The ratio of estimated662

forced trends in Continental Europe TXx and GMST has a 66% range of 1.89-2.79.663

While the forced responses in GMST and Continental Europe TXx could be guessed to some664

degree of accuracy by simply smoothing the raw data, estimating the forced components of the665

other four indices is much more challenging. The ForceSMIP estimated observed forced response666
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in 10-yr running-mean Niño3.4 (minus GMSST) ranges from increasing (El-Niño-like warming)667

in Anchor-OPLS and TrainingEM to monotonically decreasing (La-Niña-like warming) in MF-668

LFCA and SNMP-OF (Fig. 12b), with MF-LFCA-2 even showing a strong increase through 1980669

followed by a strong decrease. Nevertheless, all methods agree that the large negative excursion in670

the early 1970s and the large positive excursion in the early 1990s resulted from internal variability.671

The 66% range in the estimated 1950-2022 forced trend in Niño3.4 minus GMSST is -0.27-0.10◦C672

per 72 yr, indicating that even the sign of the long-term forced trend remains uncertain.673

The estimates of how much the AMV is forced range from almost all of it to none of it, as well674

as everything in between (Fig. 12c). ForceSMIP thus helps to reconcile research that indicates675
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that the AMV is mostly forced (Booth et al. 2012; Wills et al. 2020; He et al. 2023) with research676

suggesting that it is mostly internal variability (Ting et al. 2009; Zhang et al. 2013; Qin et al.677

2020; Latif et al. 2022) by demonstrating that either could be true. Interestingly, the two end678

members with most and least forced AMV are MF-LFCA and MF-LFCA-2, which differ only in679

the number of low-frequency patterns included, this illustrates how the hyperparameter sensitivity680

of the LFCA method may actually help to quantify the epistemic uncertainty in the forced response681

estimate. Given the association between the AMV and Sahel precipitation (Zhang and Delworth682

2006), it is not surprising that there is also a large spread in the forced response estimates for683

Sahel precipitation (Fig. 12d). What is interesting however is that all of the ForceSMIP estimates684

either show a drying or a much weaker wettening trend than TrainingEM. This suggests that CMIP6685

models, at least those used for training, have systematic biases in Sahel precipitation trends. Finally,686

the ForceSMIP methods consistently show a small forced response in the Aleutian Low, attributing687

its large decadal excursions to internal variability (Fig. 12e).688

Overall, ForceSMIP provides an ensemble of estimates of the observed forced response, and689

we highlight cases where there are consistent differences from the forced response in climate690

models (e.g., the La-Niña-like forced response in observations) as well as cases where epistemic691

uncertainty limits the ability to draw conclusions (e.g., on the amplitude of forced AMV).692

6. Conclusions, Discussion, and Outlook693

We have demonstrated that many different types of StatML methods exhibit skill in estimating694

the forced response from individual ensemble members of a climate model large ensemble, where695

skill means that they give a better forced response estimate than the raw data. Skillful methods696

include simple regression approaches, LFCA, LIM-based methods, as well as fingerprinting and697

ML methods custom built for the ForceSMIP project. Methods are most skillful in absolute terms698

for thermodynamic responses, such as in SST and surface air temperature, but the added value699

of these methods compared to the raw data is largest for responses in fields with large amplitude700

internal variability such as SLP, precipitation, and extreme-event indices. The ForceSMIP methods701

are skillful for long-term regional-scale trends (e.g., over 1980-2022), grid-scale spatiotemporal702

variability, and large-scale climate indices. No single method outperforms the others across all703

variables, but rather the most skillful methods vary depending on the metric of evaluation.704
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Armed with an array of skillful methods for forced response estimation, we investigated the705

forced response in observations in Section 5. We found that the ForceSMIP methods systematically706

estimate that the observed forced response is more La-Niña-like than indicated by models, with a707

local minimum in warming in the Southeast Pacific, but also that the discrepancy in 1980-2022 SST708

trends between observations and models is partly due to internal variability. The observed forced709

response obtained from the average of skillful ForceSMIP methods also exhibits La-Niña-like710

teleconnections in other variables, including SLP and precipitation. Despite these commonalities,711

there is a large spread in the estimated forced SST trend pattern across methods that display similar712

skill in the large ensemble evaluation data, and an even wider spread of forced responses for SLP713

and precipitation. The spread across estimates of the forced response is sufficiently large that most714

statements about the relative contributions of external forcing and internal variability (for example715

to the AMV) cannot be made with great certainty. Overall, ForceSMIP suggests that there are716

systematic differences in the forced response between climate models and observations while also717

illustrating the intrinsic epistemic uncertainty in estimating the forced response from observations.718

The intrinsic uncertainty in the extent to which multi-decadal SST fluctuations and regional details719

of trend patterns are forced or unforced is important to consider in the context of climate change720

attribution, model evaluation, and climate impact assessments.721

a. Which method should I use?722

At this point, you may be wondering, which method should I use for forced response estimation723

in my own work? While the method evaluation in Figs. 3-7 may give some guidance, it’s quite724

likely that this paper did not consider your metric of interest. Furthermore, there are almost always725

many good choices for any given metric. Nevertheless, we can give a few recommendations:726

1. Use more than one type of method to get a better sense of how the forced response estimate727

varies across methods. It’s worth keeping in mind that simple methods tend to stay closer728

to the observed trends, whereas most fingerprinting and ML methods will give observational729

forced response estimates more similar to the forced response in the climate models used for730

training, and will thus be more subject to any systematic biases in the training dataset.731

2. Either use methods that generalize well across metrics or train/test the methods you use732

for your metric of interest within a large ensemble dataset. The diversity of variables and733
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metrics considered by ForceSMIP makes it likely that methods consistently showing skill in734

ForceSMIP will generalize well to other applications.735

3. The ForceSMIP evaluation dataset (Wills et al. 2025) is a useful resource for evaluating new736

methods and/or for evaluating which methods work best for a specific application of interest.737

Finally, another relevant consideration is that the ML methods would all need to be re-trained for738

other applications, whereas most of the other methods work out of the box and do not need further739

customization. However, the need to train ML methods can also be an advantage, because it means740

they will be tailored for the application of interest.741

b. Lessons for further method development742

Several lessons can be learned from the successes and failures of individual ForceSMIP methods.743

One of the clearest lessons is that - perhaps to no great surprise - LIMs only perform well744

for variables that have sufficiently large autocorrelation on the timescale of interest (monthly745

anomalies in our case). This is exemplified by the much higher skill of LIMnMCA and Colored-746

LIMnMCA compared to other LIM-based methods for variables such as precipitation, SLP, and747

RX1day. What’s different about these two methods is that they applied a LIM to SST and then748

used maximum covariance analysis to identifying the covarying forced patterns in other variables.749

Another approach could be to merge each field variable with SST and apply a joint analysis to750

both fields at once. This approach was used for MF-LFCA, where it led to modest improvement751

in skill for precipitation and SLP over the one-field-at-time LFCA. We highlight these cases due752

to the clean comparisons they offer, but several other methods used multiple fields at once (Table753

1). Many of the methods that analyzed one field variable at a time could likely be improved by754

applying them to two or more field variables at a time, especially if the additional variable is a field755

with a clear forced response, such as SST.756

Another lesson is that methods focused on reducing RMSE or related metrics may end up757

guessing a near-zero forced response in cases where internal variability is larger than the forced758

response. To control against this, methods could expand the skill metrics they consider, for example759

by incorporating correlation or amplitude-error metrics and computing skill metrics on different760

timescales. This could draw on the experiences of the machine-learning weather prediction761

community (e.g., Nathaniel et al. 2024), which is grappling with similar issues. Some methods762
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may also give better forced response estimates if they were reformulated to explicitly estimate763

both forced and unforced climate variations, as was already done in UNet3D-LOCEAN (see also764

Po-Chedley et al. 2022).765

An additional important consideration for further method development is that the ML methods766

are by design more trainable to optimize for a specific task. We intentionally did not specify767

exact evaluation targets in advance for this phase of ForceSMIP, to avoid all methods overfitting to768

particular metrics. Further development of these methods can now focus on correcting for some769

of the problems displayed in this round of evaluation. Future work should focus on cataloging a770

comprehensive set of forced response metrics of interest, so that methods can be trained to optimize771

across many relevant metrics at once.772

c. An observational forced response estimate and its applications773

A primary goal of ForceSMIP is to generate a forced response in observations, including a774

quantification of the associated epistemic uncertainty, i.e., uncertainty from different methods775

of estimation getting different answers. In this study, we have provided one such estimate: a776

30-method ensemble of different forced response estimates (openly available on Zenodo; Wills777

et al. 2025). We additionally quantified the expected error based on evaluation within large778

ensembles and gave demonstrations of the types of information that can be obtained from such a779

multi-method ensemble, showing both differences in the estimated forced response across methods780

as well as the multi-method-mean forced response estimate for skillful methods. The method781

weighting is intentionally kept simple in this paper, with methods given full weight for skill above a782

threshold and zero weight otherwise. A follow-up paper will apply a systematic method weighting783

scheme, following Merrifield et al. (2023), to provide a skill weighted forced response estimate784

and uncertainty range. We also encourage others to generate their own forced response estimates785

from this dataset that are customized to specific applications.786

We foresee many possible applications of an observational forced response estimate. One set787

of applications is for model evaluation. An observational forced response from ForceSMIP could788

be combined with an estimate of the residual variance due to estimation uncertainty and internal789

variability, e.g., based on the nRMSE evaluated in Section 4, and this would then provide a790

comparison point for evaluating forced trends in models against observations (cf. Simpson et al.791
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2025). The flip-side of evaluating forced trends in models is evaluating their amplitude of internal792

decadal variability, which has been suggested based on instrumental and paleoclimate data to be793

too weak in some regions (Laepple and Huybers 2014; Dee et al. 2017; Laepple et al. 2023).794

ForceSMIP can help to evaluate whether there are discrepancies in forced or internal multi-decadal795

variance compared to large ensembles. However, our results already suggest that, for metrics796

with large multi-decadal variability such as the AMV, the separation between forced and internal797

components remains extremely challenging, with some methods estimating a forced response more798

like the raw observations and some methods estimating a forced response more like the ensemble799

mean of the training models. In these cases, it will remain difficult to distinguish between model800

discrepancies in the forced response and model discrepancies internal variability.801

Another set of applications of forced response estimates from ForceSMIP is for monitoring802

internal climate variability and generating observational large ensembles. Indices of internal803

variability, where the forced response is often removed either by removing the linear trend or by804

subtracting GMSST, can increasingly be influenced by climate change. For example, Deser and805

Phillips (2023b) show how not fully removing the forced response from indices of the AMV can lead806

to spurious implied connections with the tropical Pacific. We therefore suggest that the ForceSMIP807

forced response, if continuously updated, could serve as a standard estimate of the forced response808

to remove from indices of internal variability such as ENSO, AMV, PDO, and NAO. Removal of809

the forced response also allows for generation of an observational large ensemble, e.g., using the810

phase randomization approach of McKinnon and Deser (2018, 2021). Such an observational large811

ensemble can help to explore long-term trends and extreme events that could have happened in the812

real world under different phasing of internal variability (e.g., as in Deser and Phillips 2023a).813

Underlying all of these applications of ForceSMIP observational forced response estimates is814

the intrinsic interest in the observational forced response itself, which can help to understand and815

communicate how anthropogenic activities have affected historical climate and give a glimpse into816

the changes expected in the near future.817
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APPENDIX860

Analysis of Inter-Method Variance861

In order to illustrate the inter-method differences (i.e., epistemic uncertainty) in estimated forced867

trends, we perform an EOF analysis on the forced trends estimated by skillful methods. Methods868

are included if 𝛿RMSE𝑖/RMSERAW < 𝛿𝑟𝑖/ 𝑟RAW (below the white lines in Fig. 3). The results869

are shown for the EOF analysis of estimated 1980-2022 forced trends in SST, PR, and SLP in870

Figs. A1, A2, and A3, respectively. Panels (a) and (b) show the EOF patterns and the percentage871

of the variance they explain. Panels (c) show the corresponding principal components, i.e., the872

contribution of each EOF to the forced trend estimated by each method. The distribution of873

principal components are used to inform the selection of methods shown in Figs. 8-10, which are874

highlighted with red symbols in panels (c) of Figs. A1-A3.875

Estimated 1980-2022 forced trends in SST differ from one another in a pattern (EOF1) similar to880

what has been called the Interdecadal Pacific Oscillation (IPO; Power et al. 1999), indicating that881

some methods estimate the IPO to be mostly forced, while others do not. Methods also differ in882

their estimates of the amount of forced warming in the Northern Hemisphere ocean basins (EOF2).883

The net result is that there is uncertainty in the forced SST trend in the East Pacific, Southern884

Ocean, Kuroshio-Oyashio Extension, and subpolar North Atlantic (Fig. A1d).885

The EOF analysis for estimated 1980-2022 forced trends in PR (Fig. A2) shows a large fraction886

of variance explained by EOF1, which resembles the full observed trend (Fig. 9). The amplitude887

of PC1 shows clusters near −1 and 1.5 (Fig. A2c), which are methods estimating that very little or888

most of the observed trend is forced, respectively.889
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The leading EOF of estimated 1980-2022 forced trends in SLP (Fig. A3a) includes positive890

anomalies in the Aleutian low region and South Pacific and negative anomalies around Antarctic,891

resembling the SLP pattern associated with the IPO. Combined with EOF2 (Fig. A3b), the net892

result is uncertainty in the midlatitudes in all ocean basins as well as around Antarctica (Fig. A3d).893
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