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Abstract: The Pacific Decadal Oscillation (PDO) – a major mode of climate variability driving 15 
changes over the North Pacific Ocean and surrounding continents – is currently thought to be 
generated by naturally-occurring processes in the climate system. Using an exceptionally large 
ensemble of climate model simulations, we show that recent shifts in the PDO index were driven 
by human emissions of aerosols and greenhouse gases. This anthropogenic influence had 
previously gone undetected because models underestimate air-sea interactions amplifying 20 
temperature variations in the North Pacific. By rescaling the simulations to mitigate this issue, 
we demonstrate that observed PDO impacts – including the current drought in the western 
United States – can be largely attributed to human activity via externally forced changes in the 
PDO. 

 25 

One-Sentence Summary: Climatic variations in the North Pacific and on surrounding 
continents are now attributable to human activity.    
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Main Text:  

The Pacific Decadal Oscillation (PDO) – the leading pattern of North Pacific sea-surface 30 
temperature (SST) variability (1, 2) – is associated with persistent changes in global and regional 
climate, including the rate of global warming (3), the ongoing drought in the western United 
States (U.S.; 4), and the accelerated rates of sea level rise affecting vulnerable island states in the 
western Pacific (5). This SST pattern fluctuates between its warm- and cold-states on 
multidecadal timescales (6). The timing of these shifts is thought to be governed by natural 35 
processes in the climate system, including random atmospheric circulation variability, local 
ocean dynamics, and coupled tropical variability (6 - 8). By simulating these processes, 
dynamical and statistical models can produce a PDO that has a realistic spatial pattern (5). 
However, these models underestimate the strength of the PDO on multidecadal timescales (9). 
Perhaps because of this missing low-frequency variability, models cannot predict the PDO and 40 
its impacts on society far in advance (10, 11). This missing variability reflects a gap in our 
understanding of the slow, potentially predictable, components of the PDO. 

 Conventional models of the PDO do not consider external radiative forcing despite its 
outsized influence on recent long-term climate changes, such as the observed global warming 
trend, as well as regional patterns of multidecadal climate variability (8). For example, large 45 
changes in the emissions of aerosols and greenhouse gases explain recent multidecadal variations 
in North Atlantic and European climate (12 – 15). In contrast, no such influence has yet been 
identified in the North Pacific (6, 8, 16, 17), despite large changes in external forcing over the 
last several decades (18, 19). Studies indicating a possible role for external forcing in North 
Pacific climate variability have been limited to either a single climate model (20 - 23) or 50 
restricted to the most recent decades (24 - 26), thus failing to robustly establish an anthropogenic 
influence on the PDO. 

Here we study anthropogenic influences on North Pacific climate variability using an 
exceptionally large ensemble of climate model simulations. We construct the ensemble with 572 
simulations from 12 different climate models across two generations of model development and 55 
use this ensemble to isolate the forced variations in the PDO. This multimodel approach ensures 
that results are applicable beyond the idiosyncrasies of a single model or the complexity of 
representation of physical processes, particularly those involving aerosols (Table S1). Each 
simulation in this ensemble is forced by a combination of all the major sources of changes in 
external forcing, including greenhouse gas and aerosol emissions, volcanic eruptions, and solar 60 
variability. We isolate individual sources of external forcing using 286 additional simulations, 
each of which includes changes in only a single forcing agent separately: greenhouse gases, 
industrial aerosols, or natural sources (volcanic eruptions and solar cycles). A minimum of 75 of 
these “single-forcing” simulations were performed for each forcing agent using 5 distinct climate 
models (Table S2). If the forced response in a particular ensemble of single-forcing simulations 65 
can reproduce the timing and pattern of the observed PDO, we attribute PDO changes to that 
forcing agent. The bulk of our analysis focuses on the 1950-2014 period common to all 827 
simulations, although we consider the full length of simulations dating back to 1850 when 
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possible. We characterize climate variability in the North Pacific using the traditional PDO 
index, defined as the first principal component of North Pacific annual average SST after 70 
removing the global warming signal (2). Alternative definitions of the PDO index (see Methods) 
yield similar results to those presented below, ensuring that our conclusions are not an artifact of 
a known relationship between Pacific climate variability and global mean temperatures (Fig. S1; 
27). To focus on multidecadal variability, we remove interannual variability associated with the 
El Niño – Southern Oscillation. In observations, we remove these interannual fluctuations via 75 
linear regression. In models, ensemble averaging removes interannual variability because the 
occurrence of El Nino and La Nina events is uncorrelated amongst model runs. We then low-
pass filter both the observed and simulated PDO indices to isolate variability with periods longer 
than 10 years (see Methods).  

We find that changes in external forcing explain key multidecadal shifts in the observed 80 
PDO index after 1950. Between 1950 and 2014, the externally forced PDO explains 53% of 
observed multidecadal PDO index variance (r2) and successfully reproduces key PDO transitions 
in the 1970s and 1990s (Fig. 1a). This correlation is statistically significant at the 95% threshold, 
accounting for the fewer available degrees of freedom after low-pass filtering (see Methods). The 
robustness of this result is supported by further metrics allowed by the novel size and breadth of 85 
this ensemble. First, the forced PDO index explains more variance in the observed PDO index 
than 98% of the individual model runs (Fig. S2a). That is, in models, there is only a two percent 
chance that natural variability alone is a better explanation of the multidecadal shifts in the PDO 
than external forcing. Second, this correlation is found for nearly all models included in the 
ensemble (Fig. S3) confirming it is not a random result arising from the reduced degrees of 90 
freedom in the timeseries. Third, the forced PDO index matches the observed inflection point in 
the mid-1990s from a positive to a negative trend within a few years, whereas natural variability 
in climate models generates changes in the PDO index trend at random (Fig. S2b; Methods). 
Last, we find that as changes in external forcing grow larger throughout the 20th century, external 
forcing explains larger shares of PDO variance (Fig. S3). Together these results support our 95 
finding that after 1950, external forcing explains most of the timing of multidecadal shifts in the 
PDO.  

 The anthropogenic influence on the PDO is robust across models despite their diverse 
representations of physical processes. Most of the single-model ensembles explain at least a 
quarter of observed PDO variance after 1950, indicating that our results are not a quirk of the 100 
design of an individual model (Fig. S3). That is, models produce similar results despite 
fundamental differences in the way aerosols are emitted and distributed by their atmospheric 
components. More thorough inter-model comparisons are difficult given that only two single-
model ensembles have the 100 simulations we find are required to isolate the forced PDO (Fig. 
S4). However, we can group models by their common attributes and create large enough 105 
ensembles to isolate the impact of these features on the forced PDO. We find that the 
contribution of forcing to the PDO is reasonably robust to (1) model generation, (2) the 
implementation of aerosol emissions, and (3) the complexity of cloud-aerosol interactions (Fig. 
S4; Table S4). Together these sensitivity analyses show that the substantial role for external 



Submitted Manuscript: Confidential 
Template revised November 2022 

4 
 

forcing in the timing of the PDO index is not an artifact of a single model, numerical approach, 110 
or physical process, such as the implementation of aerosol indirect effects. 

In addition to explaining key observed shifts in the PDO, the forced PDO index is 
associated with an SST pattern in models that bears striking resemblance to the observed PDO 
pattern. During its positive phase, the observed and simulated SST patterns show similar cooler 
than normal ocean temperatures over the western and central North Pacific, surrounded by a 115 
horseshoe of warmer than normal surface waters along the North American coast (Fig. 1b and 
1c). CMIP5 models are particularly skillful at reproducing this forced pattern (Fig. 1c), 
generating a more realistic externally forced SST pattern than CMIP6 models (Fig. S5f). Like in 
the real world, the positive phase of the forced PDO in models is associated with a deepening of 
the Aleutian Low, the semi-permanent low-pressure system over the North Pacific during boreal 120 
winter (Fig. 1c, contours). The forced PDO pattern is robust across individual model ensembles 
and to their representation of complex physical processes (Fig. S5 and S6). The realism of the 
forced SST pattern in models serves as further evidence that external forcing is a physical 
contributor to the real world PDO.   

Models show that the observed multidecadal shifts in the PDO index arise from the 125 
interplay between industrial aerosols and greenhouse gasses. Between 1950 and the mid-1980s, 
rapidly rising emission and concentrations of industrial aerosols (18) coincide with the long 
positive trend in the PDO index that characterized this period (Fig. 1a). When forced with only 
industrial aerosols, models faithfully reproduce this positive trend (Fig. 2a and 2d). In the late-
1980s, this positive trend reverses, as aerosol emissions declined (18) and greenhouse gas 130 
warming became the dominant climate forcing (IPCC 2021; Fig 1a, 2a, and 2b). Models forced 
with only industrial aerosols produce a flattening of the positive trend after the mid-1980s 
following the decline in aerosol emissions (Fig. 2a). The observed downward trend in the PDO 
after 1990 is better explained when models are forced with only greenhouse gases, which drive a 
negative trend in the PDO (Fig. 2b and 2d). Therefore, declining industrial aerosol 135 
concentrations together with rising greenhouse gas concentrations drove the mid-1980s inflection 
in the PDO index. In contrast, natural forcings, i.e. from solar cycles and volcanic eruptions, only 
explain a small part of the temporal evolution of the PDO (1% of the variance, Fig. 2c and 2d).  

While we have shown that aerosol and greenhouse gas emissions drive multidecadal 
variations in the PDO, the amplitude of the simulated response is much weaker than in 140 
observations (Fig. 1a; Table S3). As a result, the much larger, naturally generated climate 
variability or “noise” produced by models overwhelms the forced PDO signal in each individual 
simulation of historical climate. Similarly, models underestimate forced variability relative to 
naturally generated variability in the North Atlantic (14, 28). The resulting low signal-to-noise 
ratio produces the puzzling result that a model’s forced response can better predict observed 145 
variability than it can predict the variability in an individual simulation performed with that 
model (29, 30). Our results reflect a similar “signal-to-noise paradox” (30), but for North Pacific 
SSTs, demonstrating that this error broadly affects low-frequency climate variability throughout 
the Northern Hemisphere, and potentially throughout the globe. 
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We infer the mechanisms by which external forcing excites the PDO by comparing the 150 
spatial pattern of the forced response in models to the large-scale patterns of variability in 
observations. Forced SST variations in the western North Pacific have the largest amplitude 
relative to observations, particularly along the front in the Kuroshio-Oshashio Extension (KOE) 
region off the coast of Japan (Fig. 3a). In this region, external forcing explains roughly half of 
the observed SST variability amplitude (Fig. 3a) indicating that the signal-to-noise error is less 155 
severe there. The SST response over the KOE is likely driven by some combination of (1) 
advection of cooler or warmer continental air generated over Eurasia by aerosols or greenhouse 
warming (31), (2) changing land-sea temperature contrast producing relative cooler or warmer 
air that is also advected over the KOE region, or (3) the advection of pollution from aerosol 
emitting regions in Asia. Because the forced response is much larger in this region than the rest 160 
of the North Pacific, we hypothesize that aerosols and greenhouse gases influence the PDO by 
affecting SSTs in the KOE, but a missing mechanism in models fails to convey the forced 
response to the rest of the North Pacific. 

The mechanisms communicating the forced response to the rest of the North Pacific 
likely involve changes in the strength of the Aleutian Low – the semipermanent low-pressure 165 
system controlling surface winds over the North Pacific. In models, the forced PDO index is 
highly correlated with the forced variations in the strength of the Aleutian Low (r2 = 0.7; Fig. 3b; 
see Methods), consistent with a well-established simultaneous relationship between these 
processes in observations. This high correlation can be created by multiple coupled processes. In 
climate models without anthropogenic forcing, high correlations predominately emerge when 170 
stochastic variations in the Aleutian Low drive contemporaneous changes in the PDO SST 
pattern (6). In recent observations and, potentially in the forced response identified here, high 
correlations could also be indicative of changes in the strength of the Aleutian Low driven by 
SST variations in the KOE region (32 - 34). This response also involves an amplifying feedback 
whereby thermal advection by wind-driven ocean currents reinforces SST variability over the 175 
KOE region (35). The strength of this positive, coupled ocean-atmosphere feedback will depend 
on the magnitude of the Aleutian Low response to KOE SSTs, which we quantify by regressing 
forced sea-level pressure variations on forced SST variations in the KOE region (Fig. 3c and 3d). 
We find that in models the strength of this feedback is much weaker (~1 hPa/degC; Fig. 3c) than 
in observations (5 hPa/degC; Fig. 3d), indicating that forced SST variations in the KOE fail to 180 
excite the Aleutian Low in models with the same vigor as the real world. The tepid variations in 
the Aleutian Low then fail to convey the full forced signal to the rest of the basin, resulting in a 
much weaker ratio of forced-to-observed variability in the eastern North Pacific (~0.1) relative to 
the ratio over the KOE (~0.5; Fig. 3a).  

One possible explanation for this muted Aleutian Low response in models could be 185 
related to a misrepresentation of atmospheric processes in climate models. A previous study 
showed that atmospheric models run at the conventional resolution of 1 degree fail to excite a 
realistically strong atmospheric response to SST changes over the North Pacific (36). This study 
also suggests that models would need to be run at a resolution of greater than ¼ degree to induce 
a realistic atmospheric response to KOE SSTs, which currently incurs prohibitive computational 190 
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costs. This issue might be exacerbated by other model deficiencies related to their ability to 
resolve small scale processes in the ocean. For example, positive ocean feedbacks in the western 
North Pacific (35) tend to be underestimated in climate models without fully resolved western 
boundary current SST fronts (37) and can result in a weaker atmospheric response to externally 
forced SST variability. Further, models may also underestimate the direct influence of aerosol 195 
forcing on the Aleutian Low (38), but this would not explain the greenhouse forced period nor 
the spatial pattern of forced variability (Fig 3a). 

The failure of climate models to simulate the full amplitude of the forced PDO has 
clouded our view of the recent history of global climate. In the early 2000s, a “hiatus” in global 
warming was largely attributed to a naturally generated PDO-like pattern of cooling in the 200 
Pacific Ocean (3, 39). However, we have shown that this pattern is a response to external forcing 
that is underestimated in climate models. We expect that mitigating signal-to-noise errors in 
climate models will amplify the forced PDO and therefore better explain global mean 
temperatures at the beginning of the 21st century. Further, by mitigating this error in models we 
may also rectify known biases in the simulation of externally forced trend in the tropical Pacific 205 
(40). Climate models simulate a forced El Niño-like trend in the tropical Pacific over the last few 
decades (41), which is at odds with the flat or La Niña-like trend in observations and theory (42, 
43). A stronger tropical component of the forced PDO in models may help correct the east-west 
SST gradient by driving a cooling trend in the eastern tropical Pacific after about 1990, through 
for example the wind-evaporation-SST feedback (44, 45).       210 

The idea that the ongoing meteorological drought in the western US is driven by natural, 
albeit unlucky combination of variations in the climate system, associated with the PDO (46, 47) 
also needs to be reevaluated in light of our findings that models may underestimate the forced 
response of the PDO. Western US drought was previously thought to be natural because: (1) the 
magnitude of the observed precipitation decline between 1982-2012 (16.5%) was much larger 215 
than could be generated by known external forcings (3.4%) and (2) drying trends as dramatic as 
observations only occur in 20% of simulations (Fig. 4b). However, we have shown that the PDO 
has a large, externally forced component that is underestimated by climate models. Artificially 
rescaling the forced PDO in models to be 53% of the total PDO (our estimate of the forced 
contribution to the observed PDO) produces precipitation deficits that are in good agreement 220 
with observations (-14.7%), and more commonplace, occurring in about half of the individual 
simulations (49%; Fig. 4b). This provides additional support for an anthropogenic driver of 
observed PDO variability and ongoing meteorological drought – due to a combination of aerosol 
and greenhouse gases. 

Overall, we find that human activity is a key contributor to the PDO over the last seven 225 
decades. Aerosol emissions drove the positive trend in the PDO from the 1950s to 1980s. The 
abatement of industrial aerosols paired with exponentially rising greenhouse gas emissions are 
driving the ongoing negative trend in the PDO. This history of external forcing will thus explain 
PDO impacts over the past seven decades, including the ongoing drought in the western U.S. as 
shown here, as well as, for example, sea level trends over the North Pacific. The role of forcing 230 
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in the PDO was previously obscured by an unrealistically low signal-to-noise ratio in climate 
models, which we mitigate with an extraordinarily large ensemble of climate model simulations. 
We find that the small amplitude of the forced PDO is related to an under-simulated Aleutian 
Low response to external forcing. Resolving signal-to-noise errors in climate models will allow 
for more accurate predictions of global and regional climate by accounting for the expanded role 235 
of external forcing we identify here. Promising recent work shows that increasing model 
resolution may help mitigate the signal-to-noise paradox (48, 49) by improving the simulation of 
both oceanic (37, 50) and atmosphere-ocean feedbacks (36). As new solutions to improve 
climate models are implemented, large ensembles of current generation models still hold the 
power to reveal additional, critical risks of continued long term global warming over the United 240 
States. We expect that the drought in the western U.S. will continue, as it is unlikely that random 
atmospheric variability or an altered state of the PDO will bring more rainfall over the next 
decades. 

 
 245 
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Fig. 1. External forcing explains the timing and pattern of the PDO index. (a) The observed 525 
PDO index (black) compared with the ensemble mean PDO index from the all-forcings 
simulations (dark blue) and the normalized ensemble mean PDO index from the all-forcings 
simulations (light blue). Note that normalization of the forced PDO scales its amplitude to be 
equal to observations. The light blue shading encompasses 95% of the PDO indices from 
individual simulations. (b) Regression of observed SST (colors) and sea-level pressure (contours; 530 
hPa per unit of the normalized PDO index). We draw contours every -0.5 hPa in purple; the zero 
contour is in black.The Kuroshio-Oyashio Extension region is outlined in solid black. (c) as in 
(b), but the forced components of SST and sea-level pressure have been scaled to have the same 
standard deviation as observations. 

 535 
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Fig. 2. The interplay of aerosols and greenhouse gases explain the timing of the PDO index. 
As in (Fig. 1a) but for the ensemble mean of the aerosol-only simulations (a; dark blue), 540 
greenhouse gas-only simulations (b; green), and the natural forcing-only simulations (c; purple). 
The original amplitude PDO index from each single-forcing ensemble is shown in the thin off-
colored line. (d) The amount of observed PDO variance explained by the ensemble mean of each 
of the four suites of simulations for 1950 – 1989, 1990 – 2014, and 1950 – 2014. Note that the 
correlation between the forced PDO in the GHG-only ensemble and observations between 1950 545 
– 1989 is negative.   

 

 

 
  550 
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Fig. 3. The signal-to-noise paradox in the PDO is a result of weak Aleutian Low variability. 
(a) The ratio of forced to total SST variability in models. (b) Timeseries of the forced PDO (from 
Fig. 1a) along with the strength of the forced Aleutian Low (also known as the North Pacific 
Index; see Methods) (c) The regression of forced sea-level pressure on an index of forced SST in 555 
the Kuroshio-Oyashio Extension region (marked on Fig. 1b) which indicated the strength of the 
atmospheric response to ocean temperature changes. (d) as in (c) but for observed sea-level 
pressure and SST.   

 

 560 
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Fig. 4. Long-term drought in the western U.S. is attributable to human emissions of 565 
aerosols and greenhouse gases via their influence on the PDO. (a) Timeseries of precipitation 
in the Southwest U.S. in observations (black), the forced PDO from the all-forcings simulations 
(blue), the forced PDO from the all-forcings simulations, where the naturally generated PDO in 
each ensemble has been statistically damped (green), and the forced PDO from the all-forcings 
simulations, where we substitute a higher amplitude forced PDO for a portion of the naturally 570 
generated PDO (see methods). (b) The PDF of the trend in precipitation in the collection of 
simulations from (a; lines) and their forced components (triangles).   
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Materials and Methods 
Models 

 We study an extremely large collection of climate model simulations from the last two 
generations of model development (Table S1). This collection is composed of simulations from 
13 individual climate model. We choose models that have at least 20 publicly available 
simulations each. All simulations are forced with the best estimates of observed external forcing 
for the full length of each run. The climate trajectory in each simulation is composed of a unique 
sequence of naturally generated variability not necessarily correlated with the observed 
variability plus an externally forced response common to all simulations. The forced response 
includes both anthropogenic global warming and regional climate changes and is isolated by 
averaging changes in a given climate variable, such as SST, across many simulations (51). We 
consider the time period common to all members, 1950 - 2014. Note that for CMIP5 models, 
2006 – 2014 is forced with scenario forcing, not observations. We also consider single-forcing 
runs from DAMIP (52). As mentioned above, each of these runs are forced with one time-
varying source of external forcing (industrial aerosols, greenhouse gases, or natural sources).   

 
Observations 

 We compare the simulations used in this study to the PDO index as calculated by the 
National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental 
Information, using NOAA’s Extended Reconstructed Sea Surface Temperature version 5 (53). 
To check for robustness, recalculate the PDO index from the gridded Hadley Centre Sea Ice and 
Sea Surface Temperature (HadISST) dataset (54). This sea surface temperature dataset is also 
used for the observed temperature maps presented herein. To consider the pattern and strength of 
the atmospheric circulation over the North Pacific, we use NCEP/NCAR twentieth Century 
Reanalysis v2c (55). For estimates of Southwestern U.S. precipitation, we use a 1° × 1° 
configuration of the Global Precipitation Climatology Project version 2018 (GPCP) gridded 
monthly precipitation product covering the years 1901–2016 (56).  

 
Indices 
In each individual simulation, we calculate the PDO index as the first EOF of North Pacific (20° 
– 80°N) sea surface temperatures, after subtracting the global mean temperature from each 
month, at each grid point (2). We choose this index because of its historical and ongoing value in 
forecasting climate impacts (8, 57). While different regional rates of anthropogenic warming can 
alias onto this definition of the PDO (27), an alternative definition of the PDO index that only 
excludes North Pacific spatial average SSTs yields qualitatively similar results for the metrics we 
put forward in the main text (Fig. S1). To calculate the forced component of the PDO index in 
models, we average each of these individual PDO indices together. The Kuroshio-Oyashio 
Extension index is calculated as the area-weighted average SST between 25° – 35°N and 150° – 
180°E (7). The Gulf of Alaska index is the area-weighted SST between 45° – 60°N and 180°W 
and 150°E. The North Pacific Index, a measure of Aleutian Low strength is calculated as the 
area-weighted average sea-level pressure between 35°  - 65°N and 160°E – 140°W (58). The 
southwestern US rainfall index is the area-weighted average total precipitation between 31° – 
42°N and 125° – 110°W, over land. The forced component any of these indices is calculated as 
the average across all simulations of the individual indices. The externally forced temperature, 
pressure, and precipitation fields are calculated as the average of the 4-dimensional fields in each 
individual simulation. All timeseries are low-pass filtered using a Lanczos filter with a 1/10 year 
half-power frequency, unless otherwise noted.  
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Statistical significance 

 Above, we provide several lines of evidence that there is a significant role for external 
forcing in the PDO index. We do so to (1) build confidence in our results and (2) to avoid 
lengthy discourse on the precise accounting for degrees of freedom that would be required for 
any statistical test. However, in the interest of completeness, we do offer a simple accounting. 
When comparing the observed and forced PDO timeseries, we have two 65 year-long timeseries 
(N = 65). We low-pass filter these timeseries, thereby reducing the available degrees of freedom. 
We estimate that there are six available effective degrees of freedom (DoF), following the 
equation: 

𝐷𝑜𝐹 = 	
𝑁
2 ∗

𝑐𝑢𝑡𝑜𝑓𝑓
𝑁𝑦𝑞𝑢𝑖𝑠𝑡 

 
where the cutoff frequency is 1/10 years and the Nyquist frequency is ½ years. The critical value 
for a two-tailed test on the Pearson correlation coefficient at the 95% significance level is 0.707. 
The correlation we estimate between the forced component of the PDO and observations is 0.72, 
thereby making it significant at the 95% level. There are other methods of calculating the number 
of effective degrees of freedom that can lead to other interpretations, which is why we rely on 
other information in this article to assert a role for external forcing. 
 
Precipitation adjustment 

 We estimate the influence of a more strongly forced PDO in models by replacing part of 
the naturally-generated PDO with a more robustly forced PDO. In each simulation, we first 
linearly remove 53% of the total PDO signal from precipitation, at each grid point. We replace 
this primarily naturally generated signal with the forced PDO-precipitation relationship. That is, 
we create a counterfactual collection of simulations where the forced PDO has an amplitude that 
is 53% of observations.  

 
Change point analysis 
 To evaluate how well the forced component of the PDO simulates observed transitions in 
the PDO, we use Change Point Analysis. We follow the algorithm in (59) as implemented in the 
Matlab programming language. In observations, this method identifies the highest probability 
change-point, or a likely change in trend, as occurring in 1998, during the most recent canonical 
shift in the PDO index. Similarly, this method identifies the highest probability change-point in 
the forced component of the model-simulated PDO as occurring in 1994. This is excellent 
correspondence, given the observed PDO has a naturally generated component. We then apply 
this method to the PDO index from each individual simulation in our collection and record the 
highest probability change-point. Finally, we construct 90% empirical confidence intervals by 
yet again applying the same methodology to 582 65-year white noise time series (to match the 
all-forcings collection), recording the highest probability change point, and calculating the 90% 
confidence interval of a given year producing a change-point. We plot this in Fig. S1b. 
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Fig. S1. Sensitivity of the role of forcing to the definition of the PDO index. The PDO index in 
all panels   
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Fig. S2. Comparison of the forced PDO with the natural-only PDO. (a) A histogram of the 
correlation coefficient between the PDO index in individual simulations, where the forced PDO 
(from Fig. 1a) has been removed, and observations (bars) as well as the correlation coefficient 
between the forced PDO and observations (line). (b) Histogram of the estimates of the timing of 
the most likely change in trend (or “change-point”) in individual simulations where the forced 
PDO has been removed (bars), the most likely change-point in the forced PDO (blue vertical 
line), and the most likely change-point in observations (black vertical line).     
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Fig. S3 The evolving role of external forcing in the PDO. External forcing explains more PDO 
variance after 1950 on both interannual (a) and multidecadal (b) timescales. Please note we only 
plot bars where model output allows; not all models were initialized prior to 1870 (see Table S1). 
Also, the number of simulations in each single-model ensemble varies (listed below model name 
and in Table S1) implying that these bars may not be directly comparable to each other, 
especially for those models with fewer simulations. Also, the “all models” value varies slightly 
from the text because we calculate the first principal component of North Pacific SST earlier 
than 1950 in those models that allow.  
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Fig. S4. The role of ensemble size in extracting the forced component of North Pacific 
climate variability. (a) correlation between the observed PDO and the forced component of the 
PDO (black) as well as the correlation between the forced component of the PDO and a single 
random ensemble member (blue). (b) as in (a), but for an index of SST in the Kuroshio-Oyashio 
extension (KOE) region outlined in Figure 1b. The saturation in skill (black line) offers guidance 
for the size of ensemble needed to isolate the forced component for the PDO. The comparison 
between the black and blue lines illustrates the signal-to-noise paradox (29). 
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Fig. S5. Testing the sensitivity of the explanatory power of the forced PDO to different 
model configurations (defined in Table S1). All plots correspond to Fig 1a and 1c. The number 
of members in each ensemble is listed in parentheses next to the description.   
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Fig. S6. The forced PDO pattern in each large single-model large ensemble. As in Fig. 1c.  
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CMIP5 
Ensembles 

Atmospheric 
resolution 

# of 
members 
(270) 

Start year Emissions vs. 
concentrations 

“Fully-
interacive” 
(AR5 
Table 9.1) 

NCAR-
CESM1 

1deg 40 1920 Emissions Yes 

GFDL-
CM3 

2deg 20 1920 Emissions Yes 

GFDL-
ESM2M 

2deg 30 1950 Concentration No 

CCCma-
canESM2 

2.8deg 50 1950 Concentration  Yes 

CSIRO-
Mk3 

1.9deg 30 1850 Emissions Yes 

MPI-
ESM-LR 

1.9deg 100 1850 Emissions No 

CMIP6 
Ensembles 

Atmospheric 
resolution 

# of 
members 
(302) 

Start year  Menary et 
al. (2020) 

NCAR-
CESM2 

1deg 100 1850 Emissions Yes 

GFDL-
SPEAR 

0.5deg 30 1921 Emissions Yes 

IPSL-
CM6A-LR 

~2deg 32 1850 Concentration Yes 

MIROC6 ~2deg 50 1850 Emissions Yes 
canESM5 ~2deg 50 1850 Emissions Yes 
ACCESS-
ESM1.5 

~1.5deg 40 1850 Emissions Yes 

 
Table S1: Additional details on the climate models studied (51, 60 - 71) 
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Model Aerosol-only (75) GHG-only (82) Natural-only (129) 
canESM5 30 50 50 
CNRM-CM6 10 9 10 
GISS-E2_1_G 15 10 20 
IPSL CM6A LR 10 10 8 
MIROC6 10 3 41 

 
Table S2 The single-forcing ensembles and their respective sizes used in this study (from 
DAMIP; 52).  
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Name # 
members 

r2 
(1950 – 
1989) 
% 

r2 
(1990 – 
2014) 
% 

r2 
(1950 – 
2014) 
% 

S:N 
PDO 
 

S:N 
KOE 
SST 
 

S:N 
GoA 
SST 
 

S:N 
NPI 
 

All 572 43* 35* 52* 0.19 0.27 0.21 0.09 
CMIP5 270 51* 35* 59* 0.15 0.20 0.14 0.09 
CMIP6 302 28* 36* 44* 0.25 0.34 0.30 0.11 
Emissions 460 37* 44* 50* 0.21 0.28 0.20 0.11 
Concentrations 112 57* 3 33* 0.17 0.23 0.28 0.13 
Interactive 442 35* 31* 46* 0.20 0.29 0.24 0.09 
Not interactive 130 31* 58* 50* 0.22 0.27 0.22 0.12 

 
Table S3 The timing and amplitude of the forced PDO for ensembles of varying model designs 
(see Table S1). The signal-to-noise ratios estimated in the four right-most columns are calculated 
as the ratio of forced-to-total variability.  
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Name Total 
number of 
members 

Var. 
Explained 
(1950 – 
1989) 
% 

Var. 
Explained 
(1990 – 
2014) 
% 

Var. 
Explained 
(1950 – 
2014) 
% 

Aerosol-only 75 58 16 4 
GHG-only 82 60 57 9 
Natural only 129 38 0 1 

 
Table S4 Explained variance from single-forcing ensembles described in Table S2. Please note 
that the correlation coefficient between the GHG-only ensemble mean and observations is 
negative. 
 
 


