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Key Points:21

• Standard Linear Inverse Models (LIMs) do not correctly simulate ENSO asym-22

metry and diversity compared with observations23

• We propose a modification to standard LIMs, which realistically replicates the ob-24

served ENSO asymmetry and diversity25

• This Non-Gaussian LIM (NG-LIM) generates diverse ENSO events, building a syn-26

thetic library to supplement limited observational data.27
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Abstract28

Linear Inverse Models (LIMs) are widely used data-driven tools for studying El Niño29

Southern Oscillation (ENSO). However, standard LIMs struggle to simulate the observed30

asymmetry and diversity of ENSO events. Observations reveal that strong Central Pa-31

cific La Niñas and extreme Eastern Pacific El Niños occur more frequently than their32

counterparts, a feature standard LIMs fail to capture. We introduce a modified model,33

the Non-Gaussian LIM (NG-LIM), which effectively simulates key aspects of ENSO asym-34

metry and diversity. Specifically, the NG-LIM reproduces the spatial pattern of sea sur-35

face temperature (SST) skewness and the inverted U-shaped relationship between the36

first two principal components of Tropical Pacific SST anomalies. By examining NG-LIM37

simulations, we find that, as observed, El Niños exhibit stronger anomalies and evolve38

more rapidly than La Niñas. The improved NG-LIM also generates a broad library of39

synthetic events, which can supplement the limited observational record.40

Plain Language Summary41

El Niño and La Niña are dominant patterns of climate variability that can have42

wide-reaching impacts on weather and ecosystems worldwide. Scientists often use math-43

ematical models to study these events, including Linear Inverse Models (LIMs), which44

analyze past data to make predictions. However, standard LIMs struggle to capture cer-45

tain asymmetric features of El Niño and La Niña events, like their uneven strength and46

their spatial footprint. For instance, intense El Niños tend to develop quickly and de-47

cay rapidly, while La Niñas often linger longer but are not as extreme. In this study, we48

introduce a modified model, the Non-Gaussian LIM (NG-LIM), which better represents49

these asymmetries between El Niño and La Niña. This modified model generates a broader50

range of synthetic events, providing a valuable tool for understanding these climate pat-51

terns.52

1 Introduction53

El Niño-Southern Oscillation (ENSO) is the dominant mode of climate variabil-54

ity on interannual timescales, influencing global weather patterns and impacting ecosys-55

tems, agriculture, and economies across the world (McPhaden et al., 2006; Naylor et al.,56

2007; Anderson et al., 2017; Liu et al., 2023). ENSO events manifest primarily as anoma-57

lies in sea surface temperatures (SST) in the central and eastern tropical Pacific, which58

lead to widespread changes in atmospheric circulation, affecting regions far beyond the59

equatorial Pacific (Ashok & Saji, 2007; Taschetto & England, 2009; Deser et al., 2017;60

Garreaud et al., 2020). A key characteristic of ENSO is its diversity; events can vary greatly61

in strength, duration, and spatial patterns (Ashok et al., 2007; Karnauskas, 2013; Capo-62

tondi et al., 2015; Thomas et al., 2018; Timmermann et al., 2018; Capotondi et al., 2020;63

Thual & Dewitte, 2023). This ultimately occurs due to the presence of deterministic (e.g.,64

nonlinear oceanic advection, wind stress, thermocline feedback; (Liang et al., 2012; Choi65

et al., 2013; DiNezio & Deser, 2014; Kim & An, 2020)) and/or stochastic (e.g., westerly66

wind bursts noise forcing that depends on the state of the ocean; (Levine et al., 2016;67

Thual et al., 2016; N. Chen & Majda, 2017; Martinez-Villalobos et al., 2019)) ocean-atmosphere68

feedbacks that operate asymmetrically between warm and cold states. El Niño events69

are typically classified as Eastern Pacific (EP) events, which include strong events, and70

Central Pacific (CP) events, which are typically weaker and exhibit the largest anoma-71

lies in the central equatorial Pacific (Kao & Yu, 2009; Takahashi et al., 2011; Vimont et72

al., 2014; Dewitte & Takahashi, 2019). Furthermore, ENSO exhibits asymmetries, no-73

tably El Niño events tend to be stronger and shorter-lived than La Niña events (Okumura74

& Deser, 2010; Ohba & Watanabe, 2012; Martinez-Villalobos et al., 2019; Jin et al., 2020),75

leading to varied global impacts and teleconnections (Wallace et al., 1998; Alexander et76

al., 2002; McPhaden et al., 2006).77
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The main characterization of ENSO diversity and asymmetry between El Niño and78

La Niña has been established using an observational record that is relatively limited (Wittenberg,79

2009), with only approximately 30 warm/cold total events over the last century (Okumura80

& Deser, 2010). This limited dataset constrains our ability to understand the full range81

of variability and the underlying mechanisms of ENSO, especially how the characteris-82

tics of ENSO diversity and asymmetry can vary across timescales (Lee et al., 2021; Plan-83

ton et al., 2024). For example, do decadal or centennial changes in ENSO characteris-84

tics necessarily imply changes in ENSO’s underlying dynamics? The observed record is85

too short to be able to address that question with confidence.86

One effective approach to address the gaps in our knowledge of the statistical prop-87

erties of ENSO from the limited observational record is the use of inverse models. Among88

these, Linear Inverse Models (LIMs; (Penland & Sardeshmukh, 1995)) are the most widely89

utilized. LIMs have been employed for various purposes, including identification of pat-90

terns that “optimally” grow into ENSO events (Penland & Sardeshmukh, 1995; Vimont91

et al., 2014, 2022; Capotondi & Sardeshmukh, 2015; Lou et al., 2021), assessing ENSO92

predictability (Penland & Magorian, 1993; Flügel et al., 2004; Newman & Sardeshmukh,93

2017), and understanding ENSO’s underlying dynamics (Penland & Sardeshmukh, 1995;94

Newman, Alexander, & Scott, 2011), in particular, ENSO-associated stochastic forcing95

(Penland, 1996; Thomas et al., 2018), diversity (Newman, Shin, & Alexander, 2011), asym-96

metry (Martinez-Villalobos et al., 2019) and irregularity (Flügel et al., 2004; Berner et97

al., 2018) (cf. (An et al., 2020)). These models are trained on observed data, allowing98

for the simulation of statistical properties that are consistent with the available dataset.99

While the statistics generated are inherently constrained by the fixed-length observational100

record, which limits the ability to infer past or future changes in dynamics, LIMs can101

effectively produce parallel climatic realizations (or “multiverse” realizations”) (Newman,102

Shin, & Alexander, 2011; Herein et al., 2017; Martinez-Villalobos et al., 2024). Thus, LIMs103

generate robust statistics by creating simulations of events that are consistent with the104

observed dynamics but that have not yet been sampled. These simulated events align105

with some statistical metrics derived from the observed data. However, as we will demon-106

strate (see also (Martinez-Villalobos et al., 2019)), the most commonly used version of107

LIM fail to accurately capture the asymmetry and diversity of ENSO events.108

Here, we propose a straightforward modification to the traditional Linear Inverse109

Model, termed the Non-Gaussian Linear Inverse Model (NG-LIM). This new approach110

enhances the simulation of ENSO asymmetry and diversity, addressing some of the lim-111

itations found in standard LIMs.112

2 Data and Methods113

2.1 Data114

We use monthly sea surface temperature (SST) data from the NOAA Extended Re-115

construction SST v5 reanalysis from 1948 to 2022 (B. Huang et al., 2017). We calculate116

monthly SST anomalies (SSTA) by subtracting the first two Fourier harmonics of the117

monthly SST climatology, and remove a cubic trend at each point.118

2.2 Inverse models119

2.2.1 Standard Linear Inverse Model (LIM)120

In a standard stationary LIM (Penland, 1989; Penland & Sardeshmukh, 1995), we121

approximate the evolution of a vector x representing the state of the tropical Pacific us-122

ing the following expression123
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e.  EP index percentile-percentile plot
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f.  CP index percentile-percentile plot
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Figure 1. Spatial patterns of a Eastern Pacific (EP) and b Central Pacific (CP) events based

on ERSSTv5. These are calculated as the SSTA regression pattern on the EP and CP index

respectively. c (d) EP (CP) index (blue) and Yeo-Johnson transformed EP (CP) index (orange)

monthly time series. e (f) Percentile-percentile plots of EP (CP) (blue) and Yeo-Johnson trans-

formed EP (CP) (orange) index percentiles vs theoretical Gaussian percentiles
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dx

dt
= Mx+Bη. (1)

Here, Mx represents the linear approximation to the deterministic dynamics (hence the124

name “Linear Inverse Model”), B is a noise amplitude matrix and η is a vector of Gaus-125

sian white noise processes. The combination Bη yields stochastic forcing that is white126

in time but spatially coherent.127

We represent the state of the Tropical Pacific by using a combination of the first128

10 standardized principal components of tropical Pacific SSTA in region [20S-20N; 120E-129

50W] (explaining 90% of variance), corresponding to their respective empirical orthog-130

onal functions (EOFs) (See Fig. S1, for the first 2 EOFs spatial patterns). In our case131

x = (EP,CP, PC3, PC4, ..., PC10). Note that the first two components of the state vec-132

tor are given by a rotation of the first 2 PCs yielding representations of Eastern (EP)133

and Central Pacific (CP) events (EP = 1√
2
(PC1 − PC2); CP = 1√

2
(PC1 + PC2))134

(Takahashi et al., 2011) (Fig. 1a,b). We calculate the deterministic operator as in Pen-135

land and Sardeshmukh (1995) using a lag of 1 month and the covariance matrix of stochas-136

tic forcing using the Fluctuation-Dissipation relationship (Penland & Matrosova, 1994)137

(See Text S1). Consistent with previous studies (Penland & Sardeshmukh, 1995; Sardesh-138

mukh & Sura, 2009; Martinez-Villalobos et al., 2019), we find that the statistics gener-139

ated by the standard LIM are Gaussian, and hence unable to reproduce some statisti-140

cal properties of observed ENSO, including the probability of extreme events, even when141

accounting for sampling variability.142

2.2.2 Non-Gaussian Linear Inverse Model (NG-LIM)143

Here, we introduce a simple modification to the LIM that allows a better repre-144

sentation of non-Gaussian features of ENSO, which we refer as the Non-Gaussian LIM145

(NG-LIM). To construct the NG-LIM, we first transform each variable within the state-146

vector to near Gaussianity using the Yeo-Johnson (YJ) power transformation (Yeo & John-147

son, 2000). The hope is that by transforming the state-vector to near Gaussianity, im-148

plicitly the asymmetric feedbacks ultimately responsible for ENSO asymmetry and di-149

versity also become more symmetric in the transformed variables. Unlike the more widely150

used Box-Cox transformation, which is only defined for positive values (Box & Cox, 1964;151

P. Huang et al., 2024), the YJ transformation is well defined for both positive and neg-152

ative values, so it can be applied directly to anomalies. An example of the effect of the153

YJ transformation on positively and negatively skewed data is provided in Figure S2.154

Calling the original variable y and the transformed variable yY J , this transformation is155

defined as156

yY J =



[(y + 1)λ − 1]

λ
, if λ ̸= 0, y ≥ 0

ln(y + 1), if λ = 0, y ≥ 0

− [(−y + 1)2−λ − 1]

2− λ
, if λ ̸= 2, y < 0

− ln(−y + 1), if λ = 2, y < 0.

(2)

The transformation is performed in Python using the PowerTransformer function157

from the scikit-learn Preprocessing package. The exponents λ of the transformation are158

calculated using maximum likelihood estimation, and we estimate uncertainty range (5th-159

95th percentile) by resampling the original 75yrs of data by randomly picking with re-160

placement 5yr segments. The values of the exponents for EP and CP indices are λ =161

0.45 (0.30− 0.64) and λ = 1.39 (1.24− 1.50), respectively.162

As an example, Fig. 1 shows the original and transformed components of the state-163

vector time series (EP and CP indices; Fig. 1c,d) as well as their corresponding percentile-164
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percentile plots (Fig. 1e,f). We observe that the original EP (CP) index time series reaches165

more extreme positive (negative) values compared to their negative (positive) counter-166

parts. The transformed indices, while generally following the original indices, appear more167

symmetrically distributed between positive and negative values (Fig. 1c,d). Moreover,168

a comparison between original and transformed variables percentiles and Gaussian the-169

oretical percentiles (Fig. 1e,f) shows that the transformed indices are closer to being Gaussian-170

distributed. The main difference between a standard LIM and the NG-LIM is that in171

the NG-LIM we construct a LIM using a state vector that has been previously transformed172

to near Gaussianity and then after the calculations are performed we take the inverse173

transformation [y = (λyY J +1)1/λ−1 for yY J ≥ 0 and y = 1− ((λ−2)yY J +1)1/(2−λ)
174

for yY J < 0, for λ ̸= 0 and λ ̸= 2] to better preserve the non-Gaussian aspects of the175

time series.176

As the transformation is univariate, and applied to a multivariate problem, it mat-177

ters which variable the transformation is applied to. We also tried applying the trans-178

formation to PC1 and PC2 directly, instead of EP and CP, with little improvement com-179

pared with the standard LIM (not shown), indicating that EP and CP indices may be180

more appropriate ENSO variables for this purpose. It might be possible that another com-181

bination of PC1 and PC2 may yield better results, although we do not explore that here.182

For our analysis, we generated two 10,000 yr runs (in our case 1yr=360 days), one183

using the standard LIM and another using the NG-LIM (see eqs. 1 and 2), using the Eu-184

ler stochastic integration scheme (Ewald & Penland, 2009) with ∆t = 3days. This yields185

133 epochs of 75yrs (the length of the observed dataset used to calculate both LIMs).186

We use the 5th-and 95th percentiles across these epochs to provide a measure of the spread187

of the simulated statistics.188

3 Results189

We first verify that the standard LIM and the NG-LIM are capable of simulating190

the observed autocorrelation functions and spatial patterns of SST variance and lag-variance.191

Both inverse models provide an accurate simulation of these observed features (Figures192

S3 and S4).193

Having made those basic checks, next we examine how well the NG-LIM can sim-194

ulate the joint probability distribution of the PC1-PC2 indices. In observations, the phase-195

space between PC1 and PC2 (or, with a rotation, EP and CP; see (Takahashi et al., 2011))196

indices is not symmetric between the variables, but rather follows a characteristic inverted-197

U shape (e.g., (Karamperidou et al., 2017)), as shown in Fig. 2a, where each point rep-198

resents the PC1/PC2 value of a given month (cf. Fig. 2 of (Takahashi et al., 2011)). The199

observed inverted-U shape (Fig. 2a) implies stronger probability of CP La Niñas and EP200

El Niños than their respective counterparts. This relationship can be simply represented201

using a quadratic fit between PC2 and PC1202

PC2 = αPC12 + βPC1 + γ, (3)

with the quadratic coefficient of the fit widely used as a compact metric to represent this203

diversity (Dommenget et al., 2013; Karamperidou et al., 2017; Cai et al., 2018; Concha204

et al., 2024). In observations α = −0.3 in all months and α = −0.29 also in Decem-205

ber (the month when ENSO events usually peak) (Fig. S5a), indicative of an inverted-206

U shape relationship (or ”boomerang” shape (Karamperidou et al., 2017)) with stronger207

probability of large CP La Niñas and extreme EP El Niños.208

The NG-LIM successfully simulates this inverse U relationship between PC2 and209

PC1. When comparing across epochs, the α value calculated ranges between −0.33 and210

−0.16 (5th-95th percentile), thus encompassing the observed value of −0.3, with a mean211

value of −0.25. While there is considerable variability across epochs (Fig. S6), this im-212
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Figure 2. PC1/PC2-EP/CP indices chart in a. observations (1948-2022), b. generated by

the LIM, and c. generated by the NG-LIM. In the case of the LIM and NG-LIM we display the

epoch of the same length as observations (75 years) corresponding to the median generated α.

The distribution of α in the LIM and NG-LIM is shown in Fig. S5. d. Observed minus Gaussian

joint PDFs. e. NG-LIM minus Gaussian joint PDFs. In d and e red and blue display regions

with higher and lower probability than a Gaussian joint PDF respectively. Note that the stan-

dard LIM generates a Gaussian joint PDF, so a similar plot (standard LIM minus Gaussian)

would look white. The cross-hatching in d (e) shows regions where the observed joint PDF is

outside the 5th-95th percentile range of joint PDFs generated by the standard LIM (NG-LIM)

across epochs.
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plies that regardless of the epoch, the NG-LIM simulates a curved relationship with stronger213

CP La Niñas and EP El Niños (Fig. 2c). When sampling only Decembers (Fig. S5a),214

the NG-LIM similarly replicates the observed relationship (Fig. S5c), but as expected215

with a stronger variability in terms of α across epochs (Fig. S6b).216

Fig. 2a shows that observed states cluster in a particular way in the PC1-PC2 plane,217

which is illustrated by calculating the joint probability distributions (Fig. 2d; see also218

Fig. S7a). Likewise, the NG-LIM successfully puts more probability for strong CP La219

Niñas and extreme EP El Niños (Fig. 2e; see also Fig. S7c). When calculating devia-220

tions from Gaussianity in the PC1/PC2 space, we observe that, similar to observations,221

the NG-LIM not only correctly simulates the excess/lack of probability at the extremes222

(compared to Gaussian) but also simulates well the lack/excess of probability for mod-223

erate events (Figs. 2d,e). In particular, the asymmetry between coastal El Niño and La224

Niña events —warming/cooling events in the far-eastern Pacific not associated with basin-225

wide warming/cooling (Deser & Wallace, 1987; Garreaud, 2018; Rodŕıguez-Morata et226

al., 2019; Takahashi & Mart́ınez, 2019), and which are characterized by low absolute val-227

ues of PC1 (See Fig. 3e of (Martinez-Villalobos et al., 2024))—, with fewer but more ex-228

treme coastal El Niño events, is better simulated by the NG-LIM (Fig. 2d,e). In con-229

trast, the standard LIM has a Gaussian joint-distribution with peak in probability at the230

origin (PC1 = 0, PC2 = 0; Fig. S7b). Additionally, the standard LIM does not sim-231

ulate a realistic probability distribution of EP and CP indices, with extreme CP La Niñas232

and EP El Niños being less frequent than observed (Fig. 3c-f). In all these cases, obser-233

vations fall outside the 5th-95th range generated by the standard LIM.234

The correct simulation of the curved relationship between PC2 and PC1 also trans-235

lates into how well the warm/cold asymmetries are represented spatially. We measure236

the asymmetry using the coefficient of skewness S, defined as S(x) = ⟨x3⟩
⟨x2⟩3/2 . A posi-237

tive S implies greater probability of extreme warm anomalies, and a negative S implies238

greater probability of extreme cold anomalies. The observed pattern of skewness (Fig.239

3a) shows that there are stronger warm events (i.e., super El Niños) in the Niño 3.4, Niño240

3 and especially Niño 1+2 regions, whereas there are stronger cold events in the Niño241

4 region and the poleward flanks of the Central Pacific. As expected, the standard LIM242

does not simulate a skewness pattern whatsoever (not shown). While there are some dif-243

ferences in the central-western Pacific, the simulated skewness pattern by the NG-LIM244

shares the observed features, with stronger Niñas in the west and stronger Niños in the245

east (Fig. 3b).246

We have shown that the NG-LIM represents a distinct and meaningful improve-247

ment over the standard LIM in aspects related to ENSO asymmetry and diversity. We248

may also ask how the evolution of events differs between cold and warm phases. We il-249

lustrate this by showing the difference in evolution of cold and warm optimal patterns250

—patterns that through deterministic dynamics optimally grow into Niña and Niño events251

a number of months later (Penland & Sardeshmukh, 1995; Vimont et al., 2014). The τ -252

months optimal pattern (i.e., the initial conditions that maximize growth of domain-integrated253

SSTA variance over τ months; cf. (Penland & Sardeshmukh, 1995; Zanna & Tziperman,254

2005; Vimont et al., 2014; Martinez-Villalobos & Vimont, 2016)) is found as the lead-255

ing eigenvector of GT (τ)G(τ), where G(τ) = exp(M∗τ), and M∗ is analogous to the256

dynamical deterministic operator M of equation 1 but now calculated using a state vec-257

tor comprising the first 10 non-standardized PCs. It is important to note that the op-258

timal pattern is calculated using the standard LIM with the aforementioned state vec-259

tor, so that the optimal maximizes the growth of the tropical Pacific squared SSTA by260

the standard LIM, which is proportional to the sum of the amplitude squared of the PCs.261

Once we have the optimal pattern calculated, we evolve it using the deterministic part262

of the standard LIM (eq. 1) and the NG-LIM to display the differences in evolution. We263

note that these optimals are precursors of ENSO events; the projection of the observed264
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Figure 3. a. Spatial map of SST skewness coefficient in observations. b. Same as a. but for

the whole 10,000yr integration of the NG-LIM. The cross-hatching in a (b) shows regions where

the observed SSTA skewness is outside the 5th-95th percentile range of skewness generated by

the standard LIM (NG-LIM) across epochs. Figure S8 shows a similar comparison as panels a

and b but for kurtosis. c. (d.) Negative (positive) tail of the cumulative distribution function

(CDF) of the EP index in observations (black), median estimation generated by the standard

LIM (blue) and generated by the NG-LIM (orange). The shading encompasses the 5th-95th

percentiles of the CDF estimation across epochs of the same length of observations. Panel d

shows the exceedance (1-CDF). To emphasize the extremes, the panels only show the CDF or

exceedance for anomalies below −σEP or above σEP as appropriate. e. (f.) Same as c (d) but

for the CP index. Figure S9 shows the whole EP and CP indices CDFs.
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data onto the optimal in Fig. 4d is highly correlated with the Niño 3.4 index evolution265

months later (Fig. S10).266

Fig. 4a (4c) shows a warm (cold) version of the 6-month optimal pattern. These267

optimals evolve into El Niño and La Niña events respectively 6-months later (Fig. 4b268

and 4d). However, there are some differences in the evolution; warm optimals tend to269

develop stronger anomalies in the east and cold optimals stronger anomalies in the west270

(Fig. 4f), resembling the antisymmetry of El Niño and La Niña events in observations271

(Fig. 4e). As expected, the standard LIM does not generate this difference, instead evolv-272

ing cold and warm optimals symmetrically (Fig. S11). The growth of warm optimals tends273

to be more rapid and generates stronger anomalies than the cold optimals, which tend274

to grow and decay more slowly, much like observations (Okumura & Deser, 2010) (Fig.275

4g).276

4 Summary and Discussion277

The bulk of ENSO modeling is done in the forward sense, i.e., one starts from fun-278

damental equations derived from the system’s physics (plus parametrizations), hoping279

to yield insight into the real phenomenon. An example of this, are coupled global cli-280

mate models, such as the Community Earth System Model (Hurrell et al., 2013; Dan-281

abasoglu et al., 2020). A pragmatic and cost effective alternative is the use of data-driven282

models such as linear inverse models (LIMs). The starting point for these models is the283

observed data, from which the task is to reverse-engineer the best model consistent with284

this data. These approaches, and especially the LIM methodology, have been useful to285

study many aspects of ENSO behavior, including its irregularity (Penland & Sardesh-286

mukh, 1995; Berner et al., 2018), asymmetry (Martinez-Villalobos et al., 2019), patterns287

of growth and decay (Penland & Sardeshmukh, 1995; Vimont et al., 2014; Capotondi &288

Sardeshmukh, 2015; Vimont et al., 2022), predictability (Mason & Mimmack, 2002; New-289

man & Sardeshmukh, 2017), statistical significance of epochs’ changes (Capotondi & Sardesh-290

mukh, 2017; Martinez-Villalobos et al., 2019), and associated impact on marine heat-291

waves (Capotondi et al., 2022; Gregory et al., 2024). However, LIMs in their standard292

form do not fully capture ENSO asymmetry nor diversity. Here, we propose an empir-293

ical approach to deal with this inherent limitation of the standard LIM. It consists in294

first transforming the variables comprising the relevant state-vector to near-Gaussianity295

and then calculating a standard LIM in those transformed variables. The Non-Gaussian296

LIM (NG-LIM) generates symmetric cold and warm events in the transformed variables,297

with the asymmetry being introduced when transforming back to the original variables.298

With this relatively simple modification, the NG-LIM better replicates the spatial asym-299

metry between El Niño and La Niña, the joint probability distribution of PC1/PC2-EP/CP,300

— including the inverted-U relationship between PC2 and PC1 — and the probability301

of warm and cold extremes. Moreover, it is capable of simulating the differences in evo-302

lution between warm and cold events, with El Niño events that deterministically grow303

stronger and decay faster than La Niña events from a given initial optimal condition.304

The NG-LIM proposed here provides a starting point for future research avenues.305

For example, it would be valuable to evaluate to what extent, if any, the NG-LIM could306

improve on the standard LIM in terms of predictive skill of strong events (e.g., Super307

El Niños; cf. (Newman & Sardeshmukh, 2017; Lenssen et al., 2024; Schlör et al., 2024)).308

Additionally, it could be worth investigating whether the NG-LIM produces more inter-309

decadal ENSO amplitude modulation and more tropical Pacific decadal variability (TPDV;310

(Newman et al., 2016; Capotondi et al., 2023)) than a standard LIM, by better repre-311

senting the ENSO asymmetry. A standard LIM can produce ENSO-related TPDV mainly312

by randomly generating epochs of strong El Niños or La Niñas. In addition to that, the313

NG-LIM could also produce TPDV through amplitude modulation, in which the strong-314

ENSO decades are more warm-skewed than the weak decades, leading to a decadal resid-315

ual of warmer east and colder west during the strong-ENSO epochs (e.g., (Vimont, 2005;316
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a.  Optimal SSTA pattern Niño
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b.  Niño optimal 6 months NG-LIM evolution
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oC

d.  Niña optimal 6 months NG-LIM evolution

-3 -2.6-2.2-1.8-1.4 -1 -0.6-0.20.20.6 1 1.41.82.22.6 3
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Figure 4. a. (c.) 6-months optimal initial condition, as calculated by the standard LIM, that

evolves into an El Niño (La Niña) event months later. b. (d.) 6-months evolution of the optimal

in a (b) by the NG-LIM. e. Composite of the spatial pattern of the antisymmetric part of ENSO

in observations. This is calculated as the addition between the composite of El Niño and La Niña

events. For the composite, Niño (Niña) events are defined as months where the Niño 3.4 index is

above (below) 0.5oC (−0.5oC). f. Asymmetry between the NG-LIM evolution of warm and cold

optimals. This is calculated as pattern b plus pattern d. g. Ratio between the tropical Pacific

SSTA amplitude squared of the optimal as it evolves normalized by the SSTA amplitude squared

at the initial condition. This is shown for three cases: i. optimal initial condition evolved by the

deterministic part of the standard LIM (blue). In this case, the curves are identical for warm and

cold optimals. ii. cold optimal evolved by the NG-LIM (evolve into a La Niña event; green). iii.

warm optimal evolved by the NG-LIM (evolve into an El Niño event; orange).
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Ogata et al., 2013; Atwood et al., 2017; Fedorov et al., 2020; Power et al., 2021)). Fur-317

thermore, the NG-LIM could be used to provide process-oriented metrics (e.g., (Maloney318

et al., 2019; Leung et al., 2022)) to evaluate global climate model performance in sim-319

ulating ENSO events (e.g., (C. Chen et al., 2017; Planton et al., 2021)). For example,320

the exponents of the transformation could provide such a metric describing the degree321

of Gaussianity of model variables relative to observations. In addition, a better under-322

standing of the relationship between deterministic and stochastic operators and the quadratic323

relationship between the two leading PCs may allow to assess why this relationship is324

not well reproduced in several models (cf. (Karamperidou et al., 2017). In terms of the325

NG-LIM construction, future improvements could include: i. extending the state-vector326

to also include a measure of ocean memory (Xue et al., 2000; Newman, Alexander, &327

Scott, 2011; Capotondi & Sardeshmukh, 2015), such as ocean heat content, that could328

conceivably extend the horizon of ENSO predictability; ii. calculating a cyclo-stationary329

version of the NG-LIM (Penland, 1996; OrtizBeviá, 1997; Johnson et al., 2000; Shin et330

al., 2021; Vimont et al., 2022; Wang et al., 2023), such that the interplay between sea-331

sonality and ENSO diversity could be better analyzed; iii. investigating the optimal evo-332

lution of events, not only in the L2 sense, but also specifically in the EP and CP direc-333

tion, such that the asymmetry in the evolution of Central and Eastern Pacific events could334

be better identified and also perhaps predicted (e.g., (Vimont et al., 2014, 2022)).335

There is some debate on whether ENSO could be better conceived as a nonlinear336

deterministic process with or without stochastic forcing (e.g., (Cane & Zebiak, 1985; Schopf337

& Suarez, 1988; Battisti & Hirst, 1989; Neelin, 1991; Neelin & Jin, 1993; Neelin et al.,338

1998), or more parsimoniously as an approximate linear damped deterministic process339

energized by stochastic forcing (e.g., (Penland & Sardeshmukh, 1995; Thompson & Bat-340

tisti, 2001)). In this latter view, asymmetries arise due to the interaction between rapid341

variations at the synoptic scale and the more slowly evolving state of the system (Martinez-342

Villalobos et al., 2019). In that sense, there are versions of inverse models that consider343

nonlinear deterministic dynamics (e.g., (Kondrashov et al., 2005; Kravtsov et al., 2005;344

C. Chen et al., 2016; Martinez-Villalobos et al., 2024) and others whose deterministic345

dynamics remain linear but whose stochastic forcing depends on the state of the system346

(e.g., (Sardeshmukh & Sura, 2009; Martinez-Villalobos et al., 2019) that also to some347

extent improve on the standard LIM in terms of their simulation of ENSO diversity and348

asymmetry. The NG-LIM sidesteps this debate and its motivations are more practical.349

First, it is simpler than the inverse models previously described, while second and more350

importantly, given that the number of variables that need to be estimated is the same351

as in the standard LIM, it requires much less data than the aforementioned models to352

be fitted (cf. (Martinez-Villalobos et al., 2018, 2024)).353

Given the improved representation of ENSO diversity and asymmetry provided by354

the NG-LIM, we have made available to the research community two long integrations355

of the state of the Tropical Pacific (one standard LIM, and one NG-LIM) consistent with356

the observed statistics of 1948 to 2022. An example of EP and CP indices calculated from357

these integrations are shown in Figs. S12 and S13. These integrations can be used for358

a variety of purposes, including assessment of coupled GCMs and as a null-hypothesis359

for apparent changes in the characteristics of El Niño and La Niña events due to sam-360

pling fluctuations, as opposed to external forcing.361
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Flügel, M., Chang, P., & Penland, C. (2004). The Role of Stochastic Forcing in474

Modulating ENSO Predictability. Journal of Climate, 17 (16), 3125–3140.475

Garreaud, R. D. (2018). A plausible atmospheric trigger for the 2017 coastal El476

Niño. International Journal of Climatology , 38 (S1), e1296–e1302.477

Garreaud, R. D., Boisier, J. P., Rondanelli, R., Montecinos, A., Sepúlveda, H. H.,478
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