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Capsule 23 

The 2023-2024 El Niño was partially responsible for the widespread marine heatwaves of 2023 24 

and 2024. 25 

 26 

Abstract 27 

The El Niño-Southern Oscillation (ENSO) is a dominant driver of seasonal-interannual climate 28 

variability and has been linked to record-setting extremes such as marine heatwaves (MHWs). 29 

However, quantifying the effects of ENSO on MHW characteristics remains a challenge due to 30 

data limitations. Here, we use an ensemble of tropical Pacific “Pacemaker” simulations with a 31 

fully-coupled Earth System Model as a testbed for assessing the skill of four empirical methods 32 

aimed at isolating ENSO’s contribution to monthly SST anomalies including MHW extremes. We 33 

then apply the most skillful method to the observational record to determine ENSO’s impact on 34 

the spatial coverage, intensity and duration of MHWs since 1960 (after removing the background 35 

warming trend). We find that the El Niño of 2023-2024 contributed to about half of the global 36 

coverage of record-setting MHWs, with the tropical Indian and tropical Atlantic Oceans being 37 
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most clearly impacted. Our results shed light on the critical role ENSO plays in driving the most 38 

severe MHW conditions in the historical record. 39 

 40 

1. Introduction 41 

Through its far-reaching teleconnections, the El Niño-Southern Oscillation (ENSO) phenomenon 42 

influences sea surface temperature (SST) variability well beyond the equatorial Pacific, making it 43 

among the most important drivers of warm water extremes or marine heatwaves (MHWs) (Oliver 44 

et al., 2018). MHWs can have severe ecological and socioeconomic impacts, hence the study of 45 

their drivers is of critical importance for climate resilience and adaptation. ENSO’s relationship 46 

with MHWs was put into sharp focus in 2023 and early 2024, as record-breaking ocean 47 

temperatures were observed around the globe in conjunction with a strong El Niño event (Huang 48 

et al., 2024; Jiang et al., 2024, 2025; Johnson et al., 2024), leading many to draw a causal link 49 

between the phenomena.  50 

One way to quantify this possible link is to statistically remove the ENSO signal from the 51 

2023-2024 SST anomalies (SSTAs), and then recompute MHW characteristics. Many approaches 52 

for removing the ENSO signal from climate data have been proposed over the years, for example 53 

through linear regression on an ENSO index (Chiang & Vimont, 2004; Robock & Mao, 1995; 54 

Santer et al., 2001) or empirical eigenmodes related to ENSO (Compo & Sardeshmukh, 2010; 55 

Huang et al., 2024; Kelly & Jones, 1996), constructing a stochastic climate model for SST 56 

tendencies that explicitly resolves ENSO forcing (Gunnarson et al., 2024), and using a Linear 57 

Inverse Model (LIM) to filter out ENSO’s dynamical evolution (Solomon & Newman 2011). 58 

However, there has yet to be a systematic comparison of the efficacy of these methods. 59 

In this study we used an ensemble of Community Earth System Model version 2 (CESM2) 60 

Tropical Pacific Pacemaker simulations to judge how well each of the four methods above removes 61 

the “true” ENSO signal from the simulated SSTAs. We then applied the most skillful of these 62 

methods to the observational record to estimate the influence of ENSO on record-breaking MHWs 63 

since 1960, with a particular emphasis on the strong El Niño event of 2023-2024. As this work 64 

focuses on internal climate variability and its relationship to ENSO, we looked at MHWs defined 65 

after removing the anthropogenic warming trend. 66 

 67 

2. Data and Methods  68 
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(a) Tropical Pacific Pacemaker simulations and observational datasets 69 

To evaluate the efficacy of different ENSO-removal methods, we used the CESM2 Tropical 70 

Pacific Pacemaker (CESM2-TPACE) experiments. CESM2-TPACE is based on CESM2 71 

(Danabasoglu et al., 2020), and consists of 10 ensemble members from 1880 to 2019 at ~1˚ 72 

horizontal resolution, each with slightly different initial conditions and forced with historical 73 

radiative forcing from 1880-2014 and SSP3-7.0 from 2015-2019. In addition, each member’s 74 

equatorial Pacific SSTAs were nudged to observations using the Extended Reconstructed Sea 75 

Surface Temperature Version 5 dataset (ERSSTv5; Huang et al., 2017), while the rest of the globe 76 

evolved freely (the outline of the nudging region is shown in Appendix Figs. A1 and A2). As a 77 

result, outside of the nudging region, SSTA variability in the CESM2-TPACE ensemble mean 〈𝑇′〉 78 

can be considered the “true” influence of observed tropical Pacific SSTA variability on global 79 

climate (as simulated by the model), plus the influence of the external radiative forcing common 80 

to each member (see also Deser et al., 2017). To isolate the contribution from ENSO, we further 81 

remove the radiatively-forced component by subtracting the ensemble mean of the CESM2 Large 82 

Ensemble (CESM2-LE; Rodgers et al., 2021) at each location and time, using the 50 members that 83 

were driven by the same radiative forcing as used in CESM2-TPACE (i.e., the members that used 84 

the CMIP6 biomass burning protocol).  85 

Timeseries of “ENSO-free” SSTAs in each member of CESM2-TPACE at each location 86 

and time can then be calculated as: 87 

𝑇′!" = 𝑇′ − 〈𝑇′〉,     1 88 

where T’ is the total SSTA and T’EF represents simulated the “ENSO-free” SSTA that is 89 

independent of both ENSO’s influence and external radiative forcing following the procedures 90 

outlined above. The variable T’EF, in particular, is a useful baseline by which to compare each 91 

ENSO-removal technique. Specifically, we apply each ENSO-removal method to 𝑇′, generating 92 

several estimates of T’EF that can be used to quantitatively assess the efficacy of each method. 93 

However, 〈𝑇′〉 contains a non-zero residual from non-ENSO internal variability due to the small 94 

ensemble size (Rowell et al., 1995), which we corrected for (see the Appendix for more 95 

information). Fig. 1 shows an example of 𝑇′ and 〈𝑇′〉 for a single location in CESM2-TPACE. 96 

We emphasize that the pacemaker experiment was used only to test the different methods. 97 

CESM2 exhibits realistic ENSO teleconnections, even with its own internally-generated (and 98 

somewhat biased) ENSO dynamics (Capotondi et al., 2020), hence we consider CESM2-TPACE 99 
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to offer a realistic testbed for our methods. For the results presented in Section 3, the methods were 100 

applied to observational data, and thus do not carry over any model biases present in CESM2-101 

TPACE. 102 

 103 

 104 
Fig. 1 ENSO and Indian Ocean SSTA time series in the CESM2 Tropical Pacific Pacemaker 105 
experiment. (a) The ensemble-mean Niño3.4 SST index (black curve; note that all ensemble 106 
members have nearly identical ENSO indices by design). Red and blue shading indicate El Niño 107 
and La Niña events, respectively (events are defined based on when the Niño3.4 index exceeds 108 
one or is less than minus one standard deviation, respectively). (b) SSTA timeseries at 30°S, 80°E 109 
in the Indian Ocean, selected as an illustrative example of a location that is highly correlated with 110 
the Niño3.4 index. Individual ensemble members (𝑇′) are shown in grey, and the ensemble mean 111 
(〈𝑇′〉) in black. The red curve indicates the seasonal 90th-percentile threshold used to calculate 112 
marine heatwaves. 113 

 114 

In our evaluation of observed MHW conditions, we use the Hadley Center Global Sea Ice 115 

and Sea Surface Temperature v1.1 dataset of monthly-mean SST at 1° spatial resolution (HadISST; 116 

Rayner et al., 2003) from January 1960 to November 2024. Monthly anomalies were calculated 117 

by removing the climatology for each month separately and then removing the background trend 118 

by subtracting the least damped eigenmode using a Linear Inverse Model (LIM) analysis (see Xu 119 

et al., 2022). We did not analyze grid points which had missing SST data (e.g., from sea ice 120 

coverage). We also used sea level pressure data from the ECMWF Reanalysis v5 (ERA5; Hersbach 121 

et al., 2020), with anomalies calculated by subtracting the monthly climatology and a linear trend. 122 
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 123 

(b) Methods for removing the influence of ENSO  124 

A brief summary of each of the four methods is provided below; details may be found in the 125 

Appendix. 126 

 127 

(i) Linear Regression on the Niño3.4 SST index 128 

The simplest (and most widely used) method for removing ENSO is to assume that SSTAs consist 129 

of a component driven by internal variability independent of ENSO and a component which is a 130 

linear function of the ENSO state, in this case given by the Niño3.4 SST index (the average SSTAs 131 

over 5°N-5°S, 170°W-120°W; Barnston et al., 1997). The ENSO component of SSTAs is found 132 

via linear regression onto the Niño3.4 SST index. Because of the large thermal inertia of the ocean 133 

mixed layer, the peak correlation between SSTAs and Niño3.4 usually occurs when Niño3.4 leads 134 

by a few months (e.g., Alexander et al., 2002). Thus, we evaluated the regression method at two 135 

different leads: 0 and 3 months. 136 

 137 

(ii) EOF Removal  138 

The second method is a more general version of the first method, employing Principal 139 

Component (PC) timeseries associated with the leading Empirical Orthogonal Function (EOF) 140 

spatial patterns of global SSTAs in place of the single Niño3.4 SST index (Huang et al., 2024; 141 

Kelly & Jones, 1996). We evaluated the optimal number of EOFs/PCs to remove based on the 142 

metrics outlined in Section 2c. 143 

 144 

(iii) Tendency Regression  145 

The third method uses an extension of the original stochastic climate model developed by 146 

Hasselmann, (1976): 147 

 148 
#$%(')
#'

= 𝜆𝛵′(𝑡) + 𝛽𝑁(𝑡) + 𝜉(𝑡),   2 149 

 150 

where λ is a feedback (damping) coefficient, β is an ENSO teleconnection coefficient, N(t) is an 151 

ENSO index (in this case Niño3.4), and ξ(t) is stochastic (white noise) forcing. Similar models 152 
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have been successfully used to assess the remote influence of ENSO on modes of SST variability 153 

such as the Pacific Decadal Oscillation (Newman et al., 2003, 2016; Schneider & Cornuelle, 154 

2005) and Indian Ocean Dipole (Stuecker et al., 2017; S. Zhao et al., 2019) as well as on North 155 

Pacific SST variability in general (Gunnarson et al., 2024; Park et al., 2006). Both λ and β have 156 

seasonally-modulated values, allowing Eq. 2 to represent dynamics such as the ENSO 157 

combination modes (Stuecker et al., 2013). To construct SST anomalies without the influence of 158 

ENSO, Eq. 2 is fit to the data at each grid point via multiple linear regression and then integrated 159 

forward in time without the ENSO teleconnection term. 160 

 161 

(iv) LIM Filter 162 

The fourth method uses a Linear Inverse Model (LIM) to construct an optimal perturbation filter 163 

following Solomon & Newman (2012). The LIM assumes the SST dynamics can be represented 164 

as a linear system forced by stochastic forcing (Penland & Sardeshmukh, 1995), 165 

 166 
#)
#'
= 𝐿𝑥 + 𝜉,    3 167 

 168 

where 𝑥 is the state vector of the system (i.e., SSTAs at different times and locations in this study), 169 

𝐿 is the dynamical operator matrix describing the dynamical features of the evolution of 𝑥, and 𝜉 170 

is the stochastic forcing vector. For a given initial state 𝑥(𝑡), the most likely state 𝑥2 at time t+τ is 171 

 172 

𝑥2(𝑡 + 𝜏) =𝑒𝑥𝑝 𝑒𝑥𝑝	(𝐿𝜏)	𝑥(𝑡).    4 173 

 174 

The LIM methodology objectively determines the “optimal initial condition” that evolves into a 175 

final specified condition (e.g., mature ENSO). 𝐿 is generally non-normal, with orthogonal 176 

eigenvectors (Penland & Matrosova, 2006), allowing transient anomaly amplification through 177 

constructive eigenmode interference before anomalies eventually decay. The “optimal initial 178 

condition” is the condition that maximize the state vector amplification (Penland & Sardeshmukh, 179 

1995). Following Solomon & Newman (2012), we use LIM to remove the ENSO signal from 180 

SSTAs by filtering out the variability that evolves from the optimal initial condition of a mature 181 

ENSO event through the next mature ENSO event. 182 

 183 
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(c) Evaluation Metrics 184 

We used two metrics to assess how well each method performed at removing the influence of 185 

ENSO from the SSTA field: 1) the lagged correlation with Niño3.4 index with the ENSO-removed 186 

SSTAs; and 2) comparison of the variance of the ENSO-removed SSTA field with that of the 187 

“ENSO-free” SSTAs from the pacemaker experiment (see Eq. 1). A perfect method would show 188 

zero correlation with Niño3.4 at all lags and would have the same variance as the ENSO-free 189 

SSTAs.  190 

 191 

(d) MHW definitions 192 

MHWs can be defined in several ways, particularly in regard to fixed versus shifting baselines 193 

(Amaya et al., 2023; Smith et al., 2025). As our study is concerned with ENSO’s influence on 194 

internal climate variability and not the mean state change, we use a shifting baseline (i.e., by 195 

subtracting the pattern of mean state change; see Section 2a). In this study, we define a MHW as 196 

any month which exceeds the 90th-percentile of SSTAs for that calendar month in a given grid cell. 197 

We compute the MHW thresholds using the full SSTAs (i.e., before removing the influence of 198 

ENSO). 199 

 MHW duration is defined as the number of consecutive months in a grid cell that 200 

experience MHW conditions (note that this definition is different than for daily data). Because of 201 

the limited observational time span, we smooth the data spatially by computing the mean and 202 

extremes (97.5th-percentile) of the MHW durations in 5°x5° bins. MHW intensity is calculated by 203 

summing the SSTAs of MHWs in a grid cell and then dividing by the total number of months in 204 

the dataset (expressed in units of °C-weeks/year, analogous to degree heating weeks). As this is an 205 

integrated value which is less noisy than the duration statistics, spatial binning is unnecessary. 206 

 207 

3. Results 208 

(a) ENSO’s fingerprint  209 

Of the four methods to remove ENSO’s influence on SSTAs outlined in Section 2b, the SST 210 

Tendency Regression and LIM Filter performed the best and showed comparable skill (see the 211 

discussion in the Appendix). Because the Tendency Regression method is much simpler to 212 

implement and was slightly better at removing the influence of ENSO compared to the LIM Filter 213 

method, we present results based on that approach in the main text; however, very similar results 214 
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were found using LIM Filter (Supplementary Figs. S1-S3). The Linear Regression method (with a 215 

3-month lead) removed the Niño3.4 correlation reasonably well but had variance well in excess of 216 

the “true” ENSO-free variance. The EOF Removal method (with two or three EOFs removed) 217 

reproduced the ENSO-free variance the best out of all of the methods, but was worse at removing 218 

the Niño3.4 correlation than the Tendency Regression or LIM Filter methods. 219 

 Based on these results, we applied the Tendency Regression method to observed SSTAs to 220 

quantify the impact of ENSO on MHWs over the historical record (since 1960) as well as the 221 

influence of the most recent El Niño on the record-breaking MHWs observed in 2023 and early 222 

2024. 223 

Although the Tendency Regression method is an empirical statistical approach for 224 

quantifying ENSO’s remote influence on SSTA, its results are in good correspondence with 225 

previous literature on the dynamics of ENSO teleconnections. In particular, the spatial pattern of 226 

ENSO-induced SSTA forcing obtained with the Tendency Method (Fig. 2) is similar to that found 227 

in previous studies (e.g., Alexander et al., 2002; Lau & Nath, 1994, 1996) with (during El Niño) a 228 

“horseshoe” pattern of cooling in the North and South Pacific, warming in the Indian Ocean, and 229 

warming in the subtropical North and South Atlantic with cooling poleward. Atmospheric 230 

circulation anomalies correlated with ENSO overlie these warming and cooling patterns: the so-231 

called “atmospheric bridge” linking extratropical SSTs with the equatorial Pacific via atmospheric 232 

Rossby waves. For example, in the North Pacific a dipole pattern with cooling in the center of the 233 

basin and warming along the west coast of North America is associated with a deepening of the 234 

Aleutian Low. As established by previous studies, the cold and dry air advected along the western 235 

side of this atmospheric circulation anomaly cools the ocean during El Niño, with warm and humid 236 

air advected along the eastern side of the circulation anomaly, leading to ocean warming 237 

(Alexander et al., 2002). Similar teleconnection patterns are present in the South Pacific and North 238 

and South Atlantic. In the equatorial Indian and Atlantic oceans, modulations of the Walker 239 

circulation link SSTAs to ENSO (see Taschetto et al., 2020 for a review of ENSO atmospheric 240 

teleconnections).  241 

 242 
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 243 
Fig. 2. ENSO teleconnection strength in the HadISST observational dataset using the Tendency 244 
Regression method. The teleconnection strength (color shading; K/month) is the annual average 245 
of the teleconnection coefficient β multiplied by the standard deviation of the Niño3.4 Index, which 246 
represents a typical value for the remote forcing during an El Niño event. As discussed in the 247 
Appendix, the Tendency Regression method cannot reproduce ENSO itself, thus the 248 
teleconnection strength in the equatorial Pacific is not physically meaningful. The contours show 249 
the regression of ERA5 sea level pressure on the Niño3.4 index, with dashed contours representing 250 
negative values, a contour interval of 30 Pa/K, and a thicker line at 0 Pa/K. 251 
 252 

(b) Impact of ENSO on observed MHW duration and intensity 253 

The influence of ENSO on observed MHW duration (mean and extreme) and intensity during 254 

1960-2024 is shown in Fig. 3. ENSO acts to increase MHW duration and intensity almost 255 

everywhere, in agreement with previous work (Oliver et al., 2018). The largest increases in both 256 

duration and intensity due to ENSO, excepting the equatorial Pacific itself, occur in regions 257 

strongly influenced by ENSO teleconnections, in particular the tropical Indian and Atlantic sectors, 258 

and a horseshoe-like pattern in the North and South Pacific. On average over the global oceans 259 

between 60°S and 60°N (excluding the equatorial Pacific: 20°S-15°N, 160°E-70°W), ENSO 260 

increases the mean MHW duration by 9.2% and increases the extreme (97.5th-percentile) MHW 261 

duration by 23.9%. In areas of strong ENSO influence, the increase in mean MHW duration can 262 

be over 50% and the 97.5th-percentile duration can increase by over 100%. The latter is reflective 263 

of ENSO’s influence on very persistent, but rare, MHWs (see Supplementary Fig. S4). The global 264 

average MHW intensity is 2.27 °C-weeks/year without ENSO and 2.78 °C-weeks/year with 265 

ENSO, an increase of 22.5%, although in areas of high teleconnection strength in the Pacific and 266 

Indian oceans, the increase in intensity can exceed 100%. 267 
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 268 

 269 
Fig. 3. ENSO’s influence on the mean and extreme (97.5th percentile) durations of MHWs and the 270 
mean intensity of MHWs during 1960-2024 based on the HadISST data set. (Top row) Observed; 271 
(Middle row) After removing the influence of ENSO using the Tendency Regression method; and 272 
(Bottom row) Their difference (e.g., ENSO influence, shown as a percentage of the ENSO-273 
removed value). Duration is calculated using 5°x5° bins. MHW intensity is the sum of the MHW 274 
SSTAs divided by the number of years in the data in a given grid cell (°C-weeks/year). Note the 275 
different color bar ranges in the difference panels. 276 
 277 

(c) Impact of ENSO on observed MHW spatial coverage 278 

The area of the global oceans covered by MHWs at any given time is also greatly affected by 279 

ENSO. By defining MHWs using a 90th-percentile threshold, we expect ~10% of the oceans to 280 

experience a MHW at any given time due to random chance. However, our results indicate that El 281 

Niño tends to greatly increase observed MHW spatial coverage beyond the equatorial Pacific (Fig. 282 

4). To quantify this effect, we define Aobs and ATR as the areal percentage of the global ocean (60°S-283 

60°N, excluding the equatorial Pacific) with MHW conditions before and after removing ENSO 284 

(using the Tendency Regression method), respectively. We also define a “signal-to-noise ratio” as 285 

 286 

𝑆𝑁𝑅 = *!"#+*$%
*$%

.    5 287 

 288 

The SNR represents the contribution from ENSO to the global MHW area relative to the 289 

contribution from unrelated internal variability.  290 

 291 
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 292 

Fig. 4. ENSO's influence on the spatial coverage of MHWs based on the HadISST dataset. (a) 293 
Niño3.4 index. El Niño events are shaded red and La Niña events are shaded blue). (b) Areal 294 
percentage of the global ocean (60°S-60°N, excluding the equatorial Pacific: 20°S-15°N, 160°E-295 
70°W) with MHW conditions before (Aobs; black curve) and after removing ENSO using the 296 
Tendency Regression method (ATR; green curve). (c) Aobs - ATR. (d) The ENSO “signal-to-noise” 297 
ratio (SNR). (e) Probability density function of Aobs (grey) and ATR (green). The February 2024 298 
MHW Aobs and ATR values are indicated by the dotted gray and dashed green lines, respectively.   299 

 300 

During El Niño events, Aobs spikes, with peak values between 21% - 27% (24.6% in 301 

February 2024; Fig. 4b, black curve). These spikes are greatly reduced or non-existent for ATR (Fig. 302 

4b, green curve), as confirmed by the difference Aobs - ATR (Fig. 4c). The maximum MHW area 303 

coverage typically lags the peak of an El Niño event by several months, likely due to the effect of 304 

the ocean integrating the atmospheric forcing from the ENSO teleconnection. La Niña events do 305 

not appear to significantly affect MHW coverage, possibly due to their lesser amplitude compared 306 

to El Niño events. In other words, only El Niño creates a large enough signal to clearly emerge 307 

from the background noise of the climate system for this particular measure of global MHWs (note 308 

that La Niña can induce MHWs on a regional scale; e.g., Feng et al. (2013)). 309 

The SNR also peaks during El Niño, although it reveals that some spikes in global MHW 310 

coverage appear to be due to a confluence of the effects of ENSO and random internal variability 311 

(Fig.4d). For example, the 1987-1988 El Niño had maximum SNRs of 1.0, indicating that the 312 

MHW coverage due directly to the El Niño was comparable in magnitude to that caused by other 313 
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forms of internal variability. In contrast, the 2015-2016 El Niño had the highest observed SNR of 314 

2.2, thus about 2/3rd of the total MHW area was caused directly by the El Niño. 315 

The 2023-2024 El Niño had a maximum SNR of 1.1 (in December 2023), with an SNR of 316 

1.0 at the peak of the MHW coverage in February 2024 and an average of 0.7 between January 317 

and May 2024. This suggests that internal variability unrelated to ENSO was roughly as important 318 

in generating the extensive global MHW coverage during that event as the El Niño was. 319 

Nevertheless, a histogram of MHW spatial coverage (Fig. 4e) shows that the maximum spatial 320 

coverage of MHWs in 2023-2024 was beyond that caused by internal variability alone. Thus, the 321 

widespread nature of MHWs in February 2024 could not have occurred without El Niño’s 322 

influence. 323 

 324 

(d) Impact of the 2023-2024 El Niño  325 

Fig. 5 shows the spatial structure and evolution of the 2023-2024 El Niño and its effect on global 326 

MHWs (Supplementary Fig. S5 shows the same information for historical El Niño events). The 327 

influence of ENSO (recall Fig. 2) can be gleaned by the difference between the observed SSTAs 328 

and those computed via our Tendency Regression method. In the Indian Ocean, the El Niño 329 

warmed the eastern half of the basin, leading to a positive-phase Indian Ocean Dipole (IOD) event 330 

in the fall and winter of 2023, which then transitioned to basin-wide warming in early 2024. This 331 

sequence and its relationship with ENSO is consistent with previous studies (Klein et al., 1999; 332 

Saji et al., 1999; Stuecker et al., 2017). With ENSO’s influence removed, the IOD pattern was 333 

considerably diminished, and MHWs remained only in the southern Indian Ocean.  334 

 335 

 336 

 337 
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 338 
Fig. 5. Evolution of the 2023-2024 El Niño and associated MHWs. (Left column) observed SSTAs 339 
from HadISST with MHWs outlined and hatched in black. (Middle column) SSTAs and MHWs 340 
without the influence of ENSO calculated using the Tendency Regression method. (Right column) 341 
Difference between observed and ENSO-removed SSTAs and MHW. Areas where ENSO’s 342 
influence caused MHWs are outlined and hatched in red; areas where ENSO suppressed MHWs 343 
are outlined in hatched in blue. 344 
 345 

The El Niño’s role in the North Pacific was to suppress MHWs in the central part of the 346 

basin (in November and December 2023), and enhance them along the west coast of North 347 

America, a result of the positive phase of the Pacific Decadal Oscillation, which is strongly linked 348 

to ENSO (e.g., Newman et al., 2016; Schneider & Cornuelle, 2005). MHWs were enhanced in the 349 

South Pacific, likely a result of the Pacific-South American modes of atmospheric variability, 350 

which carry ENSO’s influence to the South Pacific (Mo, 2000; Mo & Higgins, 1998). 351 

 In the Atlantic Ocean, a considerable portion of the MHW coverage during 2023-2024 352 

appears to have originated from internal variability unrelated to ENSO, as evidenced by the 353 
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sizeable MHW area that remains after ENSO’s influence is removed, particularly in the South 354 

Atlantic after February 2024 (Fig. 5, middle column). Nevertheless, the El Niño did lead to MHWs 355 

in the tropical Atlantic as well as MHWs in the subtropical North and South Atlantic (Fig. 5, right 356 

column). Warming in the tropical and subtropical North Atlantic has been linked to El Niño (e.g., 357 

Alexander & Scott, 2002; Huang, 2004) as has warming in the subtropical South Atlantic 358 

(Rodrigues et al., 2011, 2015). Thus 2023-2024 MHWs in the Atlantic, which covered a large part 359 

of the basin, originated from a confluence of ENSO and unrelated internal climate variability. 360 

 361 

4. Conclusions 362 

In this study we compared several empirical methods for removing the influence of ENSO from 363 

global SSTAs using a “perfect model” approach, and then applied the most skillful method to 364 

observed MHWs during 1960-2024 after removing the background warming trend. Using the 365 

CESM2-TPACE experiments as a testbed, we concluded that the Tendency Regression and LIM 366 

Filter methods are the most skillful at removing the influence of ENSO based on two metrics. The 367 

Tendency Regression method is somewhat more flexible, simple to implement, and does not 368 

require large-scale spatial data, which may be useful when additional climate modes or physical 369 

processes are of interest or for situations when the data is sparse (e.g., paleoclimate studies). 370 

 Using the Tendency Regression method to remove the influence of ENSO from 371 

observational SST data, we found that ENSO acts to increase the mean MHW duration by 9.2% 372 

and the MHW intensity by 22.5%. The spatial coverage of MHWs spikes during El Niño events, 373 

typically reaching an area of between 21% to 27% of the global ocean outside the equatorial Pacific 374 

compared to 10% or less during non-El Niño years. By removing the influence of ENSO, we 375 

confirmed that these spikes indeed are caused by El Niño events. About half of the MHW spatial 376 

coverage in 2023-2024 was caused by the concurrent El Niño. Indeed, we find that the widespread 377 

nature of MHWs in February 2024 could not have occurred without El Niño’s influence. 378 

 The evolving spatial pattern of MHWs during the 2023-2024 El Niño follows closely 379 

previously studied global ENSO teleconnections. During 2023-2024, MHWs in much of the Indian 380 

Ocean were found to be attributable to the influence of El Niño, as was the suppression and 381 

enhancement of MHWs in the North Pacific and enhancement of MHWs in the South Pacific. The 382 

Atlantic MHWs, which covered a large part of the basin, were caused by a confluence of ENSO’s 383 

remote influence and unrelated internal variability. 384 
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 Our results highlight the importance of ENSO in driving marine heatwaves worldwide. 385 

However, there is little agreement across climate models on how ENSO has and will respond to 386 

anthropogenic forcing (Maher et al., 2023). Thus, to understand how MHWs will change as the 387 

world warms, accurate modeling of ENSO dynamics is crucial. 388 

 389 
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 405 

Appendix 406 

Our methods for removing the influence of ENSO as well as our metrics for evaluating their 407 

efficacy are outlined briefly in the main text (Section 2b-c). Here we present a detailed overview 408 

and discussion of these methods. 409 

 410 

1. Linear Regression 411 

The simplest (and thus most widely used) method to remove the ENSO signal from SSTAs is to 412 

assume that the anomaly can be separated into a component driven solely by internal variability 413 

that is linearly independent of ENSO and a component which is a linear function of the ENSO 414 

state: 415 

https://www.earthsystemgrid.org/
https://www.metoffice.gov.uk/hadobs/hadisst/
https://doi.org/10.5281/zenodo.15015971
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 416 

𝑇%(𝑡) = 𝑇′,-(𝑡) + 𝑟𝑁(𝑡 − 𝜏),   A1 417 

 418 

where T’ is the total SSTA at a given location (as in Eq. 1), T’LR is the SSTA resulting from internal 419 

variability that is linearly independent of equatorial Pacific SST variability, r is a regression 420 

coefficient, N is an ENSO index (e.g., Niño3.4) and τ is a time lag in months. We tested this method 421 

for ENSO leads of τ=0 months and τ=3 months. To remove the ENSO signal, r is computed at 422 

each grid point via linear regression and Eq. A1 is solved for T’LR. 423 

 424 

2. EOF Removal 425 

Empirical Orthogonal Functions (EOFs) are widely used in climate science to identify leading 426 

modes of variability. For example, the leading EOF of equatorial Pacific SSTAs is usually 427 

identified as Eastern Pacific (EP) El Niño and the second EOF as Central Pacific (CP) El Niño 428 

(e.g., Timmermann et al., 2018). By subtracting the leading EOFs from the SSTAs, the influence 429 

of ENSO can be removed (Huang et al., 2024; Kelly & Jones, 1996).  430 

 In our analysis, we compute the first 50 global SSTA EOFs and corresponding Principal 431 

Component (PC) time series. We then subtracted the first N EOFs from the original data: 432 

 433 

𝑇′!."(𝑥, 𝑦, 𝑡) = 𝑇′(𝑥, 𝑦, 𝑡) − /
0(1)

∑ 𝐸𝑂𝐹2(𝑥, 𝑦)𝑃𝐶2(𝑡)3
24/ ,   A2 434 

 435 

where T’EOF is the ENSO-free SSTA, w(y) is the area weighting used to compute the EOFs (the 436 

cosine of the latitude y), EOFn and PCn are the nth Empirical Orthogonal Function and Principal 437 

Component, respectively. We tested a range of N when evaluating this method (N=1 to N=4). 438 

Supplementary Fig. S6 shows the first four leading EOF spatial patterns for one member of the 439 

Pacemaker ensemble. 440 

 441 

3. Tendency Regression 442 

The Tendency Regression method describes a model of ENSO’s remote influence on SSTAs that 443 

is constructed by adding an ENSO teleconnection term to the original local linear stochastic 444 

climate model developed by Hasselmann, (1976): 445 

 446 
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#$%(')
#'

= 𝜆𝛵′(𝑡) + 𝛽𝑁(𝑡) + 𝜉(𝑡),   A3 447 

 448 

where λ is a feedback (damping) coefficient, β is an ENSO teleconnection coefficient, and ξ(t) is 449 

stochastic (white noise) forcing. Physically, the right-hand-side of Eq. A3 represents three 450 

processes: feedback (damping) by air-sea heat fluxes and oceanic processes (Frankignoul, 1985), 451 

forcing by the air-sea heat fluxes that result from ENSO-excited atmospheric planetary waves (i.e., 452 

“atmospheric bridge”; Lau & Nath, 1996); and stochastic forcing by air-sea heat fluxes and 453 

anomalous Ekman advection of the mean SST gradient (Larson et al., 2018). Similar models have 454 

been successfully used to assess the remote influence of ENSO on modes of SST variability such 455 

as the Pacific Decadal Oscillation (Newman et al., 2003, 2016; Schneider & Cornuelle, 2005) and 456 

Indian Ocean Dipole (Stuecker et al., 2017; S. Zhao et al., 2019) as well as on North Pacific SST 457 

variability in general (Gunnarson et al., 2024; Park et al., 2006). 458 

Taking into account seasonal modulations, the feedback and ENSO teleconnection 459 

coefficients are defined as 460 

 461 

𝜆 = 𝜆5 + 𝜆/𝑠𝑖𝑛(𝜔6𝑡) + 𝜆7𝑐𝑜𝑠(𝜔6𝑡),  A4 462 

𝛽 = 𝛽5 + 𝛽/𝑠𝑖𝑛(𝜔6𝑡) + 𝛽7𝑐𝑜𝑠(𝜔6𝑡),  A5 463 

 464 

where ωa is the angular frequency of the annual cycle (2π/12 months-1) and λ1, λ2, β1, and β2 465 

determine the amplitude and phase of the seasonal modulation of the teleconnection around the 466 

constants λ0 and β0 (De Elvira & Lemke, 1982; Nicholls, 1984; Stuecker et al., 2017). 467 

To remove the ENSO signal, Eq. A3 is fitted to the SSTAs at each location using multiple 468 

linear regression. dT’/dt is then computed using forward finite differencing. The residual from the 469 

regression is ξ. Then a new SSTA time series is integrated without the ENSO teleconnection term: 470 

 471 

𝑇′$-(𝑘 + 1) = 𝑇′$- + [𝜆(𝑚)𝑇′$-(𝑘) + 𝜉(𝑘)]𝛥𝑡,  A6 472 

 473 

where T’TR is the SSTA forced only by stochastic noise, k is the time index, m is the month index 474 

(k modulo 12) and Δt is the time step (1 month). The integration is initialized with the SSTA at the 475 

start of the time period of the data (see Gunnarson et al. (2024) for further discussion). The spatial 476 
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pattern of the first EOF of ξ resembles ENSO and its teleconnections, albeit with a white-noise PC 477 

time series, thus we remove the first EOF of ξ before integrating Eq. A6. 478 

The advantage of the Tendency Regression method over the simple regression method is 479 

that it more faithfully represents the physical processes that generate SSTAs. The persistence of 480 

SSTAs forced by ENSO is directly modeled, eliminating the need for the lagged ENSO regression 481 

in the simple regression method above. A limitation of this method is that it cannot remove remote 482 

ENSO forcing that lags the ENSO time series, e.g. oceanic planetary waves excited by ENSO 483 

(Sprintall et al., 2020). Additionally, it does not model the reemergence of SSTAs forced by ENSO 484 

due to the seasonally-varying mixed layer depth in the extratropics (Alexander & Deser, 1995; 485 

Newman et al., 2016). It also cannot replicate ENSO itself, but if one is interested in SSTAs outside 486 

the equatorial Pacific, this is not a concern. 487 

 488 

4) Linear Inverse Model 489 

The LIM is used to describe the SSTAs system in the form of (Penland and Sardeshmukh, 490 

1995): 491 

 492 
#)
#'
= 𝐿𝑥 + 𝜉,    A7 493 

 494 

where 𝑥 is the state vector of the system (i.e., SSTAs at different times and locations), 𝐿 is the 495 

dynamical operator matrix describing the dynamical features of the evolution of 𝑥, and 𝜉 is the 496 

stochastic forcing matrix. 𝐿 can be calculated as 497 

 498 

𝐿 = 𝜏+/𝑙𝑛[𝐶(𝜏)𝐶(0)+/],   A8 499 

 500 

where 𝐶(0) and 𝐶(𝜏) are the covariance matrix of vector 𝑥 at lag-0 and lag-τ, respectively. 501 

The dimensionality of 𝑥 is typically reduced via EOF analysis. We used the first 40 global 502 

SSTA EOFs. The state vector 𝑥(𝑡) then consists of the first 40 PCs, which explains 70.2% of the 503 

total global CESM2-TPACE SSTA variance.	504 

The LIM methodology allows an objective determination of optimal initial condition that 505 

evolve into the final specified events (e.g., a mature ENSO event). Using the L2 norm (or 506 
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Euclidean norm), this amplification factor 𝛾(𝜏) is quantified as the ratio of the state vector's 507 

magnitude at time 𝜏 to its magnitude at the initial time: 508 

 509 

𝛾7(𝜏) = )(8)$)(8)
)(5)$)(5)

= )(5)$9$(8)9(8))(5)
)(5)$)(5)

.  A9 510 

 511 

The optimal initial condition (𝑥(𝑡) = 𝜙/(𝜏)) can then be identified as the first right 512 

eigenvector of 𝐺$(𝜏)𝐺(𝜏), with 𝛾(𝜏) the corresponding eigenvalue. The final condition after 𝜏: 513 

months evolved from  𝜙/ derived by 𝜏 = 𝜏: can be expressed as: 𝑥(𝑡 + 𝜏:) = 𝐺(𝜏:)𝜙/(𝜏:). 514 

For the pacemaker experiment, 𝛾(𝜏) is the highest at 𝜏: = 6 to 9 months, which is realized 515 

by the evolution of observed ENSO events of both signs (Penland and Magorian, 1993; Penland 516 

and Sardeshmukh, 1995; Newman et al. 2011a; Newman et al. 2011b; Solomon and Newman 517 

2011). Therefore, to apply LIM analysis for filtering out the evolving ENSO phenomenon, it is 518 

necessary to remove both the optimal initial condition and its resulting evolution. 519 

Following Solomon and Newman (2011), we used a LIM to remove ENSO’s influence on 520 

SSTAs by constructing a filter specifically removing only variability that actually evolves from 521 

the optimal initial condition through a mature ENSO event. The filter is constructed in the 522 

following steps: (1) the projection on 𝜙/(𝜏:) at time 𝑡 = 𝑡; is determined and its subsequent linear 523 

evolution over the time interval 𝑡 = [𝑡; , 𝑡;<8&] removed. (2) the projection on 𝜙/(𝜏:) of the residual 524 

anomaly at time 𝑡 = 𝑡;</ is determined and the process is repeated. Specifically: 525 

 526 

𝐹𝑜𝑟	𝑡 = 0: 𝛼(0) = 𝜙/(𝜏:) ∙ 𝑥(0)  A10 527 

𝑅(0) = 𝑥(0) − 𝛼(0)𝐺(0)𝜙/(𝜏:)  A11 528 

𝐹𝑜𝑟	𝑡 = 1:	𝛼(1) = 𝜙/(𝜏:) ∙ (𝑥(1) − 𝛼(0)𝐺(1)𝜙/(𝜏:)  A12 529 

𝑅(1) = 𝑥(1) − 𝛼(0)𝐺(1)𝜙/(𝜏:) − 𝛼(1)𝐺(0)𝜙/(𝜏:)  A13 530 

… 531 

𝐹𝑜𝑟	𝑡 = 𝑛:	𝛼(𝑛) = 𝜙/(𝜏:) ∙ (𝑥(𝑛) − ∑ 𝛼(𝑛 − 𝜏)𝐺(𝜏)𝜙/(𝜏:)
8&
84/  A14 532 

𝑅(𝑛) = 𝑥(𝑛) − ∑ 𝛼(𝑛 − 𝜏)𝐺(𝜏)𝜙/(𝜏:)
8&
845   A15 533 

 534 

where 𝛼 is the projection of 𝜙/(𝜏:) on the SSTA at that point in the iteration and the summations 535 

are over 𝜏. 536 
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We remove the evolution of a projection on 𝜙/(𝜏: = 3) over 𝜏/ = 25 months in our filter. 537 

The use of 𝜏: = 3 months follows Solomon and Newman (2011); we also tried 𝜏: = 3 from 4-8 538 

months, but the evolution is quite similar and filtering it yields similar results. 539 

 540 

5. Evaluation Metrics 541 

To quantify how well each method removes the ENSO signal from SSTAs, we employed two 542 

metrics. The first is the correlation between T’X at each grid point and the Niño3.4 index at several 543 

lags (SSTA lagging Niño3.4), where the subscript X represents the different estimates of T’EF 544 

generated using the methods described above. Note that it is critical that a method remove the 545 

ENSO correlation across a range of lags. For example, removing the 0-month-lag ENSO regression 546 

by definition eliminates the simultaneous correlation with Niño3.4, but may fail to remove the 547 

ENSO signal at other lags.  548 

While a method that completely removes the ENSO signal would have negligible 549 

correlation at all lags, a successful method must also remove the ENSO signal while 550 

simultaneously leaving the internal variability unrelated to ENSO unaffected. As an extreme but 551 

illustrative example, if we were to remove the first 50 EOFs, the resulting SSTAs would have near-552 

zero correlation with Niño3.4 and the method would be excellent as judged by our first metric. 553 

However, because those 50 EOFs contain much of the explained variance, the SSTAs themselves 554 

would be near zero and thus give little information about variability unrelated to ENSO. Therefore, 555 

our second metric compares the variance of T’X to the variance of T’EF. To a first order, SSTA 556 

variance controls the MHW threshold, which is often calculated as the 90th percentile of SSTAs at 557 

a given location and time of year (Oliver et al., 2021). Thus, having the correct “ENSO-free” 558 

variance is highly important to “ENSO-free” MHW statistics. 559 

We must also compensate for the small ensemble size of the CESM2-TPACE. At each time 560 

step there will be an error in calculating the “true” or population ensemble mean in Eq. 1 (i.e.,  561 

〈𝑇′〉) which is normally distributed with a mean of zero and variance σ2[T’]/Nens, where Nens is the 562 

ensemble size (e.g., Leith, 1973). In effect, some of the non-ENSO internal variability is 563 

inadvertently incorporated into the ensemble mean because of the finite sample size. Due to the 564 

relatively small ensemble size of CESM2-TPACE (Nens=10), this error can be non-negligible, 565 

particularly in areas of high SST variability. 566 
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 This error also affects our variance comparison metric, since T’PM is inflated by an 567 

additional component of σ2[T’]/Nens compared with the case where the true population mean was 568 

used instead of the sample mean (Matsumura et al., 2010; Rowell et al., 1995). To account for this 569 

error, we subtracted the excess variance to compute an estimate of the true ENSO-free variance: 570 

 571 

𝜎'=>:7 [𝑇′!"] ≈ 𝜎7[𝑇′!"] −
?'[$(]
3)*#

.    A16 572 

 573 

To test the significance of the Niño3.4 correlation, we then use the method of Ebisuzaki 574 

(1997). We generated 500 synthetic ENSO indices that have Fourier coefficients of the same 575 

modulus as the original ENSO index, but with randomized phases at each frequency. Thus, the 576 

synthetic ENSO indices have the same spectral and autocorrelation characteristics as the original 577 

index, but are independent. At each grid point, for each ensemble member, we computed the 578 

correlation between T’EF and all 100 synthetic ENSO indices to build up a probability density 579 

function for the absolute value of the correlation. The 95th percentile of this probability density 580 

function is the threshold over which a correlation between the ENSO-removed SSTAs and the real 581 

ENSO index is considered to be statistically significant. 582 

To test the significance of the difference in variance, we employ the F-test while 583 

accounting for temporal autocorrelation of the data when estimating the effective degrees of 584 

freedom (Preisendorfer et al., 1981). Because the effective degrees of freedom for the pacemaker 585 

ensemble are on the order of 103-104, virtually all differences in variance shown in Fig. A2 are 586 

significant at the 95th-percentile level. 587 

 588 
6. Evaluating different ENSO-removal methods 589 

Fig. A1 shows the correlation of the ENSO-free SSTAs calculated by each method as a function 590 

of lag (SST lagging Niño3.4). The Linear Regression (with a Niño3.4 lead of three months) 591 

performs well at zero lag, but its efficacy declines as the lag increases (the correlation at three 592 

months lag is zero by construction). At 12 months lag, it is hardly better than if ENSO’s influence 593 

had not been removed at all. The EOF Removal method has some areas of significant correlation 594 

at all lags. Note that as more EOFs are removed, the correlation at all lags decreases (see 595 

Supplementary Fig. S7). However, as we will discuss, removing more EOFs begins to remove 596 

variability unrelated to ENSO, limiting the utility of this method. The Tendency Regression 597 
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performs excellently at zero through six months lag, but its performance declines to a level similar 598 

to the EOF method at lags of nine and 12 months. The LIM Filter method is worse than the 599 

Tendency Regression method at lags zero to six months, but is the best of all methods at nine and 600 

12 months. 601 

 602 
Fig. A1. Correlation between T’ (i.e., total SSTAs) and the ensemble mean Niño3.4 in CESM2-603 
TPACE (first column). Correlation between T’X (i.e., “ENSO-free” SSTAs) from each of our 604 
ENSO-removal methods and the ensemble mean Niño3.4 in CESM2-TPACE (second through fifth 605 
columns). Each row depicts different lags (SST lagging Niño3.4). The pacemaker nudging region 606 
is outlined and hatched. Areas with correlations significant above the 95th-percentile are stippled. 607 
 608 

Fig. A2 shows the difference between the ENSO-free SSTA variance calculated using 609 

CESM2-TPACE and the variance of the SSTAs resulting from our methods. The Linear 610 

Regression method retains a considerable amount of variance associated with ENSO, particularly 611 

in the Pacific and Indian Oceans. The EOF Removal method’s performance depends on how many 612 

EOFs are removed. If only the first EOF is removed, the variance is greater than the true ENSO-613 

free variance, similar to the Linear Regression method. If the first two or more EOFs are removed, 614 

the variance in the North Pacific is progressively underestimated. This is to be expected if the 615 

higher-mode EOFs represent internal variability unrelated to ENSO. The Tendency Regression 616 
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and LIM Filter methods have variance greater than the “ENSO-free” variance, although to a much 617 

lesser degree than the Linear Regression method.  618 

Fig. A2. Difference between the variance of T’X and T’EF. The top left panel compares the variance 619 
of T’ from the CESM2-TPACE to T’EF, representing the case where the ENSO signal is not 620 
removed. Red shading here indicates where ENSO most strongly influences SSTA variance. In all 621 
other panels, areas where too little ENSO variance is removed are shown in red shades; areas 622 
where too much SST variance is removed are shown in blue shades. White indicates that the 623 
method produces a result that matches the ENSO-free SSTA variance. Virtually all differences in 624 
variance are significant at the 95th-percentile level, thus significance is not shown here. The 625 
pacemaker nudging region is outlined and hatched. 626 
 627 

Except for the EOF Removal method (with two or more EOFs removed), all other methods 628 

overestimate the variance in the central North Pacific, which implies that these methods do not 629 

fully remove the ENSO teleconnection in that basin. The corresponding teleconnection pattern in 630 

the South Pacific is also apparent, although the difference in variance is less than in the North 631 

Pacific. These methods also overestimate the variance in the Kuroshio-Oyashio Extension region. 632 

That some of greatest differences occur in areas of high internal variability (e.g., western boundary 633 

currents) suggests that our compensation for the variance inflation, which is proportional to SST 634 

variance (Eq. A16) was not entirely sufficient to remove the error due to the small ensemble size 635 

and that our methods may indeed perform better than Fig. A2 shows.  636 

 637 

 638 
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 639 

Fig. A3. Area-weighted absolute value mean (from 60˚S-60˚N, excluding the pacemaker nudging 640 
region) of the Niño3.4 correlations in Fig. A1 (top) and the variance differences between the 641 
variance resulting from each method and the “ENSO-free” variance in Fig A2 (bottom). The 642 
correlation metric is shown for several lags, with the mean in grey. 643 
 644 

 Fig. A3 condenses the results from Fig. A1 and A2 by taking the area-weighted mean of 645 

the absolute value of the lagged correlation and variance difference over 60˚S-60˚N and excluding 646 

the pacemaker nudging region. Averaged over all months, the Tendency Regression method is the 647 

best at removing the Niño3.4 correlation, followed closely by the LIM Filter method. For the 648 

variance difference metric, the EOF removal method has the best performance if two or three EOFs 649 

are removed. From Fig. A2, removing two EOFs overestimates the ENSO-free variance; removing 650 

three EOFs underestimates it. The Tendency Regression method is the second-best method at 651 

matching the ENSO-free variance, followed by the LIM Filter method. The Linear Regression 652 

method is better than the EOF method at removing the Niño3.4 correlation, but the worst at 653 

reproducing the correct ENSO-free variance. 654 

 On the basis of these two metrics, we consider the Tendency Regression method to be the 655 

best overall. The LIM Filter method has only slightly worse performance. The primary difference 656 
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between these two methods is that the Tendency Regression removes the Niño3.4 correlation better 657 

at smaller lags, and the LIM Filter method removes that correlation better at longer lags. 658 

The Tendency Regression method also has a few practical advantages. It is simple to 659 

implement, requiring little judgement beyond selecting an appropriate ENSO index. In contrast, 660 

the EOF method requires some subjective judgement when selecting how many EOFs to remove. 661 

As more EOFs are removed, the Niño3.4 correlation decreases, but more internal variability 662 

unrelated to ENSO is inadvertently removed. Our results suggest that the first two EOFs was the 663 

best compromise between these conflicting trends, however, different climate models may have 664 

different ENSO behavior and teleconnection (e.g., Maher et al., 2023) and thus different global 665 

EOFs, making it difficult to know whether two EOFs are sufficient in other contexts. The LIM 666 

Filter method is somewhat more complex than the Tendency Regression method and requires the 667 

selection of multiple parameters. 668 

The Tendency Regression method also may be easily modified to include other forcing 669 

terms into Eq. A3 to investigate the influence of additional climate modes and physical processes 670 

on SST variability and MHWs. Because it is fit at each grid point individually, the Tendency 671 

Regression method can work with just two time series: an SSTA time series at a given location 672 

and an ENSO index. This may be important for applications where the data is sparse (e.g., SST 673 

data before about 1960 or paleoclimate proxy data). 674 

 675 
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