
Generated using the official AMS LATEX template v6.1

Unforced interannual to decadal variability of global radiation imbalance:1

Role of low clouds2

Ayumu Miyamoto,a Shang-Ping Xie,a , and Clara Deserb
3

a Scripps Institution of Oceanography, University of California San Diego, La Jolla, California,

USA

4

5

b National Center for Atmospheric Research, Boulder, Colorado, USA6

Corresponding author: Ayumu Miyamoto, aymiyamoto@ucsd.edu7

1

Ayumu Miyamoto
Revision submitted to Journal of Climate on October 19, 2025



ABSTRACT: The global radiation imbalance at the top of the atmosphere (TOA) is an important

indicator of the climate response to anthropogenic greenhouse forcing. Natural variability perturbs

this radiation imbalance on interannual and decadal timescales, confounding the externally forced

signal. However, limited observations hinder the effort to understand the mechanisms for internally

generated radiation imbalance. This study investigates the natural variability of global TOA

radiation using a 500-year preindustrial coupled simulation with the Community Earth System

Model version 2, and a corresponding atmospheric model simulation forced with daily sea surface

temperature (SST) and sea ice from the coupled run. Variations in global TOA radiation lead

those in tropical Pacific SST and global-mean surface temperature by 90◦ in phase. The analysis

reveals the dominant role of low-cloud radiative effects with timescale-dependent spatial patterns.

On interannual timescales, low cloud anomalies are distributed across tropical and extratropical

oceans, with maxima over the equatorial northeast Pacific. In contrast, decadal variability of global

TOA radiation is due to variations of eastern subtropical low cloud decks, coupled with underlying

SST anomalies. These low cloud-SST co-variations are triggered by stochastic extratropical

atmospheric variability. This timescale dependence likely reflects the characteristics of these

drivers: the amplitude of El Niño-Southern Oscillation peaks at interannual timescales due to

tropical ocean dynamics, whereas extratropical stochastic forcing becomes increasingly important

on decadal and longer timescales. Recent satellite observations of TOA radiation corroborate both

mechanisms. This study underscores the importance of subtropical low cloud-SST co-variations

induced by extratropical atmospheric forcing in unforced variability of global energy imbalance.
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1. Introduction28

The Earth’s energy budget is a fundamental physical property of the climate system, and governs29

the rise in global-mean surface temperature due to greenhouse gas forcing. The climate system30

responds to radiative forcing (𝐹) at the top of the atmosphere (TOA) by modifying longwave31

emission and incoming solar radiation via changes in surface temperature. This global-mean32

energy budget may be cast as33

𝑁 = 𝐹 +𝜆𝑇 (1)

where 𝑁 is the net radiation (hereafter expressed as GMTOA; positive value for downward flux)34

and 𝜆 the climate feedback parameter which characterizes radiative feedback from perturbation35

of global-mean surface temperature (GMST) 𝑇 (Gregory et al. 2004). Reducing uncertainty in36

projections of global warming is a pressing task for the climate research community. Radiative37

feedback estimates from historical changes (𝑁−𝐹)/𝑇 have been extensively investigated to improve38

our understanding of and constraints on future warming (Sherwood et al. 2020).39

In this context, decadal changes in GMTOA garner considerable attention. Satellite observations40

from Clouds and the Earth’s Radiant Energy System (CERES) have yielded a continuous record of41

GMTOA for more than two decades (Loeb et al. 2024). The data record features a striking positive42

trend in planetary energy uptake, exceeding that simulated by global climate models (Raghuraman43

et al 2021; Olonscheck and Rugenstein 2023). GMTOA and associated radiative feedbacks in44

the historical period are often estimated using atmospheric general circulation models (AGCMs)45

forced with observed sea surface temperature (SST) and sea ice, i.e., the AMIP (Atmospheric46

Model Intercomparison Project) protocol. The model simulations revealed substantial decadal47

variations in radiative feedbacks (Gregory and Andrews 2016; Andrews et al. 2018).48

In addition to anthropogenic radiative forcing (e.g., CO2, aerosols), natural variability needs to49

be considered in the historical variations of GMTOA (Dessler et al. 2018; Wills et al. 2021). For50

natural variability, the relationship between GMTOA and GMST is complex and distinct from the51

forced response. Their concurrent correlation is nearly zero, and the peak correlation occurs with52

GMTOA leading by 90◦, such that planetary heat uptake acts to raise GMST (Xie et al. 2016). The53

peak lagged correlation is modest on decadal timescales, implying the GMTOA variations only54

loosely related to GMST.55
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This raises an important question: what causes natural decadal GMTOA variations? In quadrature56

with each other (Xie et al. 2016), GMST is unlikely the major driver for GMTOA in natural57

variability. Instead, we hypothesize that subtropical low clouds play an important role in the58

GMTOA variations. While tropical Pacific SST changes modulate subtropical low clouds through59

deep convective adjustment (Zhou et al. 2016), extratropical atmospheric variability and resultant60

eastern subtropical SST anomalies can locally drive the low cloud variations (Larson et al. 2024;61

Miyamoto and Xie 2025). Previous studies highlighted the tropical Pacific SST effect in relation to62

radiatively forced warming patterns—known as the pattern effect (e.g., Senior and Mitchell 2000;63

Dong et al. 2020; Andrews et al. 2022), but the subtropical SST effect has not been extensively64

examined.65

The present study investigates unforced interannual to decadal variability of GMTOA based on66

a 500-year simulation under constant preindustrial radiative forcing with a state-of-the-art global67

climate model, Community Earth System Model version 2 (CESM2; Danabasoglu et al. 2020),68

and a corresponding “perfect-model” AMIP simulation forced with daily SST and sea ice from the69

coupled run. Unlike previous studies that examined GMTOA variations associated with GMST or70

selected SST modes (e.g., Xie et al. 2016; Wills et al. 2021), this study focuses on GMTOA itself71

without making any a priori assumptions about a relationship with SST modes. Our GMTOA-72

centric analysis reveals the regions and radiative components (cloud and clear-sky contributions)73

that are crucial in unforced GMTOA variability. The perfect AMIP run is utilized to disentangle74

stochastic atmospheric forcing and SST effects on the GMTOA variations. A comparison of75

interannual and decadal GMTOA variations aids the interpretation of the short CERES record.76

The rest of the paper is organized as follows. Section 2 describes the data used in this study.77

Sections 3 and 4 document the natural GMTOA variability in CESM2 on interannual and decadal78

timescales, respectively. Section 5 compares with the recent CERES observations and discusses79

the timescale dependence. Section 6 concludes the paper with a summary of the key findings.80

2. Data81

a. Preindustrial simulations82

We use a 500-year fully coupled CESM2 simulation with constant 1850-level radiative forcing83

(Danabasoglu et al. 2020; hereafter labeled CESM). Its atmosphere and ocean resolutions are84
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nominally 1◦ in the horizontal with increasing meridional ocean resolution toward the equator.85

CESM2 simulates natural variability such as El Niño-Southern Oscillation (ENSO) and tropical86

Pacific decadal variability (TPDV) (Danabasoglu et al. 2020; Capotondi et al. 2020). The model87

also reproduces subtropical low clouds off the west coasts of continents (Fig. 1) and their positive88

feedback with underlying SST (Kang et al. 2023; Larson et al. 2024; Miyamoto and Xie 2025).89

In parallel with the coupled run, a single-member AMIP simulation with identical boundary90

conditions (hereafter labeled CAM) was conducted by the CESM2 Climate Variability and Change91

Working Group (CVCWG). In this setup, the atmospheric component of CESM2, the Community92

Atmosphere Model version 6 (CAM6), is forced with daily SST and sea ice from CESM. This93

perfect-model/SST framework allows for a direct comparison with CESM (in a statistical sense94

owing to the limited ensemble size). If CAM fails to reproduce an anomaly of cloud, temperature,95

and wind in CESM, the anomaly can be attributed to stochastic atmospheric variability.96

b. Observational data97

For observational datasets, we use the Optimum Interpolation Sea Surface Temperature (OISST)98

version 2 (Huang et al. 2021) for SST, the CERES Energy Balanced and Filled edition 4.2 (Loeb99

et al. 2018) for radiative fluxes, the Moderate Resolution Imaging Spectroradiometer (MODIS)100

onboard Terra collection 6.1 (Platnick et al. 2003) for cloud cover, and the ERA5 global atmospheric101

reanalysis (Hersbach et al. 2020) for other meteorological variables. The horizontal resolution of102

the datasets is 0.25◦ for OISST and 1◦ for the others. For the MODIS low cloud cover, the random103

overlap assumption is applied to suppress the shielding effect of high clouds, as in Miyamoto and104

Xie (2025).105

c. AMIP simulations with observed SST106

In parallel with the CERES observations, we analyze two versions of AMIP simulations pre-107

scribed with observed SST and sea ice; one conducted by CVCWG uses CAM6 and the other108

uses the Geophysical Fluid Dynamics Laboratory Atmospheric Model version 4 (AM4; Zhao et al.109

2018). Hereafter, we refer to them as CAMobs and AMobs, respectively. The resolution of AM4 is110

approximately 100 km with 33 levels in the vertical. CAMobs covers the period 1880-2021, while111

AM4obs covers 1982-2021. Both models are radiatively forced by historical forcing up to 2014112
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and Shared Socioeconomic Pathway scenarios (SSP3-7.0 for CAMobs and SSP2-4.5 for AMobs)113

from the Coupled Model Intercomparison Project phase 6 (Eyring et al. 2016). CAMobs uses the114

monthly-mean SST and sea ice from Extended Reconstructed SST version 5 (Huang et al. 2017)115

and OISST version 2, respectively, whereas AMobs uses daily-mean OISST version 2 for both116

SST and sea ice. Both models have 10 ensemble members each, and their ensemble averages are117

analyzed.118

d. Preprocessing119

All data are interpolated onto a 2.5◦ grid, linearly detrended, and smoothed with a 12-month120

running mean. To decompose the anomalies into interannual and decadal components, a Lanczos121

filter with a cutoff period of 10 years was applied to the 500-year CESM and CAM simulations.122

For the decadal components, only calendar-year (January-to-December) 12-month averages are123

analyzed. The observational data and AMIP simulations are analyzed over the period from 2001124

to 2021. The Lanczos time filtering was not applied because of the short observational record.125

e. Statistical test126

We assess the statistical significance of correlation and regression coefficients using a Student’s127

𝑡-test. To estimate the effective sample size, we calculate effective decorrelation time 𝑇𝑒 following128

Metz (1991):129

𝑇𝑒 = 1+2
𝐿∑︁

𝜏=1

(
1− 𝜏

𝐿

)
𝑅𝑋𝑋 (𝜏)𝑅𝑌𝑌 (𝜏). (2)

𝑅𝑋𝑋 (𝜏) and 𝑅𝑌𝑌 (𝜏) denote autocorrelation functions of variables X and Y at a lag of 𝜏months/years.130

𝐿 is set to 120 months for interannual anomalies and 50 years for decadal anomalies. The effective131

sample size 𝑁𝑒 is then given by132

𝑁𝑒 =
𝑁𝑡

𝑇𝑒
(3)

where 𝑁𝑡 is the number of samples.133
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3. Interannual variation136

a. Lead-lag relationship137

The correlation analysis indicates that GMTOA and GMST are in quadrature for both interannual138

and decadal variability in CESM (Fig. 2, top two rows). The rise of GMST at a peak radiative139

energy input is consistent with unforced variations in observations and other climate models (Xie et140

al. 2016; Lutsko and Takahashi 2018; Proistosescu et al. 2018). The GMTOA is highly correlated141

with the global net surface heat flux (Fig. S1), with the ocean absorbing 82% and 92% of the142

radiative energy input at lag 0 for interannual and decadal variability, respectively. The lagged143

relationship with GMST contrasts with forced climate change where radiative feedback is assumed144

to be proportional to GMST as in Eq. (1).145

For interannual variability, the GMTOA is dominated by and closely tracks cloud radiative effect146

(CRE; Fig. 2h), while the upward clear-sky flux is nearly in phase with GMST (Fig. 2i). At the147

GMTOA peak, CRE, particularly its shortwave component, accounts for approximately 75%, with148

a secondary contribution from longwave clear-sky flux (Table 1). The weak concurrent anomalies149

in GMST and clear-sky fluxes suggest that natural GMTOA variability is not primarily driven by150

longwave damping on temperature variability (the Planck response or lapse rate feedback). This151

study therefore focuses on the cloud processes that create GMTOA anomalies under weak GMST152

anomalies.153

Coupled ocean-atmosphere variability and atmospheric stochastic forcing can dictate unforced154

GMTOA variability (Xie et al. 2016; Lutsko and Takahashi 2018; Proistosescu et al. 2018). Red155

lines in Figs. 2f-i indicate lag correlation of GMTOA between CESM and CAM, which assesses156

the SST effect on GMTOA and its lagged relationship in CESM. The autocorrelation of GMTOA157

in CESM is captured by CAM without significant lead-lag asymmetry (Fig. 2f). Reflecting the158

ability of CAM to capture the evolution of both CRE and clear-sky flux (Figs. 2h,i), the interannual159

correlation of GMTOA at lag 0 amounts to 0.71. Noting that single-member CAM has stochastic160

atmospheric noise unlike the ensemble-mean, this indicates that the ocean effect explains at least161

half of the CESM GMTOA variations. The strong ocean effect under weak GMST anomalies162

indicates the importance of SST pattern.163
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Table 1. Global-mean TOA radiative flux (W m−2) regressed onto GMTOA from CESM decadal, interannual,

and CERES anomalies (left to right). In CESM decadal anomalies, values in parentheses indicate a +1-year

lagged anomaly. SW and LW signify shortwave and longwave components, respectively. CLR denotes clear-sky

flux. Boldface indicates statistical significance at the 90% confidence level.

168

169

170

171

CESM decadal CESM interannual CERES

GMTOA 0.12 (0.11) 0.40 0.26

Net CRE 0.09 (0.11) 0.29 0.19

SW CRE 0.09 (0.11) 0.26 0.16

LW CRE 0.00 (0.00) 0.04 0.02

Net CLR 0.02 (0.00) 0.11 0.07

SW CLR 0.00 (0.01) 0.03 −0.02

LW CLR 0.02 (−0.01) 0.08 0.09

b. Spatial pattern172

Figure 3 shows the time evolution of interannual radiation and surface temperature anomalies173

regressed onto GMTOA in CESM. At the GMTOA peak, positive net TOA anomalies are distributed174

across the tropics and part of the extratropical oceans (Fig. 3c). The strongest signal appears in the175

equatorial eastern Pacific with a secondary maximum in the Southeast Pacific. Over the Pacific,176

SST anomalies at lag 0 do not resemble any well-known SST modes of variability (Fig. 3d), but177

the lead-lag regression implies the effect of ENSO. In particular, the GMTOA peak is preceded178

by a La Niña signature (Fig. 3b) and followed by an El Niño pattern (Fig. 3f), consistent with179

previous studies (e.g., Lutsko and Takahashi 2018; Wills et al. 2021; Tsuchida et al. 2023). This180

link with the ENSO transition is confirmed by the high correlation (∼ 0.7) between GMTOA and181

Niño-3.4 SST (5◦S-5◦N, 170◦W-120◦W) at lag ±9 months (Fig. 2j). At these lags, GMST is near182

its peak (Fig. 2g) consistent with the ENSO pacemaker effect on GMST (Kosaka and Xie 2013),183

while GMTOA is almost zero (Fig. 2f) due to offsetting anomalies over the Pacific and Indian184

Ocean (Figs. 3a,e).185

c. Mechanism191

The dominance of shortwave CRE in the GMTOA variations implies that low-level clouds play192

a crucial role through their albedo effect (Klein and Hartmann 1993). Figure 4 shows anomalies193

in low cloud cover and environmental controlling factors associated with interannual GMTOA194
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variations in CESM and CAM. Negative anomalies in low cloud cover are distributed across the195

tropical and extratropical oceans, leading to the increased shortwave energy uptake (Fig. 4a). This196

low-cloud decrease explains the TOA radiation changes well, with a pattern correlation of -0.83197

between low cloud cover and net TOA radiation.198

The decrease in low clouds across the tropics is accompanied by the weakening of lower tropo-199

spheric stability measured by Estimated Inversion Strength (EIS; Wood and Bretherton 2006) (Fig.200

4c). This is partly due to zonally uniform tropical tropospheric cooling (Fig. 4g), a mechanism201

often invoked in previous literature on pattern effect (Zhou et al. 2016; Fueglistaler 2019; Ceppi202

and Fueglistaler 2021). The pan-tropical tropospheric temperature follows the moist adiabat set203

by SST in tropical ascent regions (Sobel et al. 2001). Consistently, negative SST anomalies are204

distributed in the tropical Indo-Pacific and western Atlantic (Fig. 4i), which persist after a La Niña205

(Figs. 3b,d,f,h; Enfield and Mayer 1997; Xie et al. 2009). As measured by the SST# index (the206

temperature of the warmest 30% minus the tropical average SST; Fueglistaler 2019), concurrent207

SST anomalies over the tropical ascent regions are positively correlated with interannual GMTOA208

variations (𝑟 = 0.52; Fig. S2). Additionally, the pan-tropical cooling may induce a subsidiary209

positive effect on GMTOA through a reduction in clear-sky outgoing longwave emission (Fig. S3;210

Andrews and Webb 2018; Ceppi and Fueglistaler 2021).211

We emphasize, however, that the spatial pattern of low cloud and EIS anomalies does not align212

with a simple picture of the free-tropospheric warming effect on the eastern subtropical low cloud213

decks (e.g., Zhou et al. 2016). For instance, there are weak increases in low clouds off the214

Californian coast and strong decreases over the western-to-central extratropical Pacific (Fig. 4a).215

This discrepancy is attributed to SST anomalies and resultant local stability changes (Figs. 4c,i).216

The North Pacific SST anomalies are likely due to the lingering effect of the Aleutian low weakening217

caused by the preceding La Niña (Fig. 3b; Alexander et al. 2002; Yang et al. 2023).218

The TOA radiation anomalies also peak over the equatorial eastern Pacific, accounting for 23%219

of GMTOA (black box in Figs. 3c and 5b; 5% of Earth’s surface). As shown in the magnified220

figure, the low cloud decrease peaks not along the equator but slightly to its north (Fig. 5b).221

Climatologically, the northward flow toward the intertropical convergence zone crosses a sharp222

SST gradient on the northern flank of the equatorial cold tongue, promoting stratus and shallow223

cumulus clouds there (Fig. 5a; Deser and Wallace 1990; Small et al. 2005). Consistent with this224
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climatological-mean state, the changes of equatorial low clouds are attendant with the emergence225

of warmer cold tongue (Fig. 5e) in the developing El Niño (Fig. 3). This leads to anomalous226

warm-air advection to the north of the equator, which corresponds well with the decrease in low227

clouds (Fig. 5d). Thus, developing El Niño plays a crucial role, in addition to decaying La Niña228

discussed in the previous paragraphs. Similar SST and radiation patterns appear in the regression229

analysis against Niño-3.4 SST (Fig. S4).230

In Fig. 4, corresponding anomalies in CAM are juxtaposed with the CESM results to examine the231

SST effect. CAM well reproduces the CESM pattern of low cloud anomalies despite its complexity232

(Fig. 4b). Combined with prescribed SST and simulated tropospheric temperature (Fig. 4h), CAM233

accurately captures the EIS anomalies (Fig. 4d). The anomalous warm advection due to warm SST234

anomalies in the eastern equatorial Pacific is also reproduced (Fig. 4f). These results corroborate235

the effect of ENSO-related SST anomalies on low clouds and therefore GMTOA.236
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4. Decadal variation244

This section investigates the decadal GMTOA variability in CESM and contrasts it with the245

interannual counterpart. The lead-lag relationships on decadal timescales shown in Fig. 2a-d246

resemble those on interannual timescales. There is an approximately 90◦ phase-lagged relationship247

with GMST (black lines in Figs. 2a,b; Xie et al. 2016), with a weaker peak correlation compared248

to the interannual correlation. CRE accounts for 75% of the GMTOA peak through shortwave249

heating, compounded by a secondary clear-sky effect (Table 1). The peak in CRE emerges one year250

later (Fig. 2c), explaining nearly all the GMTOA anomaly (Table 1). As shown by the red lines251

in Figs. 2a-d, CAM reasonably captures these features, with a GMTOA correlation coefficient of252

0.61 at lag 0 between CESM and CAM. While stochastic atmospheric variability is nonnegligible,253

this result underpins the quantitative importance of the ocean effect, with the SST pattern playing254

a key role under weak concurrent GMST anomalies.255

a. Spatial pattern256

Figure 6 shows the time evolution of radiation and surface temperature anomalies associated257

with the decadal GMTOA variations. Despite the similar temporal relationships on interannual and258

decadal timescales, there are marked differences in the spatial patterns of radiation. Remarkably,259

peak GMTOA on decadal timescales is associated with marked TOA radiation anomalies in the260

subtropical low-cloud regions (Figs. 6e,f). Strong positive signals occur over the Northeast Pacific261

and Southeast Indian Ocean, with a weaker signal over the South Atlantic. A positive signal in the262

eastern equatorial Pacific is much less dominant than on interannual timescales. The Southeast263

Pacific signal is not prominent at lag 0 but intensifies rapidly at lag +1, reaching a magnitude264

comparable to that in the North Pacific and Indian Ocean (Fig. 6g). These strong positive265

anomalies in the subtropical low cloud regions align with the peak of global-mean CRE (Fig. 2c).266

The corresponding SST anomalies at lag 0 and +1 years are also localized to the eastern subtropical267

oceans (Figs. 6f,h), in contrast to the interannual anomalies. Such timescale dependence implies268

marked differences in the physical processes.269

It is noteworthy that the TPDV-like equatorial Pacific SST pattern transitions from a negative to270

a positive phase across lag 0 (Figs. 6b,j), although the maximum correlation between GMTOA271

and Niño-3.4 SST drops to 0.4 (Fig. 2e). At lag ±3 year when the TPDV-like SST signals are272
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maximized, strong radiation changes over the Pacific tend to cancel out (Figs. 6a,i), as in the273

peak phase of ENSO (Figs. 6a,e). This spatial compensation in TOA radiation associated with274

decadal fluctuations seems somewhat at odds with previous work claiming the equatorial Pacific275

warming pattern on global radiation (Zhou et al. 2016; Andrews and Webb 2018). This difference276

may reflect distinct global energy budgets governing natural variability and forced response. For277

example, unforced SST fluctuations in the warm pool region, which efficiently induce GMTOA278

anomalies (Zhou et al. 2017), tend to be small. Indeed, decadal GMTOA variations show a very279

weak concurrent correlation with the SST# index, in contrast to the interannual variations (Fig.280

S2).281

b. Mechanism282

Figure 7 shows anomalies in low cloud cover and environmental factors associated with decadal283

GMTOA variations in CESM and CAM. Here, lag +1-year fields are discussed to capture the rapid284

emergence of the Southeast Pacific signal and associated peak in global-mean CRE. Otherwise,285

the low-cloud signal is qualitatively the same as the lag-0 fields (Fig. S5). With a high spatial286

correlation of 0.88, the net radiation anomalies at lag +1 are well explained by anomalous low287

cloud decrease maximized over over the Northeast Pacific, Southeast Pacific, and South Indian288

Ocean (Fig. 7a). The low cloud decrease is collocated with weakening of EIS (Fig. 7c). Although289

free-tropospheric cooling associated with decaying TPDV contributes to the low cloud decrease at290

lags−1 and 0 (Figs. S5,6), this signal is not obvious at lag 1 (Fig. 7g). Local SST warming strongly291

controls the decadal decrease of EIS and thus low clouds as positive low cloud-SST feedback (Fig.292

7i). The low cloud-SST feedback through EIS corroborates CAM’s reproducibility of the low293

cloud changes in CESM (Figs. 7b,d) and consequently GMTOA changes. The weakly opposing294

signal in the tropical Northeast Atlantic may be due to the lack of a pronounced low cloud deck295

there (Fig. 1). Similar to yet less dominant than the interannual variations, the decadal decrease in296

equatorial Pacific low clouds corresponds to the emergence of warm-phase TPDV (Figs. 7a,i).297

The positive SST anomalies over the eastern subtropical oceans are concurrently associated with298

poleward wind anomalies extending westward and equatorward (Fig. 7i). These weakened trade299

wind anomalies induce warm-air advection (Fig. 7e), suppressing turbulent heat loss from the300

ocean that, together with radiative heating due to the low cloud decrease, raises the SST (Table301
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2). The equatorward extension of these SST anomalies accompanied by anomalous trade winds302

resembles the meridional modes (Chiang and Vimont 2004; Zhang et al. 2014) generated through303

wind-evaporation-SST (WES) feedback (Xie and Philander 1994). Modeling studies demonstrated304

that subtropical low cloud-SST feedback energizes the meridional mode-like variability as joint305

low cloud-WES feedback (Evan et al. 2013; Bellomo et al. 2014; Miyamoto et al. 2021; Kim et306

al. 2022; Miyamoto et al. 2023).307

The comparison of the wind anomalies between CESM and CAM reveals the origin of the low308

cloud and meridional mode-like variability. In CESM, the poleward wind anomalies responsible309

for the elevated SSTs are embedded with extratropical circulation anomalies (Fig. 7i). While CAM310

partly captures the weakening of trade winds in WES feedback, it underestimates or even fails to311

simulate these extratropical circulations, except for the modest anomalies over the South Atlantic312

(Fig. 7j). Additionally, the underestimation of warm-air advection, which acts to decrease low313

cloud cover directly (Klein et al. 1995; Miyamoto et al. 2018), may contribute to the slightly314

underestimated low cloud anomalies in CAM (Figs. 7b,f). In the North Atlantic, the opposite315

stochastic wind forcing generates the Atlantic meridional mode, which could decrease low clouds316

over the South Atlantic (Tanimoto and Xie 2002) and Northeast Pacific (Miyamoto and Xie 2025).317

These results indicate that extratropical stochastic atmospheric forcing triggers the subtropical low-318

cloud and meridional mode-like variability, thereby driving the GMTOA anomalies. This radiation319

variability can be considered part of random radiative forcing for a simple stochastic model of the320

global energy budget (Proistosescu et al. 2018).321

In summary, decadal TOA radiation changes are dominated by subtropical low cloud decks, with-322

out prominent concurrent SST anomalies in the deep tropics. Extratropical stochastic variability323

makes a pronounced contribution to generating subtropical SST and low cloud anomalies. These324

SST anomalies, in turn, enable the AMIP to capture changes in GMTOA through low cloud-SST325

feedback. The dominance of the subtropical SST effect contrasts sharply with the interannual326

GMTOA variations.327
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Table 2. Lag+1-year area-average surface heat fluxes (Qnet=LHa+LHo+SH+SW+LW) regressed onto decadal

GMTOA variability in CESM. Unit is W m−2 (positive values for downward flux). The averaging domains are

shown in Fig. 7a. See Appendix for the latent heat flux decomposition.

330

331

332

LHa SH SW+LW Qnet

North Pacific 0.17 0.03 0.41 0.32

South Indian Ocean 0.38 0.04 0.49 0.53

South Pacific 0.39 0.06 0.43 0.5
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5. Discussion333

a. Comparison with CERES observations334

Although short, the CERES observations serve as a valuable testbed to corroborate the findings335

from CESM. Here, we analyze 21-year (2001-2021) detrended anomalies of GMTOA in the CERES336

observations and two AMIP simulations (CAMobs and AMobs). We perform ensemble averaging337

of the AMIP results prior to analysis.338

Despite the weaker lagged correlation with GMST, the observed lead-lag relationship of GMTOA339

and GMST is out-of-phase (Figs. 2k,l), aligned with the CESM result. Around the GMTOA peak,340

CRE dominates the GMTOA anomalies while the clear-sky effect is secondary (Figs. 2m,n and341

Table 1). Although the reproducibility of AMIPs can be degraded by not only stochastic noise342

but also model biases, the two AMIPs reproduce the observed GMTOA and CRE reasonably well343

(Figs. 2k,m), indicative of the SST effect.344

The corresponding patterns of net radiation in the observations and AMIP simulations are shown345

in Figs. 8a-c. Both the observations and AMIPs feature increased incoming radiation over the346

equatorial eastern Pacific and subtropical Southeast Pacific accompanied by decrease in low clouds347

(Figs. 8d-f). Consistent with the emergence of ENSO discussed previously, positive SST anomalies348

appear along the equatorial Pacific (Fig. 8g) in the phase transition from La Niña to El Niño (Fig.349

2o) accompanied by anomalous warm advection (Figs. S7d-f) and decreased EIS (Figs. S7a-c).350

Cooling in tropical tropospheric temperature is somehow inconsistent between observations and351

AMIPs (Figs. S7g-i), and its effect on GMTOA is unclear. The weaker relationship with ENSO in352

observations may reflect the short observational record, inclusion of decadal and forced changes,353

and excessively strong ENSO in CESM (Capotondi et al. 2020). We note that extending the354

CERES observations through 2024 to include the 2023-24 strong El Niño event (Xie et al. 2025;355

Minobe et al. 2025; Peng et al. 2025) leads to a marginal increase in the maximum correlation356

between GMTOA and Niño-3.4 SST, from 0.4 to 0.5.357

Positive TOA radiation anomalies over the subtropical Southeast Pacific correspond to a local358

rise in SST (Fig. 8g), suggestive of low cloud-SST feedback that is responsible for the AMIP repro-359

ducibility. The low cloud-SST co-variations are triggered by anomalous northwesterlies associated360

with extratropical cyclonic circulations (Fig. 8g). The AMIP simulations fail to reproduce the361
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circulation pattern (Figs. 8h,i), indicating the predominance of stochastic atmospheric variability.362

Similar stochastically forced low cloud-SST feedback is found in the CESM interannual variations,363

where local maxima in net radiation and low cloud decrease over the Southeast Pacific (Figs. 3c364

and 4a) are accompanied by anomalous northwesterlies that are underestimated in CAM (Figs.365

4i,j).366

In summary, the CERES observations provide support for the contribution of ENSO and sub-367

tropical low cloud-SST feedback to GMTOA variations identified in CESM. A longer record is368

necessary to enhance the signal-to-noise ratio and isolate the decadal variability.369
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b. Origin of timescale dependence374

This study highlights two drivers of GMTOA variations via low cloud changes: ENSO and375

extratropical atmospheric variability. In CESM, the former dominates on interannual timescales376

whereas the latter dominates on decadal timescales. It is not surprising that ENSO, the strongest377

natural mode of variability, plays a major role in GMTOA fluctuations. ENSO is essentially an378

interannual oscillation arising from redistribution of tropical ocean heat content (Jin 1997), with379

a period of 2-8 years in both observations and CESM2 (Capotondi et al. 2020). Meanwhile,380

SST variations driven by extratropical atmospheric forcing become more important on decadal and381

longer timescales through stochastic reddening (Hasselmann 1976). This diminishes the relative382

importance of equatorial Pacific-forced GMTOA variability on decadal timescales.383

Still, TPDV has statistically significant lagged correlations with GMTOA (Figs. 2e and 6). In384

addition to forcing GMTOA, TPDV may be driven in part by extratropical atmospheric variability.385

Previous studies argued that subtropical Northeast and Southeast Pacific SST anomalies forced386

by atmospheric stochastic variability can modulate TPDV via Pacific meridional modes (Vimont387

2005; Okumura 2013; Di Lorenzo et al. 2015; Sun and Okumura 2019). Indeed, such meridional388

mode-like patterns are found in the Pacific after the GMTOA peak (Figs. 6f,h,j). The induced389

TPDV may help shape the coherent pattern of CRE anomalies of the same sign in subtropical low390

cloud decks through teleconnections. Further studies—say by using partially coupled runs—are391

needed to better understand the cause and effect of low cloud variability, particularly the relative392

contributions of tropical and extratropical forcings.393

6. Conclusion394

This study investigates the natural variability of GMTOA based on a 500-year CESM2 preindus-395

trial simulation and a corresponding perfect-model AMIP simulation. We show that the low-cloud396

radiative effect plays a dominant role in the GMTOA variations, with spatial patterns that differ397

markedly between interannual and decadal timescales. This difference reflects the relative influ-398

ence of two distinct drivers: equatorial Pacific variability (e.g., ENSO) on interannual timescales399

and extratropical atmospheric variability on decadal timescales. The CERES observations hint at400

the influence of both drivers on GMTOA.401
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On interannual timescales, low cloud anomalies are distributed across tropical and extratropical402

oceans, with maxima over the equatorial eastern Pacific in the transition phase of ENSO. During403

positive GMTOA anomalies, reduced low cloud cover over the northeastern equatorial Pacific404

arises from anomalous warm advection due to a developing El Niño. Meanwhile, the remaining405

broad decrease in low clouds aligns with weakened stability primarily during the decaying phase406

of La Niña, which leaves an imprint on free-troposphere temperature and SST nonlocally through407

teleconnections. In contrast, decadal GMTOA variability features more localized radiation anoma-408

lies in the eastern subtropical low cloud decks without concurrent SST changes in the deep tropics.409

These cloud anomalies are collocated with underlying SST anomalies, which allow AMIPs to410

reproduce the CRE changes through low cloud-SST feedback. The low cloud-SST co-variations411

are triggered by stochastic wind anomalies associated with extratropical atmospheric variability.412

This timescale dependence likely reflects the nature of these drivers: ENSO peaks on interan-413

nual timescales due to tropical ocean dynamics, while extratropical forcing becomes increasingly414

important on longer timescales. This study for the first time emphasizes the importance of the415

extratropical-forced subtropical low cloud-SST variations on GMTOA.416

This study demonstrates the importance of SST patterns for GMTOA through a perfect model417

framework. In the unforced pattern effect, low cloud anomalies are driven not only by equatorial418

Pacific SST but also by stochastically forced eastern subtropical SST. As ENSO and TPDV can419

also drive the low cloud-SST variations (Yang et al. 2023), it remains challenging to assess their420

relative contributions only by using AMIP simulations forced with regional SST anomalies, e.g.,421

the Green’s function approach (Zhou et al. 2017; Bloch-Johnson et al. 2024). To address this,422

ocean-atmosphere coupled modeling or advanced statistical techniques are likely to be required.423

We find that the spatial pattern of TOA radiation anomalies associated with GMTOA variability424

markedly differs from that associated with GMST variability, which is characterized by pronounced425

signals in the equatorial Pacific and high latitudes (Kosaka and Xie 2013; Xie et al. 2016; Deser426

et al. 2017). This discrepancy implies a redistribution of heat by atmospheric and oceanic427

circulations. The energy input may not only be passively advected but interact with the circulations.428

One plausible mechanism inferred from the decadal variations is that anomalous heat uptake in429

the North and South Pacific may propagate equatorward via the joint low cloud-WES feedback430

(Bellomo et al. 2014; Kim et al. 2022; Miyamoto et al. 2023) and subsurface ocean adjustment431
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(Luongo et al. 2025), potentially modulating TPDV and consequently GMST. The role of coupled432

dynamics in linking global energy imbalance to temperature patterns warrants further investigation.433

CERES data reveal a marked positive trend of GMTOA over the past two decades. The associated434

SST warming is pronounced in the Northeast Pacific, the South Indian Ocean, and the South Atlantic435

(Fig. 4 in Loeb et al. 2024). This pattern bears some resemblance to that of the unforced GMTOA436

variations identified in this study. Given the importance of subtropical low clouds in both forced437

and unforced GMTOA variability, it is essential to carefully attribute the observed changes.438

Although partially supported by the observational datasets, this study is primarily based on a439

single model and subject to model biases, including excessively strong ENSO in CESM2 (discussed440

in Section 5). In addition to the bias in equatorial Pacific variability, Tsuchida et al. (2023)441

suggested that the sensitivity of tropical atmosphere to anomalous equatorial SST also contributes442

to the intermodel spread in GMTOA variations. Moreover, many climate models underestimate443

subtropical low cloud-SST feedback (Kim et al. 2022; Kang et al. 2023), which is, however,444

strong in CESM2 (Kang et al. 2023; Larson et al. 2024; Miyamoto and Xie 2025). As low445

clouds are a critical factor in the uncertainty of climate feedback (Zelinka et al. 2020), natural446

GMTOA variations may be related to the spread of projected warming (Zhou et al. 2015; Lutsko and447

Takahashi 2018). Improvements of these biases promise a unified understanding of natural GMTOA448

variability in a multi-model framework. Together with a better understanding of radiatively forced449

response, this will ultimately help us understand the historical GMTOA variations and constrain450

future projections.451
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APPENDIX467

Decomposition of surface heat flux468

Anomalous surface heat flux can be decomposed into latent heat (LH), sensible heat (SH), shortwave469

(SW), and longwave (LW) components. LH is a mixture of atmosphere-driven and SST-damping470

components. Following Xie et al. (2010), the SST damping term may be cast as471

LH′
o = LH

(
1
𝑞𝑠

d𝑞𝑠
d𝑇𝑎

)
SST′ (A1)

where 𝑇𝑎 and 𝑞𝑠 are air temperature and saturation specific humidity following the Clausius-472

Clapeyron equation, respectively. Overbar and prime denote monthly climatology and anomaly,473

respectively. The residual of anomalous latent heat flux represents the atmosphere-driven compo-474

nent (LH′
a) related to anomalous atmospheric conditions,475

LH′
a = LH′−LH′

o. (A2)
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