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Abstract: 2023 was the hottest year on record for the globe as a whole, beating the previous 9 

instrumental record by a large margin. 2023 also saw the development of a strong El Niño 10 

with worldwide impacts. This El Niño event was unusual for its combination of strong 11 

oceanic warming but surprisingly muted atmospheric responses, particularly in terms of 12 

the Southern Oscillation and wind anomalies over the tropical Pacific. This discrepancy is 13 

perplexing given the historically close coupling of El Niño (EN) and the Southern 14 

Oscillation (SO). Using an atmospheric general circulation model, we show that both the 15 

extraordinary warming in the Atlantic and Indian Oceans in 2023 and the slow background 16 

sea surface temperature trend reduced surface wind response over the tropical Pacific by 17 

modulating the Walker circulation. A novel hindcast system we developed captures 87% 18 

of June-December averaged El Niño warming even without wind stress feedback after 19 

April 2023, primarily driven by the strong buildup of western Pacific heat content during 20 

the preceding prolonged La Niña.  This explains that the 2023-24 El Niño was highly 21 

predictable at long-time leads. These findings challenge traditional ENSO paradigms, 22 

revealing that strong El Niño events can arise from oceanic processes alone, independent 23 

of the classic positive Bjerknes feedback mechanism. Climate model simulations suggest 24 

that such 2023-like El Niño may become more frequent in a warming climate. 25 

A prolonged three-year La Niña took place during 2020-20231-4, building up record-26 

breaking ocean heat content (OHC) in the tropical western Pacific (Extended Data Fig. 1f). 27 

This La Niña decayed around March 2023, followed by an extreme coastal El Niño off 28 

Peru during March-May (Extended Data Fig. 1a)5. From June onward, intense sea surface 29 

temperature (SST) warming was observed in the eastern equatorial Pacific Ocean (Figs. 1a 30 

and 2c; Extended Data Fig. 1), indicating the onset of a basin-scale El Niño. The SST 31 

warming signals then propagated westward from the eastern Pacific, with two warming 32 

centers6,7 (Fig. 2c). The eastern Pacific SST anomaly (SSTA) peaked during November-33 

December, with the Niño3 index exceeding +2°C, and then rapidly declined after 34 

December 2023, returning to normal levels around April 2024 (Fig. 2c). The average June-35 

January (1) (“1” refers to the year following the peak El Niño) SSTA was +1.88°C, making 36 

the 2023-24 El Niño comparable in magnitude to the strong El Niños of 1982-83, 1997-98, 37 

and 2015-16 (Figs. 1a-1b;1e-1f). The central-eastern Pacific warming during this event was 38 
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dominated by interannual variability, and the contribution from long-term SST trends was 39 

weak (Extended Data Fig. 2d). The 2023-24 El Niño caused worldwide environmental and 40 

societal impacts, such as life-threatening marine and terrestrial heatwaves in 20238, record 41 

drought and wildfires in the Amazon during 2023-249, and torrential rains in the 42 

southwestern United States in early 202410. 43 

The El Niño development in 2023 was characterized by weak sea level anomalies 44 

(SLA) across the equatorial Pacific (Fig. 1a-b), in contrast to the pronounced SLA changes 45 

observed for other comparable El Niño events. During April and August, the equatorial 46 

Pacific exhibited consistent positive SLA (or subsurface temperature) anomalies, followed 47 

by the development of a weak zonal dipole pattern during September to December (Fig. 48 

2c). This behavior contrasts with the pronounced zonal dipole patterns typically linked to 49 

a more relaxed slope of the eastward shoaling thermocline seen in other comparable El 50 

Niños (Figs. 2c-2d and 2g-2j). The weak SLA (or subsurface temperature) zonal dipole 51 

pattern of 2023-24 remained evident with the removal of long-term trends. In 2023, the 52 

tropical North Atlantic (0-70°W, equator-30°N) experienced record-breaking SSTAs 53 

exceeding 1.2°C (Extended Data Fig. 2a and 2e)7,11,12. Typically, tropical Atlantic SSTAs 54 

are weak during the development of an El Niño13-15, making the strong concurrent warming 55 

of the eastern Pacific and tropical Atlantic during 2023-24 highly unusual. Pronounced 56 

positive SSTAs were also observed in the tropical western Indian Ocean (40°E-70°E, 10°S-57 

10°N), reaching a record-breaking value of +1.2°C at the end of 2023 (Extended Data Fig. 58 

2e). Tropical Indo-Atlantic warming is known to be unfavorable for El Niño 59 

development13,16-20. During August-November 2023, an extraordinarily strong Indian 60 

Ocean Dipole (IOD) developed, with the dipole mode index reaching ~1.6°C, the 4th 61 

strongest since 1980. Previous studies have shown that intense cooling in the eastern pole 62 

(warming in the western pole) during a positive IOD could induce westerly (or easterly) 63 

wind anomalies over the central Pacific, creating favorable (unfavorable) conditions for El 64 

Niño21-23. 65 

It is widely accepted that El Niño arises through positive air-sea feedback between 66 

surface wind perturbations and SSTAs24. Consequently, stronger Niño 3 warming typically 67 

features significantly larger westerly wind anomalies (or a more negative Southern 68 

Oscillation Index, SOI), with a correlation of 0.82 (-0.82) (Figs. 1e-1f). However, 69 
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atmospheric anomalies during the strong 2023-24 El Niño were mysteriously moderate 70 

(Figs. 1c)12. Specifically, there are sizeable westerly wind, sea level pressure (SLP) and 71 

rainfall anomalies near the equator during June 2023-January 2024, but the amplitude of 72 

these atmospheric anomalies is much smaller than expected from the composite of similar 73 

intensity El Niños (1982-83, 1997-98 and 2015-16) (Figs. 1c-1d and 2a-2b). Figs. 1e-1f 74 

show that indeed, the central western Pacific (CWP) zonal wind anomaly averaged in June 75 

2023-January 2024 was only 27% of the expected value based on linear regressions over 76 

the period 1982-2023. Extended Data Fig. 1g shows that this percentage varies between -77 

14% and 57% depending on the chosen time window. Consistent with the weaker wind 78 

anomalies, the June 2023 to January 2024 averaged SLP difference between the eastern 79 

and western Pacific (or SOI) is only 31% of what is expected from the historical regression 80 

with fluctuations ranging from 13% to 57% depending on the months analyzed (Extended 81 

Data Fig. 1g). The contrast between strong oceanic warming and muted surface wind (or 82 

SO) anomalies indicates that the Bjerknes feedback was not well-established during this 83 

event. Thus, the conventional positive air-sea feedback mechanisms alone cannot explain 84 

the intense ocean warming in the eastern tropical Pacific. Important questions arise 85 

regarding the 2023-24 El Niño: What drove the pronounced warming of the eastern 86 

equatorial Pacific given the central importance of the zonal wind (e.g., Bjerknes) feedback 87 

for El Niño growth?  What kept wind anomalies so moderate given that the SSTAs were so 88 

strong? Here we investigate these questions using global climate models of varied 89 

complexity, including a novel wind-stress prescribed hindcast system. This system allows 90 

us to quantify the impacts of wind stress anomalies on the development of this El Niño. 91 

Our results show that the buildup of OHC anomalies in the western Pacific as part of the 92 

preceding three-year La Niña triggered the 2023-24 El Niño, whereas wind stress 93 

anomalies and Bjerknes feedback played a secondary role in the development of this event. 94 

These results represent a conceptual advance in understanding ENSO dynamics: El Niño 95 

does not necessarily develop through positive air-sea interactions. Even without the 96 

Bjerknes feedback (or the SO component), ocean dynamics alone can generate a strong El 97 

Niño. 98 

Inter-basin impacts 99 
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To investigate the mechanisms moderating the surface wind response during the 2023-100 

24 El Niño, we performed four Atmospheric General Circulation Model (AGCM) 101 

experiments (see Materials and Methods; Extended Data Table 1). Forced by observed 102 

global SSTs, the control run (aCTRL) captures the overall observed atmospheric anomalies 103 

over the tropical Pacific, including the weaker atmospheric responses during the 2023–24 104 

event relative to other comparable El Niños, the easterly anomalies at the beginning of 105 

2023 and the sustained westerly anomalies from June to December (Extended Data Fig. 106 

3a-3b). This underscores the utility of CAM6 in exploring the primary physical 107 

mechanisms behind the weak atmospheric response to the 2023 El Niño event. We noted 108 

some discrepancies between aCTRL and observations, especially during May-July, when 109 

the observed westerly anomalies were more confined to the central Pacific with smaller 110 

magnitudes compared to aCTRL (Extended Data Fig. 3a-3b). Some of these discrepancies 111 

could arise from high-frequency atmospheric noise, such as westerly wind bursts observed 112 

during May-June 20237, which cannot be captured by aCTRL. 113 

In 2023, the North Atlantic and western Indian Oceans experienced record-breaking 114 

warming (Extended Data Fig. 2a and 2e), which could potentially affect atmospheric 115 

anomalies over the tropical Pacific Ocean16-20. To explore this possibility, we conducted 116 

three AGCM experiments forced by (1) Pacific detrended SSTAs (aPac), (2) Indian-117 

Atlantic detrended SSTAs (aIndAtl), and (3) the background SST trends for 1982-2023 118 

(aTrend) (Extended Data Fig. 2a-2c). This approach allowed us to assess the impacts of 119 

Pacific and Indian-Atlantic detrended SSTAs, as well as global SST trends, respectively 120 

(see Materials and Methods). Fig. 3b shows that the westerly wind stress anomalies are 121 

nearly twice as large in aPac as in aCTRL during the El Niño developing phase, indicating 122 

that the Pacific detrended SSTAs alone could drive large surface wind responses in 2023. 123 

Importantly, the aIndAtl results indicate that inter-basin impacts from the Atlantic and 124 

Indian Oceans induce easterly wind stress anomalies (0.16 N/m²) over the central Pacific 125 

(150°W–170°W, 2°S–2°N), with high consistency across model members (Extended Data 126 

Fig. 3c). This leads to a 34% reduction in the surface wind response to El Niño during July–127 

December, broadly consistent with previous studies that strong warming in the tropical 128 

Atlantic and Indian Oceans forces a Matsuno-Gill response25 with an anomalous Walker 129 

circulation sinking branch and easterly surface wind anomalies over the tropical eastern 130 
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Pacific (Fig. 3e)13,16-20,26,27. Recent studies, employing distinct methodologies, have 131 

confirmed the importance of pantropical forcing in reducing atmospheric responses during 132 

this event7,12,28.  133 

The long-term SST trend over 1982-2023 played a comparable role in reducing the 134 

atmospheric response through modulating the Walker circulation (Figs. 3d and 3f). The 135 

SST trend is characterized by relatively large warming in the Indian, Atlantic, and western 136 

Pacific Oceans, but muted warming in the eastern tropical Pacific (Extended Data Fig. 2c). 137 

The strong warming trend in the Indian and Atlantic oceans induces easterly wind 138 

anomalies over the central Pacific through the Matsuno-Gill response20,26. In addition, the 139 

enhanced zonal SST gradient in the Pacific Ocean accelerates the Walker circulation29,30, 140 

resulting in easterly wind anomalies near the dateline with high inter-member consistency 141 

(Extended Data Fig. 3c). From a different perspective, the slower warming trend in the 142 

tropical eastern Pacific compared to the overall tropical mean results in slightly negative 143 

relative SST trends31 (Extended Data Fig. 4a), reducing the sensitivity of convection to 144 

SSTAs31-33 and weakening trade winds and SO responses in this region (see Materials and 145 

Methods; Extended Data Fig. 4b-d).  146 

The 2023-24 El Niño illustrates that ENSO is not a phenomenon confined to the 147 

tropical Pacific basin (Fig. 3) but can be strongly modulated by SST conditions in other 148 

tropical basins including long-term trends induced by radiative forcing. This raises an 149 

important question of whether an El Niño index (e.g. Nino3.4 SST) is a good measure of 150 

global atmospheric anomalies (e.g., the SO). The bottom panels of Fig. 1 show that the 151 

answer is yes for a statistically average/typical ENSO event, but individual events require 152 

a close look as we did here for the 2023-24 El Niño.  153 

Oceanic dynamics 154 

To reveal the key physical mechanism for the strong oceanic warming of the 2023-24 155 

El Niño, we conduct a mixed layer heat budget analysis based on reanalysis data (Materials 156 

and Methods). Extended Data Fig. 5a shows that vertical advection drives the Niño 3 SST 157 

warming during June-December. The vertical advection term is dominated by the 158 

thermocline feedback (−𝑤̅𝑇𝑧
′ , TH) term (Extended Data Fig. 5b). Specifically, large 159 

subsurface warming was observed in the equatorial Pacific during June-December 2023 160 

(Extended Data Fig. 6c-e), which the mean upwelling pumps into the mixed layer, raising 161 
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SST there. Additionally, the reduced upwelling due to the weakened trade winds 162 

contributes to the SST warming through Ekman feedback (−𝑤′𝑇̅𝑧
 , EK) (Extended Data 163 

Fig. 5b). 164 

Oceanic General Circulation Models (OGCMs) have been widely used to simulate 165 

and investigate SST variability34,35. While observed air temperature and specific humidity 166 

are often prescribed in calculating surface heat flux, the implied atmospheric 167 

thermodynamic forcing of the ocean is physically flawed since these quantities can also be 168 

a result of the SSTA and such simulations fail to capture air-sea interactions at the 169 

interface36,37. Thus, the results of such OGCM experiments might be misleading, especially 170 

if SST is the primary focus37. Here, we adopt a novel approach to overcoming this issue by 171 

forcing a Coupled GCM (CGCM) with observed wind stress but otherwise leaving the 172 

model’s ocean-atmosphere coupling intact (see Materials and Methods). We conducted 173 

sensitivity experiments to investigate the detailed physical processes underlying the 2023-174 

24 event (see details in Materials and Methods; Extended Data Table 2). The control run 175 

(CTRL) is a hindcast forced by observed daily wind stress. Fig. 4a shows that the CTRL 176 

run successfully reproduces the observed El Niño/La Niña events, with a high correlation 177 

of 0.90 between the simulated and observed Niño 3 SST variability. The standard error is 178 

0.14oC, a remarkable achievement enabled by realistic thermodynamic coupling in our 179 

“wind-stress overriding” CTRL simulation. Extended Data Fig. 6 further shows that the 180 

simulated SSTA, SLA, and equatorial subsurface temperature anomalies for the 2023-24 181 

El Niño agree with observations remarkably well. The good model-observation agreement 182 

gives us confidence in using this powerful protocol to uncover the key factors for the 2023-183 

24 El Niño.   184 

Restarting from the initial condition obtained from the CTRL run on 1 April 2023, the 185 

InitApr2023 run prescribes observed wind stress but excludes the 31-day running-mean 186 

wind stress anomalies from that date onward (see details in Materials and Methods). High-187 

frequency signals within 31-day are retained to minimize model bias38, but whether these 188 

high-frequency signals are included or not turns out not to affect the conclusions of our 189 

study (see Materials and Methods; Extended Data Fig. 7). The solutions thus isolate the 190 

impacts of the initial conditions on the 2023-24 strong El Niño. The difference, CTRL-191 

InitApr2023 (termed Wind2023), represents the influence of subsequent wind stress 192 
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anomalies.  Fig. 4b shows that the initial conditions on 1 April 2023 play a dominant role 193 

in the 2023-24 El Niño event, accounting for 87% of the Niño 3 SST increase averaged in 194 

June-December. In contrast, concurrent wind stress anomalies—typically considered 195 

crucial for El Niño development—contribute only 13% of the SST warming, with their 196 

influence primarily confined to the end of the year, consistent with the emergence of 197 

westerly wind anomalies during that period (Fig. 2a). For comparison, we conducted 198 

similar experiments (InitAprOther) initialized on April 1 for the three other comparable El 199 

Niños of 1982-83, 1997-98, and 2015-16 (see Materials and Methods). Fig. 4c shows that 200 

wind stress anomalies (WindOther) contribute nearly all of the Niño 3 SST warming after 201 

August. This result aligns with widely accepted ENSO theory24,39, and stands in stark 202 

contrast to the results for the 2023-24 El Niño. 203 

The initial condition for the 2023-24 El Niño is characterized by extraordinarily large 204 

positive OHC anomalies (or equivalently SLAs) in the western Pacific (Fig. 4d) from 20˚N 205 

to 30˚S. Indeed, the upper 300-m OHC anomaly in the western Pacific at the beginning of 206 

2023 reached its highest value (2.43×1022J) since 1982 (Extended Data Fig. 1f). These 207 

large positive OHC anomalies primarily originated from the preceding triple-dip La Niña: 208 

Note that positive SLAs persisted in the western Pacific since June 2020 (Extended Data 209 

Figs. 8a-8b and 8d-8f). The intensified trade winds (Extended Data Fig. 8c) during 2020-210 

2022 contributed to the buildup of OHC in the western Pacific Ocean (WPAC) through 211 

Ekman convergence and downwelling Rossby waves. The strongly tilted thermocline in 212 

the east-west direction was balanced by the enhanced easterly trade winds. During March-213 

April 2023, the equatorial trade winds returned to normal as the La Niña decayed (as 214 

mimicked by InitApr2023) (Extended Data Fig. 8c and 8h), disrupting the balance between 215 

the zonal thermocline gradient and the trade winds and causing the accumulated warm 216 

water (or SLAs) in the western Pacific to propagate eastward along the equator as 217 

downwelling Kelvin waves (Fig. 4f; Extended Data Fig. 8g-8i; left panels of Extended Data 218 

Fig. 9). In the eastern Pacific, SST increased as the mean upwelling transported the 219 

subsurface warming into the mixed layer (Extended Data Fig. 10a-10d), consistent with 220 

the heat budget results shown above (Extended Data Fig. 5b).  221 

In comparison, a major El Niño is typically preceded by a deepened thermocline in 222 

the central equatorial Pacific (Figs. 2f and 4e) in a process known as the “thermocline 223 
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recharge” 40,41. The InitAprOther experiment shows that without the wind stress feedback, 224 

the recharged thermocline depth anomalies disperse quickly (Fig. 4g; right panels of 225 

Extended Data Fig. 9) and the equatorial Pacific Ocean returns to normal in three months 226 

at and below the surface (Extended Data Fig. 10e-h). In these comparable El Niño events, 227 

the westerly wind anomalies predominantly drive the sustained eastern Pacific warming as 228 

part of a marked east-west dipole in subsurface temperature along the mean thermocline as 229 

required by the zonal momentum balance (Figs. 4i and 4k). In contrast to this tilt mode of 230 

the thermocline depth adjustment to the westerly wind anomalies, the subsurface anomalies 231 

are positive across the equatorial Pacific during much of 2023 (Figs. 2g and 4j), 232 

characteristic of Kelvin waves that deepen the thermocline. The buildup of OHC in the 233 

western Pacific prior to April 2023 that slowly fed the deepened thermocline in the 234 

equatorial Pacific (Figs. 4d and 4f) is an interesting topic for further research but beyond 235 

the scope of the present study.  236 

The slow ocean dynamic adjustments imply that the 2023-24 El Niño can be predicted 237 

at long leads, as OHC carries memory and serves as the major source of predictability28,42. 238 

Indeed, recent studies noted skillful predictions of the 2023-24 event28,42-45, but the 239 

underlying physical processes and the unique air-sea characteristics of this El Niño have 240 

not previously been fully explored through diagnostic analysis and insightful model 241 

experiments as done here. Extended Data Fig. 11 presents the forecasts in the North 242 

American Multi-Model Ensemble (NMME). With large OHC stored in the western Pacific 243 

following the three-year La Niña, most models predicted the El Niño at the beginning of 244 

2023. When initialized on 1 April 2023, the predicted Niño 3.4 (Niño 3) SSTA for 245 

December 2023 was 1.64°C (1.73°C), closely matching observations (Extended Data Fig. 246 

11). 247 

Summary and discussion 248 

Statistical analysis of historical events has led to important advances in understanding 249 

the coupled dynamics of El Niño and its flavors46-50. Our observational analysis has shown 250 

that the 2023-24 El Niño was peculiar: the atmospheric responses to the strong equatorial 251 

Pacific SSTA were weak compared to those inferred from historical events. This suggests 252 

that the Bjerknes feedback was not fully established to promote the growth of this strong 253 

El Niño, a surprising result against widely accepted ENSO theory that centers on this 254 
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coupled feedback mechanism24,51. Through novel GCM experiments, our research 255 

uncovers major deviations from the current paradigm in ENSO dynamics: we show that 256 

even in the absence of tropical air-sea feedbacks (or the SO component), ocean dynamics 257 

alone can generate a strong El Niño. 258 

Our AGCM results reveal that strong tropical inter-basin impacts played a vital role 259 

in reducing the atmospheric anomalies over the tropical Pacific Ocean during 2023. 260 

Specifically, both the record-breaking warmth of the tropical Atlantic and western Indian 261 

Oceans in 2023 and the tropical long-term SST trends induced anomalous Walker-262 

circulation subsidence and easterly surface-wind anomalies over the central and eastern 263 

Pacific. These influences moderated the tropical atmospheric perturbations associated with 264 

the developing El Niño, preventing the full establishment of the Bjerknes feedback during 265 

this event. Our results indicate that inter-basin impacts and long-term SST trends were 266 

important for the evolution of the 2023-24 El Niño. Without the influence of these pre-267 

existing strong warming in the tropical Atlantic and Indian Oceans, the 2023-24 El Niño 268 

would have been amplified considerably, aided by the Bjerknes feedback.  269 

We have developed a novel ocean hindcast system by forcing the ocean component 270 

in a CGCM with observed wind stress, which enables us to uncover the key physical 271 

processes underlying the strong oceanic warming despite weak Bjerknes feedback during 272 

this El Niño. Our experiments using this hindcast system show that the unprecedented 273 

buildup of OHC (SLA) in the tropical western Pacific Ocean following a long-lasting La 274 

Nina drives SST warming in the eastern equatorial Pacific through downwelling Kelvin 275 

waves. As the trade winds returned to their climatological values with the decaying La 276 

Niña, downwelling Kelvin waves induced large subsurface warming in the eastern 277 

equatorial Pacific Ocean and raised SST through thermocline feedback. Wind stress 278 

anomalies, which have been widely considered essential in El Niño dynamics, played a 279 

secondary role in the development of the 2023-24 event. With weak wind anomalies during 280 

April-October 2023, the equatorial thermocline deepened across the Pacific basin, in 281 

contrast with typical El Niños in which the westerly wind anomalies drive an east-west 282 

dipole that deepens the thermocline in the east and shoals it in the west. Due to the memory 283 

of large OHC anomalies in WPAC, the 2023-24 El Niño seems highly predictable at long 284 

lead times42,43. The NMME consistently predicted a Niño3.4 warming of ~1oC as early as 285 
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January-March 2023 (Extended Data Fig. 11), across the so-called spring predictability 286 

barrier52,53.  287 

We have evaluated possible changes in the occurrences of El Niño like the 2023-24 288 

event in a warming climate using the latest Community Earth System Model version 2 289 

(CESM2). In the 99-member large ensemble (CESM-LENS2), the occurrences of 2023-290 

like  El Niño increase markedly from the present to a future warmer climate (Extended 291 

Data Fig. 12e; see details in Materials and Methods), due largely to more frequent strong 292 

positive SLA events in the WPAC region, with a significant inter-member correlation of 293 

0.63 (Extended Data Fig. 12f). Extended Data Fig. 12g indicates that in WPAC, the sea 294 

level response to wind stress increases by ~19% in a warmer climate, driving more frequent 295 

strong positive SLA events. To test this hypothesis, we conducted a pair of CESM 296 

experiments with identical wind stress but different CO2 concentrations (details in 297 

Materials and Methods). Extended Data Fig. 12h confirms that compared to the present-298 

day climate, the same wind stress variability in a future warmer climate induces stronger 299 

WPAC SLA responses, making the western Pacific region more prone to strong positive 300 

SLA events, thereby increasing the likelihood of 2023-like El Niños. This increased SLA 301 

response to wind stress in a warmer climate may be due to various factors, such as weaker 302 

wave damping due to faster phase speeds resulting from enhanced vertical stratification54 303 

or the nonlinear thermal expansion of seawater55. Further research is required to better 304 

understand the underlying physical processes. 305 

Methods 306 

Observational datasets and large-ensemble simulation.  307 

We used the monthly NOAA Optimum Interpolation Sea Surface Temperature version 308 

2 dataset (OISSTv2) during 1982-202456 and the Global Precipitation Climatology Project 309 

(GPCP) during 1979–202457. The ocean temperature, mixed layer depth, currents, and 310 

monthly sea level spanning 1980–2024 are obtained from the NCEP Global Ocean Data 311 

Assimilation System (GODAS). The daily and monthly surface wind, total rainfall, and 312 

air-sea fluxes during 1940-2024 are derived from the ERA5 reanalysis data58. All the 313 

anomalies in this study are defined relative to the 1982-2022 climatological value. 314 

We analyze outputs from the 99-member CESM-LENS2 to investigate projected 315 

changes in the frequency of 2023-like El Niños. Each member differs slightly from others 316 
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in the initial air temperature field and is driven by historical greenhouse gas and aerosol 317 

forcings from 1850 to 2014, followed by the Shared Socioeconomic Pathway 7.0 (SSP3-318 

7.0) emissions scenario from 2015 to 2100. To investigate future ENSO changes, we 319 

filtered out low-frequency signals with periods longer than ten years for all variables used. 320 

We define 2023-like events as those with a WPAC SLA greater than 4.5 cm in JFM and a 321 

Niño 3 SSTA above 0.5°C in November-January (1) (NDJ). Extended Data Fig. 12a-b 322 

shows that El Niño events defined this way share similar characteristics with the 2023-24 323 

event, including large western Pacific SLAs during the onset stage, eastward (westward) 324 

propagation of SLAs (SSTAs) together with weak equatorial zonal wind stress anomalies 325 

during the developing phase. Additionally, the simulated other non-2023-like El Niños 326 

(other El Niños excluding 2023-like events) are characterized by weak SLAs in the central 327 

Pacific during the onset and strong east-west tilted SLAs with intense westerly wind 328 

anomalies during the developing and peak phases, resembling the observed El Niños of 329 

1982-83, 1997-98, and 2015-16 (Extended Data Fig. 12c-d). We track the occurrences of 330 

the 2023-like events during 1900-1990 and 2000-2090 to represent the present and future 331 

climates, respectively. 332 

AGCM Experiments.  333 

We use the Community Atmosphere Model version 6 (CAM6) to explore the 334 

mechanism underlying the muted atmospheric response to the 2023-24 El Niño. The model 335 

resolution is 0.9° latitude×1.25° longitude (“f09_f09”) with 32 sigma levels in the 336 

vertical. We performed four experiments, each comprising 10 ensemble members with 337 

slightly different initial conditions. In the aCTRL run, we force CAM6 with observed 338 

monthly OISST from January 1982 to December 2023. The aCTRL is radiatively forced 339 

by historical forcing until 2014 and then subsequently by the Coupled Model 340 

Intercomparison Project phase 6 (CMIP6)  Shared Socio-economic Pathway 3-7.0 (SSP370) 341 

scenario59.   342 

Restarting from the initial state from aCTRL on January 2023, we performed two 343 

sensitivity experiments forced with the detrended 2023 SSTAs (Extended Data Fig. 2b; 344 

Extended Data Table 1) regionally in the Pacific Ocean (aPac; with 5° linear tapering zones 345 

outside this region) and the Indian-Atlantic Ocean (aIndAtl) while employing 346 

climatological SST during 1982-2022 in other regions.  The solution of aPac (aIndAtl) thus 347 
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isolates the atmospheric response to Pacific (Indian-Atlantic) Ocean regional SSTAs in 348 

2023. Additionally, a third sensitivity experiment, aTrend, was conducted by forcing the 349 

model with the global long-term trend component of SSTAs in 2023 (Extended Data Fig. 350 

2c) to assess atmospheric responses to SST trends. The slower warming trend in the tropical 351 

eastern Pacific, compared to the overall tropical mean, results in a slightly negative relative 352 

SST trend in that region31. Because of the weak horizontal temperature gradient in the 353 

tropical troposphere, relative SST is a good measure of local atmospheric instability31-33, 354 

exploring the impacts of Pacific relative SST in 2023-24 could offer valuable insights into 355 

the physical processes underlying the weak atmospheric response. We thus ran an 356 

additional experiment (aPac_RSST), forcing the AGCM with relative SSTAs in the Pacific, 357 

while using climatological SSTs in other areas. Extended Data Fig. 4b-4d shows that 358 

atmospheric responses in aPac_RSST are weaker compared to aPac. Indeed, a negative 359 

relative SST trend indicates that the same level of warming in the eastern Pacific in 2023 360 

triggers weaker convective anomalies compared to the 1982–2022 mean state, thereby 361 

reducing trade wind and SO responses. 362 

Mechanisms for long-term trends and interannual anomalies of SST are distinct, the 363 

former due to radiative forcing and/or multidecadal variability while the latter due to 364 

coupled modes organized in ocean basins (e.g., ENSO and IOD). This justifies our AGCM 365 

experiments that isolate interannual SST anomalies of the Pacific from those of the Indo-366 

Atlantic basins (Fig. 3). It is important to note that the SST trends are to first order spatially 367 

uniform from the Atlantic to the western Pacific (Extended Data Fig. 2c), consistent with 368 

greenhouse radiative forcing. The artificial division of SST trends into geographical ocean 369 

basins introduces spurious gradients, resulting in spurious wind responses that mutually 370 

offset each other over the western Pacific. We thus did not perform additional sensitivity 371 

experiments with basin-specific SST trends. 372 

Wind stress prescribed CGCM experiments.   373 

We used the Geophysical Fluid Dynamics Laboratory coupled model version 2.160 to 374 

reveal the detailed physical processes underlying the strong oceanic warming for the 2023-375 

24 El Niño. The ocean component is based on the Modular Ocean Model code (MOM4). 376 

The ocean model resolution is 1° in latitude and longitude, with a finer meridional 377 

resolution of 1/3° near the equator. There are 50 vertical levels, with layer thickness 378 
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gradually increasing from 10 m near the surface to about 366 m in the deep ocean.   The 379 

atmosphere and land components are referred to as AM2.1 and LM2.1, with a horizontal 380 

resolution of 2° latitude × 2.5° longitude; the atmospheric model has 24 levels in the 381 

vertical. The model is forced by the historical radiative forcing of CMIP5 for 1941-2005 382 

and Representative Concentration Pathway 4.5 (RCP4.5) thereafter.  In the CTRL run, we 383 

prescribe the total surface wind stress over the ocean using observed daily wind stress from 384 

ERA5. The model is otherwise fully interactive between the ocean and atmosphere.  The 385 

CTRL run is integrated forward in time from 1 January 1941 to 31 December 2023, and 386 

the last 42 years (1982-2023) are considered in the analysis presented here. The output of 387 

CTRL is compared with observations to evaluate the model’s performance.  388 

To isolate the effects of initial conditions and wind stress anomalies on the 2023-24 389 

El Niño, we conducted a sensitivity experiment named InitApr2023 (Extended Data Table 390 

2). This experiment was initialized from the CTRL hindcast on April 1, 2023, but with the 391 

31-day running-mean wind stress anomalies removed from that date onward. The high-392 

frequency signals within 31-day were retained to reduce model bias38. InitApr2023 was 393 

integrated for nine months, to December 31, 2023, thereby isolating the impact of initial 394 

conditions on April 1, 2023. Notably, April 1, 2023, was chosen as the initialization date 395 

because it coincides with the transition period of when the triple-dip La Niña had just 396 

dissipated and the 2023-24 El Niño was about to develop. The difference between the 397 

CTRL and InitApr2023 solutions (Wind2023) represents the effects of wind stress 398 

anomalies during the El Niño event. Similarly, we conducted sensitivity experiments for 399 

three comparable El Niños, initialized on April 1 in the years 1982, 1997, and 2015. The 400 

composite of these experiments, referred to as InitAprOther (WindOther), indicates the 401 

impacts of initial conditions (wind stress anomalies) on other comparable El Niños. Each 402 

of these experiments was performed with three ensemble members. We limited the number 403 

of ensemble members to three because the inter-member differences in the tropical regions 404 

were found to be quite small for such wind stress-prescribed CGCM experiments. Given 405 

that high-frequency wind stress anomalies within the 31-day were retained in both 406 

InitApr2023 and InitAprOther, which could potentially influence our conclusions, we 407 

designed two additional experiments: InitApr2023_noHighfreq and 408 

InitAprOther_noHighfreq. These experiments are identical to InitApr2023 and 409 
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InitAprOther, respectively, but exclude the high-frequency wind stress anomalies within 410 

31 days after April 1. Extended Data Fig. 7 shows that the Niño 3 and equatorial SSTAs in 411 

the InitApr2023_noHighfreq and InitAprOther_noHighfreq experiments are nearly 412 

identical to those in the original experiments, suggesting that the high-frequency wind 413 

stress anomalies have minimal impact on our main results. 414 

We emphasize that this wind stress prescribed methodology provides a powerful tool 415 

for us to exactly attribute the key dynamic process underlying the 2023-24 El Niño or other 416 

tropical climate variability. While other studies have mechanically decoupled the ocean 417 

from the atmosphere by overriding wind stress in CGCMs with a simulated field61-63, very 418 

few studies have directly used observed wind stress to drive a CGCM and then investigate 419 

the dynamic processes of observed climate variability (e.g., El Niño). The successful 420 

application of this method to study the 2023-24 El Niño indicates that this is a powerful 421 

tool for quantitatively attributing tropical climate variability and may serve as a better 422 

alternative to widely used OGCM experiments. 423 

In addition, we performed two sets of experiments with CESM1.2.2 to evaluate the 424 

global warming effect on WPAC sea level variability. The control run, CTRLCESM, is a 425 

preindustrial simulation with greenhouse gas concentrations and other forcings set to 1850 426 

levels. In this run, surface wind stress is prescribed based on values from a free-running 427 

preindustrial simulation48. The WarmingCESM run is similar to CTRLCESM, except that the 428 

CO2 concentration is quadrupled abruptly. It should be noted that in both experiments, the 429 

prescribed surface wind stress is identical; the only difference is the CO2 concentration. 430 

The difference between WarmingCESM and CTRLCESM could thus be used to investigate 431 

how global warming affects the sea level response to wind stress variability. Each 432 

experiment runs for 75 years, and the outputs from the last 50 years are analyzed in our 433 

study. 434 

Ocean mixed layer heat budget.  435 

Here we employ a mixed layer heat budget5,64 based on GODAS reanalysis data to 436 

investigate the detailed physical processes underlying the 2023-24 El Niño. 437 
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𝑇𝑡
′ = −(u𝑇𝑥)′ − (v𝑇𝑦)′ − (w𝑇𝑧)′ + (

𝑄𝑛𝑒𝑡−𝑄𝑝𝑒𝑛 

𝜌𝑐𝑃𝐻
)′ + 𝑅,                                    (1)  438 

where 𝑇𝑡
′  indicates the temperature tendency averaged over the monthly climatological 439 

mixed layer depth (H). The first three terms on the right-hand side indicate zonal, 440 

meridional, and vertical advection terms, respectively. u, v, and T indicate the mixed layer 441 

averaged zonal current, meridional current, and ocean temperature. w is the vertical 442 

velocity at the bottom of the mixed layer. The fourth term represents the impacts of thermal 443 

forcing.  Qnet is the net heat flux at the ocean surface, which includes shortwave radiation, 444 

longwave radiation, latent heat flux, and sensible heat flux. A positive value of Qnet 445 

indicates heat flux into the ocean. Qpen is the solar radiation penetration at the bottom of 446 

the mixed layer depth. ρ and Cp are the density and specific heat capacity of seawater, 447 

respectively; R is the residual term. The vertical advection term [−(𝐰𝑻𝒛)′] could be 448 

further decomposed into the thermocline feedback (−𝒘̅𝑻𝒛
′ , TH), the Ekman feedback 449 

(−𝒘′𝑻̅𝒛
 , EK), and the nonlinear term (−𝒘′𝑻𝒛

′ ). Here the overbar and prime denote the 450 

climatological and anomalous components, respectively.  451 

Data availability 452 
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 634 
Fig. 1 | Climate states for the 2023-24 El Niño. June-January (1) observed SSTA (℃, 635 

color shading) and SLA (contours with an interval of 0.04 m; positive black and negative 636 

grey) for (a) the 2023/24 El Niño and (b) the other comparable El Niño composite. (c)-(d) 637 

Same as (a)-(b) except for the mean Sea Level Pressure (MSLP; color shading) and 10-m 638 

wind anomalies (m/s, vectors). Scatter plot for June-January (1) (the numeral 1 refers to 639 

the second year of El Niño) Niño 3 averaged SSTAs (℃) versus concurrent (e) Central-640 

Western Pacific (CWP; 140˚E–160˚W, 5˚S–5˚N) 10-m zonal wind anomalies and (f) SOI. 641 

The dot size represents the amplitude of Niño 3 SSTAs.  642 
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 643 
Fig. 2 | Evolution of the 2023-24 El Niño and the composite El Niño based on 644 

comparable events (1982-83, 1997-98 and 2015-16). Hovmöller diagram of equatorial (a) 645 

zonal wind stress (color shading; N/m2) and rainfall anomalies (contours with an interval 646 

of 1.5 mm/day; positive black and negative grey; amplitude smaller than 3 mm/day omitted) 647 

and (c) SLA (m, color shading) and SSTA (℃, contours with an interval of 0.5 ℃; positive 648 

black and negative gray) for the 2023-24 El Niño. The (e) January-March (JFM), (g) April-649 

October, and (i) November-January (1) (NDJ) averaged equatorial ocean temperature 650 

anomalies (℃, color shading) for the 2023-24 El Niño. The black (grey) line represents the 651 

2023 (climatological) 20 ℃ isotherm. The right panels are similar to the left panels but for 652 

the El Niño composite based on comparable events. All anomalies are meridionally 653 

averaged over 2˚S–2˚N. 654 
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 655 
Fig. 3 | Atmospheric response from the AGCM experiments. Hovmöller diagram of 656 

equatorial zonal wind stress anomalies (color shading; N/m2) from (a) aCTRL, (b) aPac, 657 

(c) aIndAtl, and (d) aTrend runs (see Materials and Methods).  The associated June-658 

December averaged vertical velocity (Pa/s, color shading; a positive value indicates 659 

ascending motions) and Walker circulation changes (vectors, m/s; the vertical velocity is 660 

magnified by a factor of 200 for visualization purposes) from (e) aIndAtl and (f) aTrend. 661 
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 662 
Fig. 4 | The impacts of ocean initial conditions and wind stress anomalies on the 2023-663 

24 El Niño and the other three comparable El Niños. (a) Simulated (CTRL) and 664 

observed (Obs) Niño 3 SSTA (℃) during January1982-December 2023.  (b) Simulated 665 

Niño 3 SSTAs from the CTRL, InitApr2023, and their difference (Wind2023). (d) 666 

Horizontal distribution of SLA (m, color shading) and SSTA (℃, contours) averaged in 667 

JFM 2023 from the CTRL run, which generally represents the initial conditions for 668 

InitApr2023. Hovmöller diagram of equatorial SLA (m, color shading) and SSTA (contours) 669 

from the (f) InitApr2023 and (h) Wind2023 experiment. Contours are shown at 0.5°C 670 

intervals, with positive black and negative gray. (e), (g), and (i) are similar to (d), (f), and 671 

(h) but for the composite of the other comparable El Niños (see Materials and Methods). 672 

Longitude-depth diagram of April-December equatorial ocean temperature anomalies (℃, 673 

color shading) from (j) InitApr2023 and (k) WindOther, respectively.  674 


