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Abstract 15 
The Pacific Decadal Oscillation – the leading pattern of climate variability driving changes over 
the North Pacific and surrounding continents – is currently thought to be generated by processes 
internal to the climate system1, 2. According to this paradigm, the characteristic, irregular 
oscillations of the PDO arise from a collection of mechanisms involving ocean and atmosphere 
interactions in the North and tropical Pacific3-5. Recent variations in the coupled ocean-20 
atmosphere system, such as the 2015 El Niño, ought to have shifted the PDO into its positive 
phase6. Yet, the PDO has been locked in a consistent downward trend for more than three 
decades, remanding nearby regions to a steady set of climate impacts. Here we show that major 
multidecadal variations in the PDO index during the 20th century, including the ongoing, 
decades-long negative trend, were largely driven by human emissions of aerosols and 25 
greenhouse gases rather than internal processes. This anthropogenic influence was previously 
undetected because the current generation of climate models systematically underestimate the 
amplitude of forced climate variability. A novel attribution technique that statistically corrects 
for this error suggests that observed PDO impacts – including the ongoing multidecadal drought 
in the western United States – can be largely attributed to human activity via externally forced 30 
changes in the PDO. These results suggest that we rethink the attribution and projection of 
multidecadal changes in regional climate. 
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The Pacific Decadal Oscillation (PDO) – the leading mode of North Pacific sea-surface 
temperature (SST) variability1, 2 – is not oscillating. The ongoing, stubbornly persistent, cold 
phase of the PDO is associated with significant long-term trends in climate, including the rate of 
global warming7 and drought in the western United States (U.S.)8. The leading conceptual 40 
models suggest that the PDO varies in response to an accumulation of processes internal to the 
climate system, including random atmospheric circulation variability, local ocean dynamics, and 
coupled tropical variability3 5-. Statistical and dynamical models that simulate these processes 
predicted that the massive 2015 El Niño would finally reverse the sign of the obstinately 
persistent PDO6. Yet, the PDO and its associated impacts remain unchanged. 45 

An alternative explanation for the PDO is that it reflects a North Pacific ocean-
atmosphere response to external radiative forcings. However, the conventional understanding of 
the PDO does not include external radiative forcing; recent review studies and the latest 
comprehensive report from the Intergovernmental Panel on Climate Change express “high 
confidence” that multidecadal North Pacific climate variability is internally generated3, 5. New 50 
research shows that large changes in the emissions of aerosols and greenhouse gases may explain 
recent multidecadal variations in North Atlantic and European climate10–13, although this view is 
somewhat controversial14. A developing line of research hints that similar processes may be at 
play in the North Pacific15 – 21 but this work cannot fully explain the persistence of the ongoing 
negative phase of the PDO or why models underestimate levels of PDO variance5,22,23. 55 

Here we isolate anthropogenic influences on multidecadal North Pacific climate 
variability using an exceptionally large ensemble of climate model simulations. We characterize 
climate variability in the North Pacific using the first principal component of North Pacific 
annual average SST anomalies as a PDO index2. We calculate these anomalies by removing the 
annual cycle and subtracting global mean temperature2. This definition, which avoids the 60 
constraint that the PDO must be orthogonal to global temperature rise2, is widely used in recent 
mechanistic and impact studies of the PDO3, 8 and we wish to bring PDO impacts to the 
forefront. We calculate the PDO index in each of the 572 simulations in the multi-model 
ensemble, all of which are forced by a combination of all the major sources of external forcing, 
including greenhouse gas and aerosol emissions, volcanic eruptions, and solar variability 65 
(Extended Data Table 1). Averaging the historical PDO indices simulated by all ensemble 
members cancels out uncorrelated, naturally generated variations in climate, revealing the 
externally forced influence common to all simulations. We further isolate individual sources of 
external forcing by considering three “single-forcing” large ensembles, each of which includes 
changes in only one forcing agent at a time (Extended Data Table 1). The bulk of our analysis 70 
focuses on the 1950-2014 period common to all simulations, although we consider the full length 
of simulations dating back to 1850 when possible. On interannual timescales, the PDO index is 
in-part driven by the El Niño – Southern Oscillation (ENSO), a prominent source of naturally-
generated variability3, 24. As noted above, ensemble averaging removes the influence of the 
internal component of ENSO on the PDO index in models 2, 25, 26. We linearly remove variability 75 
associated with the Nino 3.4 index from the observed PDO index to isolate the sources of 
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multidecadal variability that are the focus of this manuscript (Methods). While this approach 
slightly alters the interannual timing of the observed PDO index, it has limited effect on the 
multidecadal shifts in the index that we are seeking to explain (Extended Data Fig. 1). Finally, 
we low-pass filter both the observed and simulated PDO indices to isolate variability with 80 
periods longer than 10 years (Methods).  

A new, forced component of the PDO 

We find that changes in external forcing explain key recent multidecadal shifts in 
observed North Pacific climate. Between 1950 and 2014, we estimate that the externally forced 
PDO index explains 53% of observed multidecadal PDO index variance (R2) and reproduces 85 
major PDO transitions in the 1970s and 1990s to within a few years, even without accounting for 
tropical Pacific variability (Fig. 1a). External forcing explains 46% of PDO index variance in a 
stricter, alternative definition of the PDO index, wherein North Pacific regional temperatures are 
subtracted (rather than global mean temperatures) to ensure that our conclusions are not an 
artifact of a known relationship between Pacific climate variability and global mean temperatures 90 
(Extended Data Fig. 2a)27. Likewise, external forcing explains 48% of the detrended, decadal 
SST variance in the crucial Kuroshio-Oyashio Extension (KOE) region, demonstrating that our 
results are not an artifact of the traditional approach to isolating PDO variability with Empirical 
Orthogonal Functions (Extended Data Fig. 3a). The reported levels of variance explained for the 
traditional PDO index, the PDO index with North Pacific SSTs removed, and the KOE SST 95 
index are statistically significantly different from zero at the 4%, 6%, and 4% levels via a non-
parametric statistical test that accounts for serial correlation in low-pass filtered timeseries 

(Methods; Extended Data Fig. 2d).  

The statistical tests above do not account for the possibility that internal variability in 
observations happens to align with the ensemble mean, thereby amplifying the reported 100 
correlation coefficients by chance. We find this possibility to be unlikely. The model-estimated, 
forced PDO index explains more variance in the observed PDO index than more than 99% of the 
model-generated realizations of internal variability (568 out of 572; Fig. 2a). That is, in models, 
there is less than a 1% chance (4 out 572 realizations) that internal variability alone explains the 
correlation between the ensemble mean and observations (Fig. 2a). Likewise, the model-105 
estimated, forced PDO index explains more variance in the observed PDO index than in 98% of 
the individual model simulations (560 out of 572; Fig. 2b). That is, in models, there is a 2% 
chance (12 out of 572 realizations) that internal variability aligns with external forcing to 
increase the apparent share of forced variance in the PDO (Fig. 2b). Conversely, external forcing 
can consistently explain the large correlation we report above (Fig. 2c). 110 

Signal-to-noise error in the N. Pacific 

Our approach was able to isolate this unexpectedly large influence of external forcing on 
the PDO because of the extremely large number of model simulations that have recently become 
available. We estimate that more than 70 individual ensemble members are required to isolate 
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the forced component of the PDO; that is, 70 members are needed to reach a correlation with 115 
observations that is not significantly different (at the 95% level) from the estimate from the full 
ensemble (Fig. 2d; Extended Data Fig. 4). These extraordinarily large datasets are needed 
because models underestimate the amplitude of the forced component of the PDO. In 
observations, external forcing accounts for 53% of total multidecadal PDO amplitude whereas in 
models, external forcing only accounts for 7% of total multidecadal PDO amplitude (Methods). 120 
This error is also apparent in the KOE SST index, for which external forcing accounts for 48% of 
observed multidecadal variance and 7% of simulated multidecadal variance. Put succinctly, in 
models, the ratio of the externally forced signal to internally generated “noise” in the 
multidecadal PDO is much lower than in observations. Consequently, the much too large 
internally generated noise overwhelms the forced PDO and KOE SST signals in the individual 125 
simulations of historical climate. This signal-to-noise error is also apparent in simulations of 
North Atlantic climate variability, indicating that this error may affect low-frequency climate 
modes of variability throughout the extratropical Northern Hemisphere, and potentially 
globally11, 28, 29. 

Human-forced trends in the PDO index 130 

The contribution of external forcing to the PDO grows as external forcing intensifies 
throughout the 20th century. Prior to the mid-20th century, PDO variability in models appears to 
be largely internally generated by the climate system (Fig. 2e). Between 1870 and 1950, external 
forcing explains less than 1% of multidecadal PDO variance (Fig. 2e). However, after the mid-
20th century, as changes in forcing dramatically increase, so too does the role of external forcing 135 
in the PDO (Fig. 2b; Extended Data Fig. 5). Likewise, the variance of the forced component 
increases after the mid-20th century for both the PDO index and the KOE SST index (Extended 
Data Table 2a). The variance of internal KOE temperature variability in models does not change 
between 1870 - 2014, like in the North Atlantic30, suggesting that signal and noise may be 
additive in climate models (Extended Data Table 2b). Prior studies may have underestimated this 140 
newfound role of forcing in the PDO for two reasons: they could only utilize small ensembles 
and they may have convolved the relatively unforced first half of the 20th century with the 
intensifying forcing of the second half of the 20th century. For example, in an average 40-
member ensemble run from 1920 – 2005 (as in 3), external forcing explains only 5% of 
multidecadal PDO variance. To detect the role of forcing in the modern PDO, one must use an 145 
exceptionally large ensemble and focus on the late 20th century (i.e. after 1950), when changes in 
forcing were larger. 

 The size and breadth of this ensemble allow us to demonstrate the robustness of this new, 
larger role for external forcing in the PDO. First, we find that both single-model ensembles 
(CESM2 and MPI) that meet the criterion of 70 members to sufficiently isolate the forced PDO 150 
(Fig. 2d) have a statistically significant forced component (Extended Data Fig. 5). While it is 
likely that there are inter-model differences in the amplitude of the forced response, the signal-
to-noise error makes it difficult to make definitive statements about single-model ensembles with 
less than 70 members. Instead, we group models by their common attributes and create large 
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enough ensembles to isolate the impact of these features on the forced PDO. We find that the 155 
contribution of forcing to the PDO is reasonably robust to (1) model generation, i.e. CMIP5 or 
CMIP6, (2) the implementation of aerosol emissions, and (3) the complexity of cloud-aerosol 
interactions (Fig. 2f; Extended Data Table 3). That is, both the anthropogenic influence on the 
PDO and the signal-to-noise error in the forced response is robust across models despite their 
diverse representations of physical processes (Extended Data Table 3). Together these sensitivity 160 
analyses show that the substantial role for external forcing in the timing of the PDO index is not 
an artifact of a single model, numerical approach, or physical process, such as the 
implementation of aerosol indirect effects. 

Models show that the observed timing of multidecadal shifts in the PDO index are 
influenced by a combination of anthropogenic aerosols and greenhouse gasses. Between 1950 165 
and the mid-1980s, rapidly rising concentrations of industrial aerosols31 coincide with a positive 
trend in the PDO index (Fig. 1a; Extended Data Table 3). When forced with only industrial 
aerosols, models also simulate a positive PDO trend over that period (Fig. 3a and 3d; Extended 
Data Table 3). In the late-1980s, the observed positive PDO trend reverses in association with 
stagnating aerosol emissions and the predominance of greenhouse gas warming (Fig 1a, 3a, and 170 
3b; Extended Data Table 3)5. The observed negative trend in the PDO after the mid-1980s is 
captured in the all-forcing runs and is even stronger when models are forced with only 
greenhouse gases, which drive a negative trend in the PDO (Fig. 3b and 3d; Extended Data Table 
3). We note that the short length of this subsection of the record limits its statistical significance 
(Extended Data Table 3); however, these trends have continued and intensified to present day 175 
consistent with our argument. We suggest that stagnating industrial aerosol concentrations paired 
with rising greenhouse gas concentrations halted the rise in the PDO index in the mid-1980s and 
produce the negative trend in the PDO index that continues into the present. Both anthropogenic 
aerosols and greenhouse gases can force changes in the PDO, whereas small changes in natural 
forcings, i.e., from solar cycles and volcanic eruptions, only explain a small part of the temporal 180 
evolution of the PDO over our study period (R2=1%, Fig. 3c and 3d). 

Potential mechanisms for the forced PDO 

In addition to explaining key observed shifts in the PDO, the forced PDO index is 
associated with an SST pattern in models that bears key resemblances to both the observed PDO 
pattern and the internally generated PDO pattern in models. In the PDO positive phase, the 185 
observed and simulated SST patterns both show cooler than normal ocean temperatures over the 
western and central North Pacific, surrounded by a horseshoe of relatively warmer surface waters 
along the North American coast (Fig. 1b and 1c; Extended Data Fig. 6). Like the real world, the 
positive phase of the forced PDO in models is associated with a deepening of pressure near the 
Aleutian Low, the semi-permanent low-pressure system controlling surface winds over the North 190 
Pacific (Fig. 1c, contours). If the PDO index was purely internally generated, this pattern would 
not appear in the regression on the ensemble mean as it would cancel out across many ensemble 
members. The general features of the forced PDO pattern are robust across model generations, 
individual model ensembles, and how models represent complex physical processes (Extended 
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Data Figs. 6, 7, and 8). Yet, the multi-model mean and most individual ensembles exhibit one 195 
key deficiency: the horseshoe-shaped pattern of warming along the coast of North America in the 
positive phase of the PDO appears to be weaker in models than observations (Fig. 1b, Fig. 1c, 
Extended Data Figs. 6, 7, and 8). This deficiency appears to be related to models’ ability to 
generate the full PDO pattern, not just its externally forced component (Extended Data Fig. 6). 

The discrepancy between the spatial patterns in observations and the ensemble mean may 200 
offer a clue as to why the forced PDO is too weak in models. The horseshoe-shaped pattern of 
temperature anomalies is characteristic of the well-established simultaneous relationship between 
the Aleutian Low and North Pacific SSTs in observations3. In models, we find that the forced, 
multidecadal PDO index is highly correlated with forced variations in the strength of the forced, 
multidecadal Aleutian Low (R2=0.7; Fig. 4b; Methods). This indicates that either variations in 205 
the Aleutian Low drive changes in the PDO SST pattern3 or SST variations, particularly in the 
KOE region, can drive changes in the overlying Aleutian Low32-34. Either of these potential 
responses could be excited by hemispheric warming or cooling, including contemporaneous 
forced North Atlantic climate variability35 or over nearby continents36,37. 

Any of these pathways would rely on an amplifying feedback over the KOE region 210 
whereby oceanic thermal advection by wind-driven ocean currents reinforces SST variability38. 
We find that the strength of the relationship between the Aleutian Low and SSTs is much weaker 
in models (average ensemble member 1.5 hPa/degC, forced component 0.9 hPa/degC; Fig. 4c) 
than in observations (5 hPa/degC; Fig. 4d), which we quantify by regressing sea-level pressure 
variations on SST variations in the KOE region. This suggests that in models, perturbations fail 215 
to excite a response in the Aleutian Low with the same vigor as the real world. This mismatch 
might occur either due to poor simulation of the direct influence of forcing on the atmosphere or 
an underestimated positive feedback involving KOE SSTs39. In either case, these underestimated 
mechanisms, could help explain the underestimated amplitude and persistence of the forced PDO 
in models.  220 

Impacts of the forced PDO negative trend 

The failure of climate models to simulate the full amplitude of the forced PDO has 
clouded our view of the recent history of global and regional climate. In the early 2000s, a 
“hiatus” in global warming was largely attributed to a naturally generated PDO-like pattern of 
cooling in the Pacific Ocean7. However, we have shown that forcing excites this pattern on 225 
multidecadal timescales, but its influence is underestimated by climate models. Mitigating the 
signal-to-noise error in climate models will amplify the forced PDO so they will better account 
for global mean temperatures at the beginning of the 21st century. Further, by mitigating this 
error in models we may also rectify known biases in the simulation of externally forced trend in 
the tropical Pacific 40. Although here we demonstrate that forcing excites the PDO pattern in 230 
isolation from the tropics, climate variability in these two regions is intertwined3. Overall, 
climate models incorrectly simulate a forced El Niño-like trend in the tropical Pacific over the 
last few decades41, which is at odds with the neutral or La Niña-like trend in observations and 
theory40, 42. This erroneous trend appears uniquely within the tropics25. We show that the ongoing 
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negative trend in the extratropical PDO, including the associated cooling that extends into the 235 
eastern tropical Pacific, is underestimated by models. If the signal-to-noise error were to be 
corrected in models, it follows that the cooling simulated by models in the eastern tropical 
Pacific could be enhanced through the extratropical influence of the forced PDO to be brought 
into better agreement with observations.  

The meteorological drought in the western US is currently thought to be internally 240 
generated by a natural, albeit unlucky, combination of variations in the climate system. This idea 
prevails because climate models do not explain the magnitude of the observed precipitation 
decline43.  However, it is established that the PDO is associated with precipitation in the western 
U.S.44. Thus, our findings that models underestimate the forced response of the PDO suggest that 
the meteorological drought has a large anthropogenic component. We correct for this error by 245 
setting the signal-to-noise ratio in models equal to our estimate of that in observations29 
(Methods). We retain random interannual variability in each ensemble member but reduce its 
amplitude and increase the amplitude of the forced PDO and associated impacts (Fig. 5a and 5b). 
After this correction for the signal-to-noise error, we find a much larger precipitation deficit in 
the western U.S. than the original ensemble (-12.6% compared to -2.1% of climatology per 30 250 
years), bringing them close to observations (-13.3%; Figs. 5c, 5d, and 5e). Negative precipitation 
trends as large as observed are commonplace in the statistically corrected ensemble but were rare 
in the original ensemble (47% of simulations compared to 12%). Correcting for the signal-to-
noise error in climate models attributes nearly all of the observed long-term precipitation decline 
over the last few decades to anthropogenic forcing, via the forced PDO. In addition to the forced 255 
PDO, there is also a role for internally generated tropical Pacific sea-surface temperature 
variability in setting western U.S. precipitation rates43, 45. A complete analysis of the role of 
forcing in the meteorological drought would have to account for uncertainty in the magnitude of 
the signal-to-noise error in PDO impacts, how the signal-to-noise error changes in response to 
different combinations of forcing agents, and possibility that observed internal variability 260 
confounds our estimate of the observed, forced signal. We find the last of these sources of 
uncertainty unlikely to influence our results (Methods).  

While our results emphasize the newfound role for external forcing in the PDO and its 
impacts, internal variability is an important contributor, especially on interannual and shorter 
timescales. For example, internal variations in ENSO influence the PDO on interannual 265 
timescales3, 6 and therefore accurate ENSO predictions can add skill to near-term PDO 
predictions. Model errors in the tropical Pacific or elsewhere may deleteriously influence our 
results on the PDO and its impacts, as in any study reliant on models. Because our estimate of 
the magnitude of the forced PDO is based on correlations, underestimating the internal 
component of the PDO22 is one error that does not affect our results (Methods). A subset of 270 
models with a realistic internally generated PDO produce a forced PDO that is well-correlated 
with observations but nonetheless exhibit the signal-to-noise error, as in the full ensemble (Fig. 
6). Thus, our estimates of the role of external forcing in the PDO stand up to knowable forms of 
uncertainty but are still bound by the limitations of any modeling study. 
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Forced PDO portends future drought 275 

Overall, we find that human activity is a key contributor to multi-decadal trends in the 
PDO since the 1950s. Aerosol emissions influenced the positive trend in the PDO from the 1950s 
to 1980s. The abatement of industrial aerosol emissions paired with exponentially rising 
greenhouse gas emissions are influencing the ongoing negative trend in the PDO. This history of 
external forcing can thus explain a significant portion of multidecadal PDO impacts over the past 280 
seven decades, including the ongoing drought in the western U.S. as shown here. The role of 
external forcings in the PDO was obscured by an unrealistically low signal-to-noise ratio in 
climate models, which we can expose only because we now have an extraordinarily large 
ensemble of climate model simulations. We suggest that the small amplitude of the forced PDO 
is related to an underestimated Aleutian Low response to external forcing in models. By 285 
identifying this error in the North Pacific, we have added to results for the North Atlantic11, 
showing that the signal-to-noise error is a pervasive problem across the extratropics in the 
Northern Hemisphere. Resolving the signal-to-noise error therefore offers the prospect of 
improvements in predictive skill for regional climate in climate models based on projections of 
external forcing. At the very least, it would allow equivalent skill with far smaller ensembles. 290 

Model improvements, such as increasing spatial resolution, may help mitigate the signal-
to-noise error46, 47 by improving the simulation of both oceanic48, 49 and atmosphere-ocean 
feedbacks39, 50. Of course, model development is expensive and time consuming. While we await 
improvements in models, reinterpretation of the existing catalogue of climate model output holds 
the potential to improve our understanding and ability to project regional climate changes. For 295 
example, because of the signal-to-noise error in climate models, the prevailing view has been 
that the ongoing historical western U.S. meteorological drought is a natural variation associated 
with the oscillating internal PDO. Thus, it is expected to abate when the PDO reverses sign. In 
our reinterpretation of model output, we project that so long as ongoing anthropogenic forcing 
trends continue, the PDO will remain persistent in its negative state driving continued 300 
precipitation deficits in the western U.S. The difference is obviously highly consequential. 
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Figure Legends 

Fig. 1. External forcing explains the timing and pattern of the PDO. (a) The observed PDO 
index from HadISST65 with ENSO linearly removed (black) compared with the ensemble mean 
PDO index from the all-forcings simulations51-61 (dark blue) and the normalized ensemble mean 475 
PDO index from the all-forcings simulations (light blue). We normalize the forced PDO index by 
setting the standard deviation to one to maintain consistency with the traditional definition of the 
PDO index (1) and to illustrate the timing of the shifts in both indices; the amplitudes of each 
timeseries are listed in Extended Data Table 2b and discussed in-text. The R2 value in the bottom 
left is the square of the correlation between the observed (ENSO removed) and ensemble mean 480 
PDO indices. (b) Regression of observed SST from HadISST65 (colors; °C per unit of the PDO 
index) and sea-level pressure from NCEP 20th Century Reanalysis66 (contours; hPa per unit of 
the PDO index) on the observed PDO index. The KOE region is outlined in the solid black 
rectangle. (c) Regression of ensemble mean SST (colors) and sea-level pressure (contours) on the 
normalized, ensemble mean PDO index from the all-forcings simulations (see text for details). In 485 
panels b) and c), SLP regressions are contoured every 0.5 hPa; negative values are in purple and 
the zero contour is in black (there are no positive values). 

Fig. 2.  The role of forcing in the PDO is statistically robust. (a) Comparison of the 
correlation coefficient between the internally generated PDO indices in individual ensemble 
members51-61 and observations from HadISST65 (blue histogram) with the correlation coefficient 490 
of the ensemble mean and observation (black line). The empirical 90% confidence level (two-
tailed) for the distribution of correlations is displayed with a light gray line. (b) As in (a), but for 
the PDO index from each individual ensemble member which includes internally generated and 
externally forced variability. (c) as in (a) and (b), but for bootstrapped 100-member ensemble 
means that illustrate different estimates of the externally forced response. (d) The level of PDO 495 
variance explained by external forcing, as a function of ensemble size. For each ensemble size, 
we randomly select members from the full ensemble, average, and correlate with observations to 
calculate the mean explained variance (dot) and the 95% confidence interval (cloud). We also 
test the null hypothesis that the correlation is zero at the 90% confidence level via an empirical 
significance test that accounts for autocorrelation (gray dashed line; Methods). One can produce 500 
a conservative estimate of the ensemble size required to isolate the forced PDO by intersecting 
the bottom of the confidence interval at 500 members with the mean variance explained. (e) The 
contribution of external forcing to the PDO as a function of time. Error bars are calculated via 
bootstrapping new ensemble means (with replacement) to test our isolation of the forced 
response (Methods). We test the null hypothesis that the correlation illustrated by the third bar 505 
(1950 – 2014) is zero via the empirical test that accounts for autocorrelation; the 90% confidence 
interval is plotted in the gray dashed line (f) Level of explained variance in the ensemble 
subdivided by key traits (see Extended Data Table 1). Again, the 90% confidence interval is 
plotted in the gray dashed line.   
 510 
Fig. 3. Forcing from anthropogenic aerosols and greenhouse gases explain the timing of 
recent trends in the PDO index. (a – c) The forced PDO index from the aerosol-only 
simulations (a), greenhouse gas-only simulations (b), and the natural forcing-only simulations63 
(c) as compared to the PDO index from annual average (thin black line) and low-pass filtered 
observations (thick black line; HadISST65). The original amplitude PDO index from each single-515 
forcing ensemble is shown in the thin gray line. (d) The amount of observed PDO variance 
explained by the ensemble mean of each of the four suites of simulations for 1950 – 1989, 1990 
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– 2014, and 1950 – 2014 (bars) and their 90% confidence interval calculated via bootstrap as in 
Fig. 2d. This statistical test accounts for uncertainty in the forced response; a statistical test that 
compares these correlations to that which would have been produced from internal variability is 520 
presented in Extended Data Table 3. Note that the correlation between the forced PDO in the 
GHG-only ensemble and observations between 1950 – 1989 is negative.   

Fig. 4. The signal-to-noise paradox in the PDO is associated with weak Aleutian Low 
variability. (a) The ratio of forced SST variance from models51-61 to total observed SST variance 
in models. (b) Timeseries of the forced PDO (from Fig. 1a) along with the strength of the forced 525 
Aleutian Low (as described by the North Pacific Index; Methods) (c) The regression of forced 
sea-level pressure on an index of forced SST in the KOE region (outlined in Fig. 1b) which 
indicates the strength of the association between the forced atmospheric response and the forced 
sea-surface temperature changes. (d) The regression of observed sea-level pressure on the index 
of observed SST in the KOE region which indicates the strength of the association between the 530 
observed atmospheric response and the observed sea-surface temperature changes (HadISST66). 

 
Fig. 5. The long-term meteorological drought in the western U.S. is attributable to human 
emissions of aerosols and greenhouse gases via their influence on the PDO. (a) The PDO 
indices from observations from HadISST66 (black), the all-forcings large ensemble51-61 (ensemble 535 
mean in the blue line and the two standard deviation ensemble spread in the blue shading), and 
the corrected ensemble (ensemble mean in the orange line and the two standard deviation 
ensemble spread in the orange shading). (b) Spectra of the PDO indices from observations 
(black), the all-forcings ensemble (ensemble mean in the blue line and the two standard deviation 
ensemble spread in the blue shading)and corrected ensemble (ensemble mean in the orange line 540 
and the two standard deviation ensemble spread in the orange shading). (c – d) Maps of water 
year (Oct. – Sep.) precipitation trends between 1983 – 2012 in observations from GPCP67, where 
the ENSO-related pattern of precipitation has been removed (c), the all-forcings ensemble (d), 
and the corrected ensemble (e). (f) Decadal mean precipitation changes in the western U.S. (31° - 
42°N, 125° – 100°W) from observations, where ENSO has been removed (gray bars) and the 545 
timeseries of the forced precipitation changes from the all-forcings large ensemble (light blue) 
and the corrected ensemble (light orange). The best-fit linear trend is plotted for observations 
(black), the all-forcings ensemble mean (blue), and the corrected ensemble mean (orange). (g) 
Precipitation trends in the western US from observations (black circle), the all-forcings ensemble 
mean (blue triangle), the corrected ensemble mean (orange triangle), and PDFs of the trends 550 
from individual all-forcing ensemble simulations (blue curve) and the corrected ensemble 
(orange curve).  

Fig. 6. A stronger internal PDO in models does not solve the signal-to-noise error. Here we 
compare the two single model ensembles with the largest (most realistic) PDO variance (a, b, d, 
e) with the multimodel ensemble composed of the three single model ensembles with the lowest 555 
(least realistic) PDO variances51-61. (a, b, c) The normalized power spectra of the observed PDO 
from HadISST65 (black) and interquartile range of PDO indices produced by individual ensemble 
members (blue cloud). (d, e, f) Comparison of the correlation coefficient between the internally-
generated PDO indices in individual ensemble members and observations (blue histogram) with 
the correlation coefficient of the ensemble mean and observation (black vertical line). The 560 
empirical 90% confidence level (two-tailed) for the distribution of correlations is displayed with 
a light gray vertical line. 
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Methods 
Models 

 We study an extremely large collection of climate model simulations from the last two 565 
generations of model development (Extended Data Table 1)51-61. This collection is composed of 
simulations from 13 individual climate models. We choose models that have at least 20 publicly 
available simulations each. All simulations are forced with the best estimates of observed 
external forcing for the full length of each run. The climate trajectory in each simulation is 
composed of a unique sequence of internally generated variability not necessarily correlated with 570 
the observed variability plus an externally forced response common to all simulations. The 
forced response includes both anthropogenic global warming and regional climate changes and is 
isolated by averaging changes in a given climate variable, such as SST, across many 
simulations62. We consider the time period common to all members, 1950 - 2014. Note that for 
CMIP5 models, 2006 – 2014 is forced with scenario forcing, not observations. We also consider 575 
single-forcing runs from DAMIP (Extended Data Table 1)63. As mentioned in the main text, each 
of these runs are forced with one time-varying source of external forcing (industrial aerosols, 
greenhouse gases, or natural sources) while the others remain constant.   

 
Observations 580 

 We compare the simulations used in this study to the PDO index as calculated by the 
National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental 
Information, using NOAA’s Extended Reconstructed Sea Surface Temperature version 564. To 
check for robustness, recalculate the PDO index from the gridded Hadley Centre Sea Ice and Sea 
Surface Temperature (HadISST) dataset65. Both indices are highly similar; we use the HadISST 585 
PDO index for display. This sea surface temperature (SST) dataset is also used for the observed 
temperature maps presented herein. To consider the pattern and strength of the atmospheric 
circulation over the North Pacific, we use NCEP/NCAR twentieth Century Reanalysis v2c66. For 
estimates of Southwestern U.S. precipitation, we use a 1° × 1° configuration of the Global 
Precipitation Climatology Project version 2018 (GPCP) gridded monthly precipitation product 590 
covering the years 1901–201467.  

 
Indices 

In each individual simulation, first calculate monthly SST anomalies relative to the 
climatological seasonal cycle. We next calculate the PDO index as the first EOF of North Pacific 595 
(20° – 80°N) monthly SST anomalies, after subtracting the global mean SST anomaly from each 
month at each grid point (2). We choose this index because of its historical and ongoing value in 
forecasting climate impacts1,2, 68. Further, by removing global mean SST we show that the 
relationship between forcing and the PDO is more than the obvious GHG-induced warming 
trend. (An alternative definition of the PDO index that removes North Pacific average SSTs 600 
instead of global average SST yields qualitatively similar results for the metrics we put forward 
in the main text; Extended Data Fig. 2). To calculate the forced component of the PDO index in 
models, we average each of these individual PDO indices together. We follow the convention 
that the PDO is positive when there is warming along the coast of North America paired with 
cooling off the coast of Japan3. The Kuroshio-Oyashio Extension index is calculated as the 605 
linearly detrended, area-weighted average SST between 25° – 35°N and 150° – 180°E5. The 
North Pacific Index, a measure of Aleutian Low strength is calculated as the area-weighted 
average sea-level pressure between 35°  - 65°N and 160°E – 140°W69. The western US 
precipitation index is the water-year average (Oct. – Sep.), area-weighted average total 
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precipitation between 31° – 42°N and 125° – 110°W, over land (following 43). The El Nino-610 
Southern Oscillation (ENSO) is summarized via the Nino 3.4 index, the area-weighted average 
monthly SST anomalies in the tropical Pacific (5°S-5°N, 170°W – 120°W). The forced 
component of each of these indices is calculated as the average across all simulations of the 
individual indices. The externally forced temperature, pressure, and precipitation maps are 
calculated by first finding the ensemble mean field and then calculating any appropriate 615 
regression. In this construction of the ensemble mean, each ensemble member, not each model, is 
weighted equally. All timeseries are low-pass filtered using a 100-point Lanczos filter with a 
1/10 year half-power frequency, unless otherwise noted. Endpoints are padded with the mean of 
the timeseries. Other approaches, including padding with zeros, repeating endpoints, and 
removing endpoints, were all tested and did not impact our results. For the observed PDO index 620 
we remove the ENSO signal via linear regression. It is likely that this simple method does not 
fully remove the influence of ENSO on the PDO (e.g. 24). 
 
Statistical significance 

 Throughout the manuscript we test several complementary null hypotheses to ensure 625 
robustness and transparency in our results. These tests seek to account for the limited number of 
degrees of freedom afforded by short timeseries with high autocorrelations: 

  
(1) Testing the null hypothesis that the Pearson correlation coefficient is equal to zero. Each 

of the time series presented in this work has strong autocorrelation. To account for this, 630 
we employ a commonly used empirical statistical test70. This test creates surrogate 
ensemble mean PDO timeseries by re-shuffling the phases of its periodogram. Each 
surrogate timeseries therefore has the same autocorrelation structure as the original 
timeseries. We correlate the surrogate timeseries with the observed timeseries and repeat 
the process 10,000 times to create a distribution. We calculate a p-value by comparing 635 
the original correlation to this distribution.  
 

(2) Testing the null hypothesis that the correlation between the ensemble mean and 
observations is a chance result of internal variability. This test is a corollary to the null 
hypothesis that the correlation coefficient is zero but tests the correlation against 640 
realizations of internal variability generated by the models rather than statistically 
generated realizations. This approach allows our test to account for potential model 
generated differences in the temporal structure of internal variability. To isolate internal 
variability, we remove the ensemble mean PDO from the PDO index in each individual 
member (as in Fig. 2a). We then correlate the observed time series with each model 645 
generated realization of internal variability to create a distribution. We calculate the 
significance level by comparing the original correlation to this distribution. 
 

(3) Testing the null hypothesis that the forced correlation is a result of the chance alignment 
between the model’s forced response and internal variability. Here we correlate the 650 
PDO index with PDO index from each individual ensemble member to create a 
distribution. We calculate the significance level by comparing the original correlation to 
this distribution. 
 

(4) Testing the null hypothesis that the ensemble mean is effectively isolating the forced 655 
response. Here, we randomly resample individual model runs (with replacement) 10,000 
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times to construct new 100-member ensembles. We then create 10,000 new ensemble 
mean PDO indices and correlate each of them with observations to create a distribution. 
We use this distribution to construct confidence intervals. Using this approach we find 
that the average ensemble mean PDO index from a 572-member ensemble produces a 660 
correlation of 0.71 (95% confidence interval: 0.66 – 0.76) with observations. Likewise, 
we find that the average ensemble mean KOE SST index from a 572-member ensemble 
produces a correlation of 0.57 (95% confidence interval: 0.51 – 0.62) with observations. 
The mean values are slightly different from the full ensemble values presented in-text 
because we re-sample with replacement. In Fig. 2d, we extend this approach to test 665 
different ensemble sizes.  

 
Over the course of this manuscript, each assertation is typically subject to several of these 

tests, as appropriate. 
 670 
Estimating the signal-to-total variance ratios in models and observations and a novel attribution 
technique that accounts for the signal-to-noise error in climate models 

We are interested in isolating the role of forcing in observations but are only privy to only 
one realization of Earth’s climate. The (unknowable) true forced response OF(t), is a component 
of the observed timeseries: 𝑂(𝑡): 675 

 
𝑂(𝑡) = 	𝑂!(𝑡) + 𝑂"(𝑡) 

 
where, 𝑂"(𝑡), is the (unknowable) internally generated variability in the observed time series. We 
estimate the forced response by a regression on the ensemble mean 𝐸𝑀(𝑡)	of model runs 680 
 

𝑂!(𝑡) = 𝛽	𝐸𝑀(𝑡) + 	𝜖 
 
The fraction of observed variance explained by this regression model is: 
 685 

𝑅#$ ≡
𝜎!$

𝜎%$
	≈ 	

𝜎&'$

𝜎%$
 

 
where, 𝜎!$, is the (unknowable) forced variance,	𝜎%$ is the total observed variance and 𝜎&'$  is the 
variance of the model ensemble mean.  
 690 
Unlike observations, in large ensembles we know the ratio of forced-to-total variability, 𝑅($. We 
estimate it as the variance of the ensemble mean, 𝜎&'$ , divided by the average of the total 
variance in each ensemble member, 𝜎&$: 
 

𝑅($ =
𝜎&'$

𝜎&$
 695 

 
There are other ways to estimate this fraction of model variance that is forced; e.g. we could find 
𝑅( as the average correlation of each of the ensemble members with the ensemble mean. As 
ensemble size j increases the various estimates converge asymptotically and with our sample size 
of 572 the differences are negligible (R < 0.01). As we discuss in-text and show in Extended 700 
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Data Table 3, our estimate of the observed forced variance ratio, 𝑅#$, is much larger than the ratio 
that we estimate from our large ensemble, 𝑅($.  It follows that the (estimated) observed signal-to-
noise ratio,	𝑅#$ (1 − 𝑅#$⁄ ) is even larger compared to the model signal-to-noise 
ratio,	𝑅($ (1 − 𝑅($4 ).  The mismatch between these two ratios is known as the “signal-to-noise 
paradox”28-29.  705 

To estimate the impacts of the forced PDO we statistically correct for this signal-to-noise 
error in models.  We do so by rescaling the variance of the multidecadal, forced PDO and its 
impacts in each simulation so that the signal-to-total ratio of the PDO index is the same as 
observations. (As in most applications of imperfect models to nature, we have already corrected 
for the mean state by using anomalies and correcting for overall amplitude error by rescaling 710 
using observed variance.)  We use this rescaled model output to better understand forced PDO 
impacts, for instance, precipitation in the western United States. Label this impact variable X; it 
is the sum of a component 𝑋)*+% that is a response to the forced PDO and an unforced 
component 𝑋,-..  We find 𝑋)*+%  by linearly regressing X on the PDO index. 𝑋,-. is then the 
residual 𝑋 − 𝑋)*+% . We separate this resultant field, 𝑋,-.,  into low-frequency 𝑋/*and high-715 
frequency components 𝑋0*, by low-pass filtering the timeseries at each grid point. We then 
rescale both the forced component related to the PDO and the remaining low-frequency 
component so that the signal to noise in the model matches that estimated for the observations; 
i.e.  

 720 

𝑋1 = 7
𝑅($

𝑅#$
	 ∗ 𝑋)*+% +7

1 − 𝑅($

1 − 𝑅#$
∗ 𝑋/* +	𝑋0* 

Note that the higher frequency variance (residual after low-pass filtering) remains at its original 
amplitude, and that the total LP variance is unchanged. The assumption that total variance 
remains constant affects the width of the resultant distributions, but not our ensemble mean 
results. We retain the model generated high-frequency variance simply to ensure the strongest 725 
possible tests of our results.   
 There are multiple potential sources of uncertainty in our estimate of the signal-to-noise 
ratio used for this recalibration. One testable source of uncertainty is the possibility that internal 
variability in observations aligns with the ensemble mean to artificially inflate our estimate of the 
observed signal-to-noise ratio. For our estimate of the signal-to-noise ratio in observations (R2/1-730 
R2, 0.53/(1-0.53) = 1.13) to be so wrong as to be the same as in models (0.07/(1-0.07) = 0.08), 
the correlation between the ensemble mean and internal variability must exceed 0.62. This 
occurs in 1 out of our 572 ensemble members. This potentially thorny ensemble member 
simulates a 3.48% per 30 yrs increase in precipitation between 1983 - 2012 (relative to a 13.3% 
decrease in precipitation in observations). So, even if we accept the small chance that internal 735 
variability has confounded our understanding of the forced PDO - in this one extreme example 
present in the large ensemble, it does not explain the observed drought nor detract from our 
argument that the drought will continue to be forced moving forward.    

Data availability  
All climate model output is publicly available via the Earth System Grid Federation’s website, 740 
accessible at https://esgf.llnl.gov/. NOAA Extended Reconstructed SST V5 (ERSSTv5), 
NOAA/CIRES/DOE 20th Century Reanalysis (V3), and Global Precipitation Climatology 
Project (GPCP) Monthly Analysis Product data provided by the NOAA PSL, Boulder, Colorado, 
USA, from their website at https://psl.noaa.gov. Hadley Centre Sea Ice and Sea Surface 
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Temperature (HadISST) data provided by the Met Office (UK) and available at their website at 745 
https://www.metoffice.gov.uk/hadobs/hadisst/. This study utilized the MATLAB Mapping 
Toolbox to construct maps, including the “Coastlines” dataset71. 
Code availability 

This study used MATLAB and the MATLAB Signal Processing Toolbox and the Statistics and 
Machine Learning Toolbox for statistical analysis. This included use of code from the 750 
WEACLIM toolbox, available on the MATLAB File Exchange72. The code used to perform the 
statistical tests and produce the figures is available on Zenodo at 10.5281/zenodo.15658555 
73. 
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Extended Data Legends 

 860 
Extended Data Fig. 1. The limited effect of ENSO removal on the observed PDO index. 
Observed PDO index timeseries (from NOAA) with and without linearly-removing ENSO for 
unfiltered (annual average) and low-pass (LP) filtered data. 
 
Extended Data Fig. 2. The forced component of the PDO is relatively insensitive to the 865 
PDO index definition. The PDO index in all panels is defined as the 1st principal component of 
North Pacific sea-surface temperatures after removing North Pacific average SSTs (Methods). 
(a) The observed PDO index (black) compared with the ensemble mean PDO index from the all-
forcings simulations (dark blue) and the normalized ensemble mean PDO index from the all-
forcings simulations (light blue). We normalize the forced PDO index strictly to illustrate the 870 
timing of the shifts in both indices; the amplitudes of each timeseries are listed in Extended Data 
Table 2 and discussed in-text. (b) Regression of observed SST (colors) and sea-level pressure 
(contours; hPa per unit of the PDO index) on the observed PDO index. We draw contours every -
0.5 hPa in purple; the zero contour is in black. The KOE region is outlined in solid black. (c) 
Regression of forced SST (colors) and sea-level pressure (contours) on the normalized, forced 875 
PDO index. (d) Correlation coefficients and their significance levels for the three PDO 
definitions in the main text. As in the main text, the KOE SST index is detrended. Significance 
levels are calculated empirically via phase re-shuffling (Methods). 
 
Extended Data Fig. 3. The role of external forcing is similar in a N. Pacific sea-surface 880 
temperature index. An index of linearly detrended, spatial-average sea-surface temperatures in 
the Kuroshio-Oyashio Extension region of the North Pacific is calculated (31° – 36°N, 140° – 
165°E; black outline) and regressed on SSTs in observations and models, which shows that the 
forced signal described in-text is not an artifact of the method we use to calculate the PDO index. 
a) The detrended, observed KOE sea-surface temperature index (black) compared and the 885 
detrended ensemble mean KOE SST index (dark blue) and the normalized, detrended, ensemble 
mean KOE SST index from the all-forcings simulations (light blue). We normalize the forced 
KOE index strictly to illustrate the timing of the shifts in both indices; the amplitudes of each 
timeseries are listed in Extended Data Table 2 and discussed in-text. (b) Regression of observed 
SST (colors) on the observed, detrended, KOE index. (c) Regression of forced SST (colors) on 890 
the normalized, detrended, forced KOE index. 
 
Extended Data Fig. 4. There is a meaningful forced component in the PDO in most single-
model large ensembles. (all panels) For each ensemble size, in each single model large 
ensemble, we randomly select members from the full ensemble (with replacement), average, and 895 
correlate with observations to calculate the mean correlation coefficient(dot) and the 95% 
confidence interval (cloud). Please note that this figure reports the correlation coefficient not its 
square, explained variance (as in Fig. 2d), because some values are negative. Additionally, re-
sampling with replacement may give a false sense of stability and significance for the 
correlations calculated from smaller ensembles. 900 
 
Extended Data Fig. 5. As forcing intensifies, the role of forcing in the PDO grows larger. 
External forcing explains more PDO variance after 1950 on both (a) interannual and (b) 
multidecadal timescales. Please note we only plot bars where model output allows; not all 
models were initialized in or before 1870 (see Extended Data Table 1). Also, the number of 905 
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simulations in each single-model ensemble varies (listed below model name and in Extended 
Data Table 1) implying that these bars may not be directly comparable to each other, especially 
for those models with fewer simulations. Please note that the “all models” value varies slightly 
from the text because we calculate the first principal component of North Pacific SST earlier 
than 1950 in those models that allow. The black dots correspond to the empirical 90% 910 
confidence level, as calculated via phase re-shuffling (Methods).  
 
Extended Data Fig. 6. The model-generated internal and forced PDO patterns appear 
similar to observations and each other. (a) Regression of observed SST on the observed PDO 
index. (b) The average regression pattern of the internal PDO SST pattern across all ensemble 915 
members. In each ensemble member, we calculate the regression of SST on the PDO index at 
each grid point. We then average these regression patterns across the full multi-model ensemble 
with each member weighted equally. (c) Regression of ensemble mean SST on the normalized, 
ensemble mean PDO index from the all-forcings simulations. 
 920 
Extended Data Fig. 7. The explanatory power of the forced PDO is not sensitive to model 
configuration. (Left panels) The observed PDO index (black) compared with the ensemble 
mean PDO index from the all-forcings simulations (dark blue), the normalized ensemble mean 
PDO index from the all-forcings simulations (light blue), and the two standard deviation 
ensemble spread from the all-forcings simulations (blue cloud). (Right panels) Regression of 925 
ensemble mean SST (colors) on the normalized, ensemble mean PDO index. The number of 
members in each ensemble is listed in parentheses next to the description.   
 
Extended Fig. 8. The forced PDO pattern in each large single-model large ensemble. (all 
panels) Regression of ensemble mean SST on the normalized, ensemble mean PDO index from 930 
each single model large ensemble we consider. 
 
Extended Data Table 1. Components of the multi-model large ensemble. Additional details 
on the climate models studied62,63, 69 - 79. Classifications for cloud-aerosol interactions are 
constructed following5,14. 935 
 
Extended Data Table 2. Decomposition of North Pacific SST variance. (a) Ensemble mean 
variance for the PDO index and detrended KOE SST index from the suite of models that were 
initialized in 1850 (see Extended Data Table 1). Values are reported for both the annual average 
indices and the low-pass filtered (LP) indices. (b) Forced, internal, and total variance in the 940 
unfiltered and low-pass filtered (LP) KOE SST index, spliced by time period. The internal 
variance is calculated by subtracting the ensemble mean KOE SST index from each individual 
ensemble member’s detrended KOE SST index, as in the main text. 
 
Extended Data Table 3. The signal-to-noise error in response to external forcing. The 945 
timing and amplitude of the forced PDO for all-forcings ensembles of varying model designs and 
for the single-forcing ensembles (see Extended Data Table 1). The R2 columns report the square 
of the correlation between the ensemble mean and observed PDO indices for the time period 
indicated along with its significance level. The significance level is calculated empirically as in 
Fig. 1a, via phase reshuffling of the ensemble mean in frequency space31. For the R2 columns, 950 
significance testing was applied to the correlation. Please note that the correlation coefficient 
between the GHG-only ensemble mean and observations is negative. The signal-to-total ratios 
estimated in the three right-most columns are calculated as the ratio of forced-to-total variance. 
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The “signal-to-noise paradox”, described in Methods, emerges when there is a mismatch 
between the R2 values and the signal-to-total ratios. Signal-to-total ratios are reported for the 955 
PDO index, KOE SST index, and the North Pacific Index (NPI) for the all-forcings ensembles 
and for the listed time periods for the single-forcing ensembles.  
 

 
 960 


