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The equatorial Pacific sea surface temperature (SST) zonal gradient has world-13

wide impacts, and is expected to be highly sensitive to future climate change. How-14

ever, biases in climate models call the reliability of future SST gradient projections15

into question. Here we combine multiple climate model Large Ensembles to show16

that equatorial precipitation and cloud feedbacks have a controlling influence on17

the future Pacific SST gradient. An ‘SST Gradient Sensitivity’ parameter is com-18

puted for each model, which shows that models with stronger historical equatorial19

precipitation have systematically higher sensitivities (more El Nino-like changes).20

This arises from the stronger negative SST-shortwave radiation feedback, which21

then creates a wind response that favors El Nino-like warming. Notably, when22

historical deep convection is sufficiently strong, a ‘saturation’ effect occurs that23

tends to inhibit this effect. These results imply that models likely underestimate24

future El Nino-like changes, but that the ‘true’ magnitude of changes may be25

predictable.26
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1 Introduction27

The pattern of equatorial Pacific sea surface temperature (SST) is critically important for a variety of28

human and natural systems. The zonal SST contrast (SST gradient) along the equator is particularly29

impactful, since it is closely tied to the location of equatorial deep convection, which alters the30

propagation of atmospheric circulation anomalies and associated weather patterns around the31

world (1,2). The equatorial Pacific SST gradient (hereafter, “SST gradient” or ΔSST) is expected to32

be strongly modified by ongoing anthropogenic climate change, but the overall magnitude and sign33

of this effect remains poorly understood (3). Therefore, it is critical to quantify the true sensitivity34

of the Pacific SST gradient to future human influences in order to improve future projections of35

climate change impacts.36

Coupled climate models generally simulate a weakening of ΔSST in response to greenhouse37

gas (GHG) increases (4). Yet it is not clear whether this is an accurate representation of the real38

world as models have known biases in their simulation of equatorial Pacific climate (5, 6), which39

have been suggested to affect the sensitivity of SST patterns to warming (7–9). Additionally, model40

simulations of the recent observational period (20th and early 21st centuries) are unable to reproduce41

the observed tendency for ΔSST strengthening (10). Internal climate variability likely contributes42

to this disagreement, yet recent work indicates that even after accounting for such effects, models43

are still highly unlikely to simulate the observed recent ΔSST strengthening (11).44

One difficulty with assessing the accuracy of ΔSST trends in coupled models is our limited45

understanding of the balance of mechanisms governing their variability and change. Multiple46

hypotheses have been proposed for the influence of GHG emissions on ΔSST. These include47

thermodynamic responses in the atmosphere (12), the behavior of the oceanic subtropical cells (13),48

changes in mean atmospheric stability (14), and differences in the radiative sensitivity of SST across49

the basin (15), among others (see review by (3) for details). There is likely to be substantial structural50

uncertainty in the relative magnitudes of these various mechanisms, but separating structural51

uncertainty from other forms of uncertainty requires a large number of simulations. Until recently,52

a suite of simulations of sufficient size has not been available, making it more difficult to draw firm53

conclusions regarding the influence of model physics on ΔSST changes due to confounding effects54

from internal climate variability.55
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Here we address the question of ΔSST response to 21st century radiative forcing using a suite56

of ‘Large Ensemble’ (LE) simulations run with a variety of climate models (16). An LE is a set57

of simulations run with a single model, where all simulations are identical with the exception of58

their initial climate state (e.g. (17)). Over the past 10 years, LEs have been run with many different59

models, and have become widely used in the climate community to separate the forced response60

from internal variability (18,19). These LEs now make it possible to directly and robustly examine61

the differences in models’ forced responses to climate change (determined from the ensemble mean62

of each LE), and assess their causes. We note that all LEs analyzed here are members of the CMIP663

model generation (Table S1), which show a higher degree of consistency in the sign of ΔSST64

change relative to CMIP5 (20, 21). This choice was made in order to prevent complications from65

arising due to the known differences in climate sensitivity and the treatment of cloud microphysical66

processes between CMIP5 and CMIP6 models (22,23).67

2 SST Gradient Sensitivity68

The overall response of ΔSST to various future emissions scenarios is summarized in Figure 1,69

where the gradient is defined as the difference between temperatures in the eastern and western70

equatorial Pacific (Methods). All LEs simulate a weakening of ΔSST over the 21st century, the71

magnitude of which tends to be larger for higher-emissions scenarios (e.g. compare values in Figure72

1e across scenarios for a given model). However, for a given emissions scenario, the ΔSST change73

differs between LEs, suggesting a role for inter-model physical differences. For instance, the CESM274

has a much stronger response than other models to the SSP5-8.5 (Figure 1a), SSP3-7.0 (Figure 1b),75

and SSP2-4.5 (Figure 1c) scenarios. At the other end of the spectrum, the IPSL-CM6A exhibits76

almost no response to either SSP5-8.5 or SSP3-7.0 (the only two scenarios available for this model).77

There is also some notable non-monotonicity, primarily in the lower-emission scenarios: all three78

of the models which ran the SSP1-2.6 scenario level off in their responses between 2060-210079

(Figure 1d) and some indications of similar behavior can be seen under SSP2-4.5 by the end of the80

century (Figure 1c). ΔSST changes are summarized as epoch differences in Figure 1e, where it is81

immediately obvious that some models’ zonal SST gradient is systematically more responsive to82

future climate change than others.83
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The model differences between projections of 21st century gradient changes become especially84

apparent when the ΔSST time series are normalized to their respective global-mean temperature85

increases (Figure 1f, Figure S1). Some models can then be easily distinguished in terms of their86

ΔSST sensitivity to global-mean temperature increases; for instance, CanESM5 and IPSL-CM6A87

exhibit little change, while models such as MIROC6 and CESM2 are especially responsive (Figure88

S1b). Interestingly, the relative magnitude of epoch changes in ΔSST is approximately constant89

across emissions scenarios for many models (Figure 1f). One exception is the CESM2, where90

the response to SSP3-7.0 forcing is proportionally smaller than the response to the other two91

scenarios. We speculate that this may be related to CESM2’s high climate sensitivity, which has been92

demonstrated to lead to strong and compensatory responses to GHG and aerosol emissions (24).93

Given that SSP3-7.0 has relatively high aerosol forcing (25), this might then create overly strong94

damping in CESM2. Nevertheless, it appears that generally speaking, the balance of mechanisms95

governing ΔSST change at the end of the 21st century does differ systematically between climate96

models, but remains relatively consistent across emissions scenarios for LEs run with a given97

model.98

Using the results of Figure 1, we define an ‘SST Gradient Sensitivity’ parameter (hereafter ΔΔ)99

to classify models according to their tropical Pacific responses. The ΔΔ parameter is equal to the100

value of the change in ΔSST between the 20th century (1951-2000) and 21st century (2051-2100),101

normalized to the change in global-mean temperature over those same periods (Figure 1f). Where102

simulations with multiple emissions scenarios are available, these have been used to estimate a103

scenario-mean ΔSST sensitivity and associated uncertainty (Table S2); in subsequent analyses, the104

ΔSST sensitivities computed for individual model/scenario combinations are employed. The results105

are somewhat sensitive to the start and end points chosen, possibly due to the higher importance of106

aerosol forcing in the 20th/early 21st centuries (not pictured) - here we use the latter halves of the107

21st and 20th centuries, to more clearly isolate the effect of greenhouse gas emissions (Methods).108

To provide some validation of the relative magnitudes of the ΔΔ parameters, we also compute the109

linear trend in ΔSST over 1950-2100 normalized to the linear trend in global-mean temperature and110

average over all scenarios available for a given model (Table S3). This shows qualitatively similar111

results to the ΔΔ defined using epoch differences.112
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3 Future Changes Associated with SST Gradient Sensitivity113

To investigate the mechanisms driving differences in ΔΔ, we apply an ensemble-mean correlation114

analysis. This relates the ensemble mean ΔΔ for a given model and a given scenario to that115

ensemble’s underlying mean climatological patterns of air temperature, precipitation, and other key116

variables (Figure 2). For example, for each model/scenario combination, the ensemble mean ΔΔ is117

calculated, then correlated at each grid point with that grid point’s historical mean air temperature118

(Figure 2a) or that grid point’s future change in mean air temperature (Figure 2b). In addition to119

surface air temperature, the ensemble mean ΔΔ was regressed against grid point SLP, precipitation,120

and geopotential height. The resulting Pearson’s correlation coefficient (r) reveals, for the full set121

of model/scenario combinations, the overall patterns of temperature and atmospheric circulation122

associated with inter-model differences in ΔΔ.123

Figure 2 shows that there is a spatially coherent pattern of future changes associated with the124

ensemble-mean ΔΔ. By construction, warming in the eastern equatorial Pacific is present, along125

with cooling over the western Pacific warm pool (Figure 2b). However, ΔSST reductions are also126

associated with other regions: future warming in the North Pacific, the tropical Atlantic, and127

the North American continent are associated with El Niño-like changes (Figure 2b). The future128

precipitation changes associated with ΔSST reductions (Figure 2d) include an overall reduction in129

precipitation north of the equator throughout the central/eastern Pacific, and a dipolar precipitation130

signal in the Indian Ocean and tropical Atlantic. In the Northern Hemisphere midlatitudes, the 500131

hPa geopotential height changes include low heights over the Atlantic and much of Eurasia (Figure132

2d). In contrast, the Southern Hemisphere midlatitude circulation exhibits more zonal structure,133

with lows over Australia and South America coincident with local surface cooling (Figure 2d).134

To determine the degree to which the associations in Figure 2 are representative of overall135

coherent inter-model spread patterns, we also calculate the EOF modes of ensemble-mean epoch136

differences in surface air temperature for all ensembles (Figure S2). The dominant mode (Figure137

S2a) explains 40% of the variance in inter-model temperature changes, and the spatial structure138

strongly resembles the pattern of ensemble-mean temperature association with the ΔSST change139

(Figure 2b). Most notably, Mode 1 shows similar western Pacific cooling, North Pacific/North140

American and North Atlantic warming as the ΔΔ correlation map (Figure S2a vs. 2c). Furthermore,141
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PC1 is significantly correlated with the set of ensemble mean changes in ΔΔ (Figure S2b). This142

indicates that there is indeed a large-scale pattern of inter-model differences which is systematically143

associated with differences in ΔΔ. Interestingly, the equatorial signal is dominated by western144

Pacific cooling, rather than eastern Pacific warming; the precise reasons for this are beyond the145

scope of the present study, but may relate to a larger thermodynamic sensitivity of the warm pool146

to global-mean temperature changes (e.g. (15)).147

We note that there also appears to be some contribution from Mode 2 of inter-model spread to148

the spread in ΔΔ (Figure S2c). In Mode 2, warming is especially pronounced in the eastern Pacific149

and the tropical Atlantic. The PC of this mode is also significantly correlated with ΔΔ (Figure150

S2d). We hypothesize that these two modes may relate to the differing effects of greenhouse gas151

and aerosol forcing on patterns of temperature change (not pictured). This could not be definitively152

proved owing to the lack of sufficient numbers of single-forcing Large Ensembles extending through153

the end of the 21st century, and is thus beyond the scope of this study. However, the spatial similarity154

between Figure 2 and Modes 1 and 2 of inter-model spread, as well as the significant cross-ensemble155

correlation of the inter-model spread PCs with ΔΔ (p-value <0.1; Figure S2b,d), suggest that the156

SST gradient is sensitive to inter-model physical differences which produce coherent spatial patterns157

in their responses to forcing.158

4 Historical Patterns Associated with SST Gradient Sensitivity159

Another powerful feature of the ensemble-mean regression technique is the ability to relate future160

changes to the simulated historical climate. This technique enables the identification of aspects of161

present-day climate with potential predictive power in determining future changes associated with162

the SST gradient. Figure 2a and c correlate 21st century - 20th century differences in gridpoint163

circulation changes with ΔΔ for all ensembles. Once again, coherent patterns emerge: models with164

larger ΔΔ show higher historical precipitation throughout the North and South Pacific subtrop-165

ics/midlatitudes, as well as the Atlantic, and drying occurs in the Indian Ocean. Models with higher166

ΔΔ also exhibit strong precipitation increases near the climatological locations of the Intertropical167

Convergence Zone (ITCZ) and South Pacific Convergence Zone (SPCZ). High 500 hPa heights168

over the Tibetan Plateau are associated with large ΔΔ, with a wavetrain-like signature present over169
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the midlatitude North Pacific suggestive of anomaly propagation from the Tibetan Plateau region170

(Figure 2c). Interestingly, historical ocean temperatures in most locations are not significantly cor-171

related with ΔΔ (Figure 2a) - but land temperatures have a strong relationship over the majority of172

the land surface. The magnitude of the correlation is particularly strong over midlatitude Eurasia173

and North America (Figure 2a), suggesting a possible role for coupling with the land surface.174

The presence of systematic historical mean-state differences between models with high versus175

low ΔΔ is further confirmed by separating models into populations based on their ΔΔ values176

(Methods). In the eastern Indian Ocean, historical precipitation is significantly lower in models177

with higher ΔΔ (Figure 2e). In contrast, in the central Pacific, models with higher ΔΔ show larger178

historical precipitation along the equator and a tendency for reduced off-equatorial precipitation179

indicative of a southward ITCZ shift (Figure 2f). The spatial patterns of historical mean-state180

differences between high- and low-ΔΔ models (Figure S3a,b) also bear a strong resemblance to181

those of Figure 2. Higher-ΔΔ models have higher historical air temperatures over land (Figure S3a),182

particularly over Eurasia and northern Africa. The precipitation patterns in the tropics also show183

a tendency for drier historical conditions over the Indian Ocean and Maritime Continent, with184

enhanced rainfall over the western/central Pacific (Figure S3b).185

We note that there is some seasonal dependence of these results. The higher historical eastern186

Pacific temperatures in high-ΔΔ models are more pronounced during JJA (Figure S3e), but the187

historical land surface temperature is slightly larger during DJF (Figure S3c). The precipitation pat-188

terns differ slightly as well, with the subtropical Indian Ocean showing drier historical precipitation189

during DJF (Figure S3b) and wetter historical conditions over the Indian subcontinent during JJA190

in high-ΔΔ models (Figure S3d). This difference may relate to influences on the Indian summer191

monsoon, and potentially also to connections with the Indian Ocean Dipole, which peaks in boreal192

autumn (26). We primarily focus on the temperature associations over the Northern Hemisphere193

land masses and the precipitation associations over the equatorial Pacific, which are robust features194

of high-ΔΔ models across all seasons.195
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5 Cloud Radiative Impacts on Inter-Model Spread196

5.1 All Models197

Section 4 demonstrates the clear connection between inter-model spread in historical mean climate198

and ΔΔ, which likely reflects a systematic dependence of atmosphere/ocean feedbacks on mean199

climate. To further explore this possibility, we calculate the regression of gridpoint net surface200

shortwave radiation on SST anomalies, where anomalies are calculated relative to the seasonal201

cycle and the ensemble mean is removed from each member prior to analysis (Figure 3). These202

regressions are computed over the time dimension for individual ensemble members, then the203

ensemble mean for each model/scenario combination is averaged, then the ensemble means are204

averaged together to form the maps in Figure 3. Here these calculations roughly follow the ‘cloud-205

shortwave feedback index’ approach of (7), which was shown to effectively indicate the influence206

of cloud feedbacks on the SST pattern responses to anthropogenic warming.207

In the tropical oceans, a negative regression coefficient between surface net shortwave flux208

and SSTA (SW:SSTA) indicates that local warming increases cloud cover (and decreases surface209

shortwave radiative flux), which is generally true in regions dominated by deep convection (see210

Figures S4, S5). Negative coefficients can be seen in cumulus-dominated regions such as the211

western Pacific warm pool and the tropical Atlantic, and zonal bands of negative coefficients are212

also present near the climatological locations of the ITCZ and SPCZ (Figure 3a). Interestingly, the213

negative coefficients near 5-10◦N do not fully persist across the basin in the multi-model mean214

(Figure 3a), where coefficients become smaller or positive for longitudes east of roughly 150◦W.215

This may reflect either the presence of stratiform rain within the ITCZ (e.g. (27,28)), or the diversity216

of representation of the ITCZ location and strength across models (Figure S5). In contrast, positive217

SW:SSTA coefficients are present in stratus regimes of the far eastern equatorial Pacific, where SST218

increases lead to reduced cloud cover and increased surface shortwave radiation.219

There is overall low inter-model agreement on the sign of the regression coefficients in the220

equatorial Pacific (Figure 3a). The multi-model ensemble-mean value is generally negative west221

of 160◦W and positive eastwards, but less than 2/3 of models agree on the sign at any given222

longitude. This disagreement is an indication of the large spatial diversity of the feedback patterns223

across models (see also Figure S5). To assess the importance of this inter-model diversity in224
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generating spread in future projections, we apply another ensemble-mean regression: a regression225

of the SW:SSTA coefficients of Figure 3a on the SST gradient sensitivity for each model/scenario226

combination. There is a large negative association near 160-200◦E along the equator, with a positive227

association immediately to its west (Figure 3e). This suggests that models where the historical228

location of deep convection is shifted farther to the east (or with overall stronger deep convection)229

are also those which experience a stronger future weakening of ΔSST.230

The sign transition near 140E in Figure 3a coincides approximately with the climatological231

edge of the western Pacific warm pool (green contour). The western Pacific also generally tends232

to be the location where the equatorial sensitivity of precipitation to SST anomaly is largest, as233

measured by the regression of gridpoint precipitation anomaly onto local SSTA (Figure S6). Near234

the warm pool edge, variations in local SSTA are most effective at exciting deep convection, as235

indicated by both the negative SW:SSTA feedback and the increase in precipitation sensitivity to236

SST (e.g. (9, 29); see also Figure S7). Additionally, differencing the precipitation:SST anomaly237

regression coefficients between high and low ΔΔ models shows that high-ΔΔ models have more238

positive precipitation responses to SSTA in the central Pacific over the 20th century (Figure S7).239

Our proposed mechanism linking the feedbacks above with future SST gradient responses is240

as follows (Figure 4). In models with historically stronger precipitation over the central equatorial241

Pacific, the negative SW:SSTA feedback will be larger in the central/western Pacific, since a242

smaller increase in SSTA is required to initiate additional convective precipitation in this region.243

(In the eastern equatorial Pacific, the SST lies generally below the threshold for deep convection,244

and stratiform clouds with positive SW:SSTA feedback are favored.) The negative feedback in245

the central/western Pacific will tend to suppress local CO2-induced warming there, and induce246

an anomalous lack of further convection. The resulting anomalous atmospheric descent operates247

essentially as the inverse of the classical (30) response to surface heating: descending air near the248

dateline will tend to diverge at the surface and induce a westerly wind anomaly in the eastern249

Pacific. This then reduces the trade wind strength and leads to further warming of the eastern250

Pacific, favoring the development of an El Nino-like reduction in the SST gradient.251

The above mechanism is conceptually similar to that proposed by (7), who proposed that sys-252

tematic underestimates in the strength of SW:SSTA feedbacks should cause erroneous surface253

convergence and cause models to simulate overly La Nina-like responses to greenhouse gas in-254
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creases. Here, we show that models with high ΔΔ behave in essentially the opposite fashion: when255

convection is stronger, surface divergence favors El Nino-like warming.256

5.2 Wet Models257

It is important to note that the relationships shown in Figure 3 appear to change in models with258

extremely high climatological-mean equatorial precipitation (Methods). In these models (hereafter259

the ‘wet’ models; Table S4), the negative SW:SSTA relationship is markedly enhanced (Figure 3b).260

However, the magnitude of this feedback decreases in the future (Figure 3d), whereas for models as261

a whole the tendency is for a slight increase (Figure 3c). This suggests that for the wettest models,262

the central Pacific divergent surface wind mechanism may be expected to weaken by the late 21st263

century. The pattern of SW:SSTA regressions associated with ΔΔ also differs in wet models (Figure264

3f), with much larger negative signals over the far western Pacific and larger positive signals over265

the far eastern Pacific.266

We hypothesize that this regime transition relates to the ‘saturation’ of atmospheric convection267

at high SST values. Wet models generally begin with warmer SSTs in the eastern Pacific over the268

20th century (Figure S8), and also exhibit a systematically lower threshold SST at which deep269

convection is initiated (Figure 5a; Methods). This means that a higher proportion of the tropical270

ocean exceeds the convective threshold in these models (Figure 5c). However, the exceedance271

fraction in wet models is less likely to increase in the future (Figure 5e vs 5d), since SSTs are272

already sufficiently warm in the 20th century for convection to be commonplace. This effect can273

be observed both for wet models as compared with dry models (Figure 5e), as well as within the274

population of wet models (Figure S9).275

The mechanism driving this behavior for the wet models is summarized in Figure 4c,d. Initially276

large central equatorial Pacific cloud shading drives a divergent wind response, as is the case for277

the full population of models. However, because the wet models have warmer eastern Pacific SSTs278

(Figure S8), deep convection can initiate in the eastern portion of the basin. Eastern Pacific deep279

convection will then lead to a larger negative shortwave feedback, creating a direct suppression of280

further warming. As is the case for colder models, this suppression of warming can also create an281

anomalous descent: however, since the surface divergence is now centered farther east, it acts to282
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increase the equatorial trades, and therefore leads to a less El Niño-like warming pattern.283

This framework is also consistent with the SST gradient:SW feedback regression pattern in284

Figure 3f. For the wet models, El Niño-like warming is enhanced when the eastern Pacific feedback285

is more positive. However, in the very wettest models the negative feedback is enhanced (Figure286

S9), therefore resulting in a less El Niño-like SST gradient trend. Likewise, the wettest models also287

have a less negative feedback in the far western Pacific, again tending to oppose El Niño-like future288

changes.289

6 Implications for Constraining Future Projections290

The concept of ‘emergent constraints’ based on historical observations which can be used to predict291

the reliability of future projections has recently been applied in various contexts, including equi-292

librium climate sensitivity, global-mean temperature, and runoff (31–33). The strong relationship293

between historical convective precipitation and ΔΔ suggests that this framing may also be useful294

here. Motivated by Figure 2, we relate ΔΔ to the historical mean precipitation in the central Pacific295

(5◦S-5◦N, 150◦E-150◦W; Figure 6a). This region is chosen since it coincides with the large cor-296

relation between ΔΔ and historical precipitation in Figure 2d. The fits in Figure 6 are performed297

using a spline polynomial, since the sign of the relationship reverses for historical precipitation298

values greater than roughly 4.5 mm/day. This results in improved estimates of explained variance299

relative to a simple linear regression (not pictured). The fitted relationship is highly statistically300

significant, and the observations lie within the spread of the models. However, both the GPCP and301

CMAP estimates are on the high end of the simulated values, suggesting that many models tend to302

underestimate historical precipitation in this region (see also Figure S10). This is also consistent303

with the known cold-tongue bias in coupled models, which suppresses deep convection in the304

central equatorial Pacific (5).305

The fact that the observational estimates of precipitation coincide with the reversal of the306

precipitation:ΔΔ relationship in Figure 6 is notable. This study cannot determine the precise reasons307

for this correspondence, which is left for future work. However, we note that a threshold of 5 mm/day308

for equatorial Pacific precipitation has been previously shown to be appropriate for identifying large-309

scale convective reorganization (9,34,35). This provides a physical explanation for the existence of310
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the inflection point in Figure 6, and suggests that such a relationship may truly exist in nature.311

Since observations by necessity contain only a single realization, a more fair model/observational312

comparison uses individual ensemble member estimates. This is shown in Figure 6b: the scatter313

is of course larger, but the historical-future relationship remains statistically significant and the314

explained variance is nearly identical (not pictured). The distinct downward tendency in the rela-315

tionship at higher precipitation values is clearly apparent, although we note that this is dominated by316

simulations using MIROC6 and MIROC-ES2L (Figure 6b). Nonetheless, the statistical significance317

of this relationship implies that it may be useful as a true emergent constraint on model projections.318

We have applied this constraint in Figure 6c, by selecting all ensemble members where the mean319

precipitation over 1979-2024 falls between the estimates from GPCP and CMAP; the distribution of320

ΔΔ values in these members are then plotted. The peak of the distribution lies roughly at a gradient321

change value of 0.2◦C/degree C global warming, which should be expected to be the ‘true’ change322

if this relationship holds in nature.323

7 Discussion and Conclusions324

The effect of future climate change on the east-west gradient in equatorial Pacific SST (ΔSST) is325

of fundamental importance for improving projections of weather extremes and ecosystem impacts,326

yet physical differences among models and internally generated climate variability has made it327

difficult to determine why models project such different futures. Here we have leveraged the power328

of combining many Large Ensembles to gain insight into the mechanisms underlying inter-model329

spread in ΔSST. This is an analysis which was not possible to perform even a few years ago -330

it is only through the combination of many Large Ensembles with differing model physics that331

one can robustly examine changes in the forced response. The results demonstrate the presence of332

coherent patterns in atmospheric conditions associated with inter-model SST gradient sensitivity333

(ΔΔ; the change in the east-west equatorial SST temperature difference, normalized to global-mean334

temperature change), which also strongly resemble the dominant modes of inter-model temperature335

spread diagnosed via EOF analysis. This implies thatΔΔ is a robust feature of inter-model circulation336

differences.337

A crucial aspect of our results is the ability to relate ΔΔ and the representation of historical338
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climate. El Nino-like future SST gradient reductions are preferentially associated with larger histor-339

ical precipitation in the central equatorial Pacific, and smaller precipitation over the Indian Ocean.340

Enhanced land surface warming is also associated with high ΔΔ - warming appears across the341

majority of the Northern Hemisphere land area, particularly over Eurasia.342

The historical representation of equatorial deep convection seems to drive the emergent behav-343

ior of the SST gradient, through modifying the strength of equatorial shortwave:SST feedbacks.344

Central Pacific feedbacks generally dominate: in models where the location of deep convection is345

shifted farther east and/or the magnitude of convection is stronger near the dateline, the negative346

feedback between SSTA and net shortwave flux is larger. This will tend to suppress greenhouse347

gas-induced warming, leading to a relative cool anomaly near the dateline. The associated anomaly348

in atmospheric convection is toward vertical descent and surface wind divergence, a Gill-type re-349

sponse to a relative lack of tropical convection (30). In the eastern part of the basin, the net effect350

is a weakening of the equatorial trade winds and an eastward migration of SST anomalies: in other351

words, these models are primed to favor more El Nino-like future changes.352

The above mechanism is modified in models for which the central equatorial Pacific precipitation353

≥ 4.5 mm/day (the ‘wet’ models). In these models, stronger historical precipitation leads to a less354

El Niño-like pattern. This relates to the initial very strong negative shortwave feedback, which355

extends across much of the Pacific. As convection shifts into the eastern portion of the basin, the356

negative feedback weakens dramatically in the western Pacific and strengthens in the east. The357

result is a tendency for the trade winds to increase slightly relative to other ‘wet’ models, due358

to a combination of direct radiative cooling from increased Eastern Pacific cloud cover and the359

eastward-shifted location of the surface divergent wind response.360

We have used the historical:future climate relationships emerging from the Large Ensembles361

to identify possible observable emergent constraints on ΔΔ. The historical magnitude of central362

equatorial Pacific precipitation shows a highly robust relationship with ΔΔ, with wetter models363

producing more El Niño-like future changes. Crucially, this relationship is present both among364

ensemble-mean and ensemble-member values, and allows for direct comparison with values esti-365

mated from historical observations. However, the relationship is nonlinear - for the wettest models,366

the sign of the relationship reverses due to the changes in feedback structure mentioned above.367

The inflection point in this emergent constraint relationship occurs close to the observed value368
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of historical precipitation, suggesting that whether models under- or overestimate precipitation,369

they tend to be insufficiently El Niño-like in their future SST gradient projections. The majority370

of models underestimate central equatorial Pacific precipitation, and therefore our results would371

predict that they also underestimate El Niño-like warming. For the wet models which overestimate372

precipitation, given the negative sign of the relationship for that parameter space, the emergent373

constraint relation would also indicate that those models should project a more El Niño-like change.374

In other words, future projections “should” be even more El Nino-like. We note some caveats to375

this statement: for instance, recent work has highlighted models’ tendency to simulate overly El376

Nino-like trends compared with observations (11), but the past 40 years are known to be influenced377

by both greenhouse gas and aerosol emissions. Additionally, recent high-resolution simulations378

with the Community Earth System Model (CESM1) show an increased level of agreement with379

observational trends (36). We hypothesize that there may be other processes missing in models,380

which could generate additional errors - a full accounting is beyond the scope of the present study,381

but one example might be small-scale ocean variability (e.g. mesoscale eddies/tropical instability382

waves). The behavior of the mean thermocline may also play a role, but could not be analyzed here383

owing to limitations in data availability.384

These results have important implications for the accuracy of future SST gradient projections.385

Previous work has suggested that models may simulate overly La Nina-like future SST gradient386

changes, due to underestimation of the SW:SSTA feedbacks (7). Our results are consistent with387

this picture: the ‘high-ΔΔ’ models with more El Nino-like gradient changes are also the models388

which agree more closely with precipitation observations. However, we caution that the possibility389

of compensating errors still remains, and that models may be missing additional processes which390

might create more La Nina-like gradient projections if they were corrected. Nonetheless, this391

analysis provides a framework for constructing dynamically-based emergent constraints on future392

tropical Pacific changes - and eventually, possibly a path toward improving the accuracy of future393

projections.394
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Figure 1: Changes in the SST gradient (Δ SST) in the Pacific. a)-d) 30-year running mean time series

of the SST gradient for four different future scenarios: a) SSP5-8.5; b) SSP3-7.0; c) SSP2-4.5; d)

SSP1-2.6. Solid lines indicate ensemble median, and colored shading the ensemble min/max range.

All gradient values are calculated relative to the ensemble average over the 1951-1980 reference

period. e) Epoch-averaged change in the SST gradient, differenced between 2050-2100 and 1950-

2000. f) Same as e), but normalized to each model’s area-weighted global-mean temperature change

between the two averaging periods (ΔΔ values, as described in the main text).
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Figure 2: Large-scale circulation patterns associated with ΔΔ spread across models. a) Correlation

of ensemble-mean gridpoint 21st century - 20th century surface temperature (colors) and sea level

pressure (contours) differences with the ensemble-mean ΔΔ, across the collection of all ensemble

means for each model/scenario combination. b) Correlation of ensemble-mean gridpoint 20th

century surface temperature (colors)/SLP (contours) with ΔΔ. c) Same as a), but correlations are

performed between gridpoint precipitation (colors) or 500 hPa geopotential height (contours) and

ΔΔ. d) Same as b), but correlations are performed between gridpoint precipitation (colors) or

500 hPa geopotential height (contours) and ΔΔ. The time-varying global mean is removed from the

geopotential height maps prior to regression, to better isolate the spatial pattern. All time differences

are calculated between 2050-2099 and 1951-1999, and stippling indicates differences significant at

90% using a Wilcoxon rank-sum test. e) Zonal-mean precipitation averaged over the Indian Ocean

(50-110◦E), for models with high versus low ΔΔ values. f) Same as e), but for precipitation averaged

over the central Pacific (180-220◦E). Black dots in e), f) indicate latitudes where the high and low

sensitivity models differ significantly at the 90% level using a Wilcoxon rank-sum test. Black solid

lines in e), f) show observationally averaged values from the GPCP dataset.
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Figure 3: Cloud shortwave feedback relationships for a), c), e) the set of all ensembles and b), d),

f) the set of all ensembles where central equatorial Pacific historical mean precipitation exceeds

4.5 mm/day. a, b) Multi-model ensemble mean of historical gridpoint regression coefficients for

net shortwave flux regressed onto local SST anomaly (regressions computed individually for each

ensemble member, averaged over the ensemble, then the multi-ensemble average computed). Green

contour indicates the multi-model ensemble mean climatological location of the 28◦C isotherm.

c), d) Differences between the future - historical SW:SSTA regression coefficient (colors) and the

historical values (contours). e, f) Regression of the SW:SSTA regression coefficient in a) onto ΔΔ

(stippling indicates locations where regression is significant at the 90% level). Stippling in a),b)

indicates locations where 2/3 of model/ensemble combinations agree on the sign of the regression

coefficient.

18



Figure 4: Schematic illustrating the proposed mechanism for El Nino-like ΔSST changes in re-

sponse to future warming. a) Colors indicate ensemble mean precipitation differences between

high and low SST ΔΔ models (mm/day) over the 20th century. b) Colors indicate ensemble mean

temperature differences between the future and 20th century, differenced between high and low

ΔΔ models (C). c) Same as a), for differences between sets of wet models: (MIROC6, MIROC-

ES2L) - (CESM2, E3SMv2). d) Same as b), for differences between (MIROC6, MIROC-ES2L)

and (CESM2, E3SMv2).
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Figure 5: Convective threshold behaviors. a) Time series of the SST threshold for deep convection

(tropical precipitation ≥ 2 mm/day), for the ‘dry’ and ‘wet’ subsets of model ensembles. b) Multi-

model ensemble mean convective threshold exceedance fraction, averaged over the 20th century.

c) Difference between convective threshold exceedance fraction, for the wet vs dry models. d)

Difference between the multi-model ensemble mean exceedance fractions, between the future and

20th centurys. e) Difference between the future-historical exceedance fraction differences, between

the wet and dry model subsets.
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Figure 6: A proposed emergent constraint on ΔSST. The ΔΔ value is plotted versus the historical

average of central Pacific precipitation (5◦S-5◦N, 150◦E - 150◦W). Here the 20th century is defined

as 1979-2024 to maximize overlap with observations, and the future period is defined as 2050-2100.

Vertical dashed lines indicate the historical precipitation changes derived from observations: GPCP

(blue) and CMAP (green). Solid lines of best fit are plotted in red, calculated using a third-degree

polynomial spline. Plots along x- and y-axes of a) and b) indicate kernel density estimate (KDE) fits

to the distribution of precipitation (x-axis) and temperature gradient change (y-axis). c) Emergent

constraint applied to ensemble-member estimates. All ensemble members in b) where historical

(1979-2024) precipitation falls between the GPCP and CMAP estimates are selected, then the KDE

for the corresponding ΔΔ over (2050-2100) - (1979-2024) values is constructed.
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