Supplementary Materials: The Weakening of the Stratospheric Polar Vortex and the Subsequent Surface Impacts as Consequences to Arctic Sea-ice Loss

Yu-Chiao Liang1,2,3*, Young-Oh Kwon2, Claude Frankignoul2,4, Guillaume Gastineau4, Karen L. Smith5, Lorenzo M. Polvani3,6,7, Lantao Sun8, Yannick Peings9, Clara Deser10, Ruonan Zhang11, and James Screen12

1Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
2Woods Hole Oceanographic Institution, Woods Hole, MA, USA
3Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
4Sorbonne Université, CNRS/IRD/MNHN, LOCEAN/IPSL, Paris, France
5Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
6Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA
7Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
8Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
9Department of Earth System Science, University of California, Irvine, CA, USA
10National Center for Atmospheric Research Climate & Global Dynamics, Boulder, CO, USA
11Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai, China
12College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK

*Correspondence to Yu-Chiao Liang: yuchiaoliang@ntu.edu.tw

Submit to \textit{Journal of Climate}
FIG. S1. JJA present ensemble-mean SST for AMV+/IPV- state (a) and AMV-/IPV+ state (b).
FIG. S2. As in Figure S1 but for SON.
FIG. S3. As in Figure S1 but for DJF.
FIG. S4. As in Figure S1 but for SON.
FIG. R7. The standard deviation of the global-mean SST time series during 1985-2014 period from CESM2-CAM6 and CESM2-WACCM6 historical simulations.
FIG. S6. December wavenumber1 Z300 response to (a) strong SIC forcing and (b) weak SIC forcing (color shadings). The contour lines represent the climatological wavenumber1 Z300 in December.

FIG. S7. December wavenumber2 Z300 response to (a) strong SIC forcing and (b) weak SIC forcing (color shadings). The contour lines represent the climatological wavenumber2 Z300 in December.
FIG. S8. January Z50 (a)-(b), responses to strong sea-ice forcing during AMV+/IPV- and AMV-/IPV+ states, respectively. (c) (a) minus (b). (d)-(f) as in (a)-(c) but to weak sea-ice forcing. The black dots denote the field significance, while the cyan dots the 5% local significance.
FIG. S9. January Z500 (a)-(b), responses to strong sea-ice forcing during AMV+/IPV- and AMV-/IPV+ states, respectively. (c) (a) minus (b). (d)-(f) as in (a)-(c) but to weak sea-ice forcing. The black dots denote the field significance, while the cyan dots the 5% local significance.
FIG. S10. January SLP (a)-(b), responses to strong sea-ice forcing during AMV+/IPV- and AMV-/IPV+ states, respectively. (c) (a) minus (b). (d)-(f) as in (a)-(c) but to weak sea-ice forcing. The black dots denote the field significance, while the cyan dots the 5% local significance.