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ABSTRACT: Future Arctic sea ice loss has a known impact on Arctic Amplification (AA) and

mean atmospheric circulation. Furthermore, several studies have shown it leads to a decreased

variance in temperature over North America. In this study, we analyze results from two fully-

coupled Community Earth System Model (CESM) Whole Atmosphere Community Climate Model

(WACCM4) simulations with sea ice nudged to either the ensemble mean of WACCM historical

runs averaged over the 1980-1999 period for the control (CTL) or projected RCP8.5 values over

the 2080-2099 period for the experiment (EXP). Dominant large-scale meteorological patterns

(LSMPs) are then identified using self-organizing maps applied to winter daily 500 hPa geopotential

height anomalies (𝑍′
500) over North America. We investigate how sea ice loss (EXP-CTL) impacts

the frequency of these LSMPs and, through composite analysis, the sensible weather associated

with them. We find differences in LSMP frequency but no change in residency time indicating

there is no stagnation of the flow with sea ice loss. Sea ice loss also acts to de-amplify and/or shift

the 𝑍′
500 that characterize these LSMPs and their associated anomalies in potential temperature

at 850hPa. Impacts on precipitation anomalies are more localized and consistent with changes in

anomalous sea level pressure. With this LSMP framework we provide new mechanistic insights,

demonstrating a role for thermodynamic, dynamic and diabatic processes in sea ice impacts on

atmospheric variability. Understanding these processes from a synoptic perspective is critical as

some LSMPs play an outsized role in producing the mean response to Arctic sea ice loss.
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SIGNIFICANCE STATEMENT: The goal of this study is to understand how future Arctic sea27

ice loss might impact daily weather patterns over North America. We use a global climate model28

to produce on set of simulations one where sea ice is similar to present conditions and another29

that represents conditions at the end of the 21st century. Daily patterns in large-scale circulation30

at roughly 5.5km in altitude are then identified using a machine learning method. We find that31

sea ice loss tends to de-amplify these patterns and their associated impacts on temperature nearer32

the surface. Our methodology allows us to probe more deeply into the mechanisms responsible33

for these changes, which provides a new way to understand how sea ice loss can impact the daily34

weather we experience.35

1. Introduction36

The Arctic Sea has experienced a significant decline in sea ice extent with trends of37

−4.36%/decade and greatest losses in the Barents/Kara Seas and Beaufort Sea (Comiso et al.38

2017). Climate models project that the Arctic will become seasonally ice free by the mid 21st
39

century (Wang and Overland 2012), albeit with large uncertainty due to internal variability (Jahn40

et al. 2016). This sea ice loss is greatest in September; however, the impact on the atmosphere is41

largest in winter when turbulent heat fluxes from the ocean to the atmosphere are greatest (Deser42

et al. 2010; Singarayer et al. 2006).43

One robust impact of sea ice loss on the atmosphere is Arctic amplification (AA), where the44

Arctic warms faster than the global mean (Screen and Simmonds 2010; Barnes and Screen 2015;45

Dai et al. 2019). The AA signal can be seen in observations (e.g. Serreze et al. 2009; Screen46

and Simmonds 2010) and modeling studies (e.g. Holland and Bitz 2003; Deser et al. 2010). The47

increased atmospheric temperatures associated with AA are largest near the surface and during the48

winter months (e.g. Serreze et al. 2009; Holland and Bitz 2003; Deser et al. 2010). Although the49

causes of AA and their relative importance remain an active area of research (Smith et al. 2019),50

several feedback mechanisms operating at low and high latitudes have been shown to contribute,51

including: the surface albedo feedback, the lapse rate feedback, and the Planck feedback (Pithan52

and Mauritsen 2014). Additional processes such as increased atmospheric transport of heat and53

moisture associated with remote SSTs have also been shown to play an important role in producing54
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the AA signal and in particular its extension to higher altitudes (Screen et al. 2012; Perlwitz et al.55

2015).56

The increased turbulent heat fluxes associated with Arctic sea ice loss result in the development57

of localized thermal low pressure anomalies over the region of sea ice loss (Alexander et al.58

2004; Gervais et al. 2016; Smith et al. 2017). The remote circulation response; however, is more59

uncertain (Smith et al. 2019). AA is associated with a general reduction in meridional temperature60

gradient and increase in mean column thickness over the Arctic which, through thermal wind61

arguments, is expected to weaken the midlatitude westerlies (Vihma 2014). This leads to the62

tug-of-war paradigm, where sea ice loss is expected to shift the midlatitude jets equatorward,63

while greenhouse gas forcing separate of sea ice loss acts to shift them poleward (e.g. Deser et al.64

2015; Oudar et al. 2017; McCusker et al. 2017; Blackport and Kushner 2017). Fully coupled and65

atmosphere-only simulations with imposed future sea ice loss show broadly consistent impacts on66

the atmospheric circulation including a weakened Icelandic Low, an intensified Aleutian Low and67

Siberian High, and an equatorward shifted and often weakened zonal mean mid-latitude jet (Screen68

et al. 2018). However, Peings et al. (2021) showed that even with the large imposed future sea ice69

loss internal variability can play an important role in determining the atmospheric response.70

The further impact of Arctic sea ice loss on atmospheric variability has become an important71

topic of discussion and disagreement. Francis and Vavrus (2012) hypothesized that AA leads to72

a reduction in the midlatitude westerlies and consequently more meanders in the jet. Although73

issues with the methodology they used were highlighted in subsequent papers (Barnes 2013; Screen74

et al. 2013), the topic of Arctic midlatitude linkages has been the subject of considerable research75

and has been summarized in numerous review articles (Cohen et al. 2014; Vihma 2014; Barnes76

and Screen 2015; Screen et al. 2018). More recently, Blackport and Screen (2020) extended the77

observational analysis to present day and found that the observed trends in waviness are no longer78

significant, although the AA signal has continued to increase. They conclude that the causal link79

is likely that periods of increased waviness leads to periods of increased AA due to enhanced80

meridional temperature and moisture fluxes. Much of this previous work on Arctic sea ice loss and81

atmospheric variability has focused on the historical period; however, in the future we expect sea82

ice loss to be much greater and the mechanisms through which it impacts atmospheric variability83

may differ from those discussed above.84
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Atmospheric variability can be characterized in a variety of ways that may capture different85

aspects and come with their own advantages or disadvantages. Many studies have utilized variance86

or standard deviation and found a reduction in the standard deviation of surface temperature with87

Arctic sea ice loss that they attribute to a reduction of the meridional temperature gradient (Screen88

2014; Screen et al. 2015; Collow et al. 2019; Dai and Deng 2021). This metric is straightforward89

and provides useful general information about changes in temperature distribution at each location.90

A variety of metrics have been employed to examine changes in the waviness or sinuosity of the91

mid-latitude flow (e.g. Francis and Vavrus 2012, 2015; Cattiaux et al. 2016), in particular in the92

observations, often departures of a single geopotential height contour from its zonal mean value93

are used. However, early applications of such methods (Francis and Vavrus 2012) have been94

shown to be sensitive to analysis parameters chosen (Barnes 2013; Screen et al. 2013) thus careful95

attention must be paid in their application to ensure robustness across seasons and with mean96

warming (Cattiaux et al. 2016). These metrics provide useful information about the amplitude of97

spatial patterns across the Northern Hemisphere. However, neither standard deviation nor sinuosity98

provide information about spatial patterns, and both are limited in terms of the ability to probe99

more deeply into the physical mechanisms responsible.100

Alternatively, the identification of large-scale meteorological patterns (LSMPs) and their changes101

can provide key information about regional atmospheric variability. LSMPs can be manually102

identified through synoptic typing; however for large datasets objective classification methods103

such as k-means or self-organizing maps (SOM) can be employed (Grotjahn et al. 2016). SOM104

is a machine learning method that can effectively identify archetypal patterns and classify data105

into these categories. A benefit of the SOM method is that it does not require patterns to be106

orthogonal, unlike the more traditional method of empirical orthogonal functions (EOFs). As a107

result, the SOM method can produce LSMPs (SOM nodes) that are more realistic (Grotjahn et al.108

2016). Much like classic synoptic typing analysis, composite analysis of diagnostic fields can be109

applied to identified LSMPs. This provides a framework through which physical understanding of110

these patterns and their sensible weather impacts can be ascertained, which is not possible using111

measures of variability such as standard deviations or sinuosity.112

This study will examine the impact of future Arctic sea ice loss on LSMPs of mid-tropospheric113

circulation over North America. We will employ two fully coupled climate model simulations with114
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nudged sea ice to historical or projected end of 21st century conditions, thus changes are much115

larger than the observed trend. Self-organizing maps will be used to identify LSMPs of 500hPa116

geopotential height anomalies and examine their changes in frequency and pattern with sea ice loss.117

Composite analysis of these LSMPs will be used to investigate the sensible weather conditions118

associated with these LSMPs including low-level potential temperature and precipitation. Finally,119

the impact of sea ice loss will be viewed through the lens of these LSMPs to better understand120

processes tied to atmospheric variability.121

2. Data and Methods122

a. Model Simulations123

To investigate the contribution of sea ice loss to atmospheric variability, we employed a pair of124

two Community Earth System Model (CESM) (Hurrell et al. 2013) simulations with constrained125

sea ice. The model setup utilizes the Whole Atmosphere Community Climate Model (WACCM4),126

the Parallel Ocean Program Version 2 (POP2), the Community Land Model Version 4 (CLM4), and127

the Los Alamos Sea Ice Model (CICE4) component models. The atmosphere and land components128

both have horizontal resolutions of 1.9◦×2.5◦, and the ocean and sea ice components have roughly129

1◦ resolutions. The Whole Atmosphere Community Climate Model (WACCM4) is a high-top130

model with 66 vertical pressure levels reaching 5.96× 10−6 hPa (approximately 140 km). The131

added vertical resolution and extension to higher heights leads to a better representation of the132

stratosphere. This is important for studying the impact of sea ice loss as troposphere-stratosphere133

interactions are known to be an important mechanism through which sea ice loss impacts the134

atmosphere (Sun et al. 2015). The model also includes a sophisticated stratospheric chemistry135

package which provides more realistic conditions in the upper-atmosphere (Marsh et al. 2013).136

The CICE4 model includes a thermodynamic component that calculates growth rates of snow and137

ice, an ice dynamics component that utilizes realistic ice physics based on ice mass and velocity,138

a thickness parameterization that quantifies ice strain and thickness, and a transport model that139

simulates ice advection (Hunke et al. 2015).140

Both experiments are fully-coupled with radiative forcing held constant at the year 2000. The141

control simulation (CTL) sea ice is nudged to the ensemble mean of the WACCM historical runs142

averaged over 1980-1999 and the experiment simulation (EXP) is nudged to projected RCP 8.5143
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a. b.

Fig. 1. a) Monthly mean sea ice extent (millions of km2) defined as the total area of grid boxes having at least

15% sea ice concentration for the CTL (green) and EXP (purple) experiments. b) Mean difference in winter sea

ice (December-February) concentration (%) between the EXP and CTL experiments.

160

161

162

values over 2080-2099. The nudging method is described in Deser et al. (2015) and utilizes144

spatially and seasonally varying long wave radiative fluxes (LRF) in each grid cell of the sea ice145

model to force the sea ice to mimic historical and projected sea ice conditions. The LRF is applied146

only to the sea ice model where there is sea ice. The magnitude of the downward LRF is larger for147

months of greater ice thickness and coverage, and vice versa. Although energy is not conserved148

using this method, water is conserved between the sea ice and ocean model components. The149

experiments are both 300 years in duration, but we disregard the first 100 years for spin-up time150

and retain only the last 200 years for the analysis.151

One advantage of this coupled model configuration is that SSTs are free to vary. This allows152

for more realistic SSTs that are free to increase as the sea ice edge retreats and maintains dynamic153

atmosphere-ocean variability. Ocean-atmosphere coupling has been shown to be important for154

generating a more realistic response to sea ice loss that extends to lower latitudes and higher155

altitudes (Deser et al. 2015) and in producing a reduced summer storminess in the mid-to-late156

21st century due to Arctic sea ice (Kang et al. 2023). Although the SSTs will differ between the157

simulations, they are still a direct bi-product of changes in sea ice as this is the only difference158

between the two model set-ups.159
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b. Self-Organizing Maps Algorithm163

The SOM methodology works by repeatedly introducing input data vectors and adjusting a set164

of nodes to better match these input data. Each SOM node is the same size as an input data vector165

and is initialized prior to training, in this case with random data. These nodes are then updated166

throughout the training. To accomplish this, the SOM algorithm determines a best matched unit167

(BMU) for a specific training step (𝑡) by finding the map node (𝑚𝑐) with the smallest Euclidean168

distance to the input data vector (𝑥(𝑡)). The SOM is then updated using the following relation:169

𝑚𝑖 (𝑡 +1) = 𝑚𝑖 (𝑡) +𝛼(𝑡) · ℎ𝑐𝑖 (𝑡) · (𝑥(𝑡) −𝑚𝑖 (𝑡)), (1)

where ℎ𝑐𝑖 (𝑡) is the neighborhood function that defines the relative influence on different map nodes,170

and 𝛼(𝑡) is the learning rate parameter that defines how much the map nodes are updated (Vesanto171

et al. 2000; Kohonen 2001). For the neighborhood function we use the Epanechnikhov function172

defined as:173

ℎ𝑐𝑖 = 𝑚𝑎𝑥(0,1−
𝑑2
𝑐𝑖

𝜎(𝑡)2 ), (2)

where d is the distance between a given node (𝑖) and the BMU (𝑐). For the Epanechnikov function,174

the BMU is modified the most and this decreases with distance away from the BMU. Nodes outside175

of the radius of influence (𝜎(𝑡)) are left unchanged. We use the diameter of the SOM as the176

initial radius of influence and decrease the value with each training iteration to eventually reach 1.177

Here we conduct two trainings with different initial 𝜎(𝑡). The first training is important for broad178

organization and in this case has an initial 𝜎(𝑡) value of 5. The second training is utilized for fine179

tuning and has an initial 𝜎(𝑡) of 2. For the learning rate parameter we use an inverse function of180

training time defined as:181

𝛼(𝑡) = 𝛼0/(1+100
𝑡

𝐿
), (3)

where 𝛼0 is the initial learning rate for each training and L is the total number of training steps (t)182

in each training. Here we use 𝛼0 = 0.1 for the first training and 𝛼0 = 0.01 for the second training.183
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There are three measures used to assess SOM map quality: topological error, quantization error,184

and the Sammon map. Quantization error is the average Euclidean distance between the input185

data and their associated BMU, thus describing how similar the map nodes are to the input data186

vectors. The topological error is defined as the percentage of input data vectors for whom the187

next best match unit is not a neighbor to the BMU and thus quantifies how well-ordered the188

SOM is. The Sammon map is a nonlinear mapping that visually represents the relative locations189

of the SOM map nodes. Over-training a SOM can result in a quantization error that continues190

to decrease at the expense of a twisted Sammon map and higher topological error. The SOM191

shown here is well constructed, meaning that it has a balance of low quantization error and low192

topological error (<15%) and a flat Sammon map (not shown). More information about the SOM193

method is available in Kohonen (2001). The SOM Program Package is publicly accessible at194

http://www.cis.hut.fi/research/som-research/.195

c. Creation of Final SOM196

In this study, SOM is used to identify large-scale patterns of daily winter 500 hPa geopotential197

height anomalies (𝑍′
500) over North America. Analysis is conducted over the winter (December to198

February) season when the impact of sea ice loss on atmospheric circulation is greatest. The data199

is also confined the region of 25◦N to 75◦N and 180◦E to 20◦E to focus on the North American200

mid-latitude response to sea ice loss and identify patterns of variability on synoptic spatial scales.201

We are interested in identifying changes in large-scale patterns separately from the mean response202

to sea ice loss. As such, anomalies are computed for each simulation (CTL and EXP) separately.203

A daily climatology is computed for each simulation by averaging each calendar day over all204

200 model years. Anomaly fields are then created by subtracting the daily climatology, for the205

corresponding simulation and calendar day, from each day of the simulation. This procedure takes206

into account the seasonal cycle of 𝑍500 so that anomalies are identified across all months and207

effectively removes the seasonally varying mean response to sea ice loss. For subsequent analysis,208

the term “anomalies” will refer to the difference in any field relative to its seasonally varying209

climatology and these will be denoted with a prime, for example 𝑍′
500.210

There are several options for pre-processing input data depending on the research question. In211

this study, the 𝑍′
500 fields are normalized by removing the mean of the time series and dividing212
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by the standard deviation at each grid point prior to training. This ensures that locations that213

experience greater variability do not have a larger impact on the SOM classification. The data are214

then multiplied by the cosine of the latitude to account for grid box area changes with latitude.215

Input data for the SOM consists of model output from both the CTL and EXP simulations to ensure216

all patterns of variability present in each simulation are represented in the final SOM.217

The SOM algorithm includes several user defined parameters, the most notable being the number218

of map nodes (archetypal patterns). Here the number of map nodes is determined through testing219

a variety of different SOM sizes. A final SOM size is chosen that is the smallest size that is able220

to identify all patterns that are physically relevant to the research question. After testing different221

SOM sizes, a 5×3 grid of map nodes for a total of 15 nodes was chosen for this study. For well222

constructed SOMs, such as that presented here, Gervais et al. (2016) found that changes in user223

defined parameters (e.g. neighborhood function and learning rate parameter) made little difference224

in the final SOM.225

d. SOM Analysis226

Once a SOM is trained, the final nodes or LSMPs are no longer modified and each day input227

data vector (or day of data in this case) is compared to the final SOM and assigned a BMU. This228

enables a multitude of additional analyses to explore the LSMPs. The frequency of occurrence229

of each LSMP is computed as the total number of BMUs for a given node divided by the total230

number of input days for the entire SOM. This can provide information about which LSMPs are231

most common. We can also obtain a more complete understanding of the physical processes232

associated with each node through compositing of any variable of interest. These composites (𝑆)233

are computed for a given node by averaging all days that are assigned as a BMU for that node. For234

both the frequency ( 𝑓 ) and composite, calculations can include all of the input data or only the235

BMUs associated with either the CTL ( 𝑓𝐶𝑇𝐿 or 𝑆𝐶𝑇𝐿) or EXP ( 𝑓𝐸𝑋𝑃 or 𝑆𝐸𝑋𝑃).236

Differences in atmospheric variability between experiments can arise from either differences in237

the frequency of SOM nodes (Δ 𝑓 = 𝑓𝐸𝑋𝑃− 𝑓𝐶𝑇𝐿) or differences in their pattern (Δ𝑆 = 𝑆𝐸𝑋𝑃−𝑆𝐶𝑇𝐿).238

The relative importance of changes in frequency versus change in pattern will depend on the SOM239

size. With a smaller SOM we would expect changes in pattern to be greater and for a larger SOM240

we would expect to see more changes in frequency. Examining both metrics together provides a241
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complete view of changes in the variability (Gervais et al. 2020). Throughout the paper, these242

differences will be described as the impact of sea ice loss on the either the frequency or pattern.243

Significant differences in frequency are evaluated using a permutation test. Here BMUs from244

both simulations are randomly assigned to new “CTL” and “EXP” labels and a newΔ 𝑓 is computed.245

This process is repeated 1000 times in order to create a null distribution ofΔ 𝑓 values. If the true Δ 𝑓246

lies outside the 2.5𝑡ℎ or 97.5𝑡ℎ percentiles, the frequency differences are deemed significant. This247

process is repeated for each node. Statistical significance for Δ𝑆 at each grid point is determined248

using a student’s t-test at a 95% confidence level with a null hypothesis of zero.249

The SOM categorizes each day into different LSMPs with a given 𝑓 and 𝑆. Thus, the seasonal250

mean field of a given experiment can be approximated as the sum of the frequencies of each251

node times their composite. As discussed in Gervais et al. (2020), the total difference between252

simulations (Δ( 𝑓 𝑆)) for all nodes can then be approximately decomposed into contributions from253

changes in frequency and pattern as follows:254

Δ( 𝑓 𝑆) = Δ 𝑓 𝑆𝑎𝑣𝑔 + 𝑓𝑎𝑣𝑔Δ𝑆 (4)

where,255

Δ( 𝑓 𝑆) =
𝑛∑︁
𝑖=1

𝑓𝑒𝑖𝑆𝑒𝑖 −
𝑛∑︁
𝑖=1

𝑓𝑐𝑖𝑆𝑐𝑖 (5)

256

Δ 𝑓 𝑆𝑎𝑣𝑔 =

𝑛∑︁
𝑖=1

( 𝑓𝑒𝑖 − 𝑓𝑐𝑖)
𝑆𝑒𝑖 + 𝑆𝑐𝑖

2
(6)

257

𝑓𝑎𝑣𝑔Δ𝑆 =

𝑛∑︁
𝑖=1

𝑓𝑒𝑖 + 𝑓𝑐𝑖

2
(𝑆𝑒𝑖 − 𝑆𝑐𝑖) (7)

In these equations, 𝑛 is the number of SOM nodes (which in the case of our SOM is 15), and258

the indices 𝑐 and 𝑒 indicate the CTL and EXP simulations respectively. This decomposition can259

be conducted for any variable of choice to understand the impact of frequency versus pattern260

associated with these LSMPs.261
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3. Results and Discussion262

a. Winter Atmospheric Response to Sea Ice Loss263

The atmospheric response to future sea ice loss will be defined in this study as the difference264

between the CTL and EXP simulations (EXP - CTL). The differences in sea ice cover between265

the simulations are seasonally varying with the greatest differences in September coinciding with266

the seasonal sea ice minimum (Fig. 1a). Although sea ice loss is greatest in September, the mean267

impact on atmospheric circulation is greatest in the winter, consistent with previous studies (Vihma268

2014). This seasonality of the atmospheric response can be seen in the monthly mean differences269

in 500 hPa geopotential height (𝑍500) and sea level pressure (SLP) between the simulations (Fig.270

S1). The winter mean atmospheric response to future sea ice loss shows a clear signal of Arctic271

Amplification with warmer potential temperatures at 850 hPa (Θ850) that are greatest at the high272

latitudes (Fig. 2a). Consistent with an increase in mean column temperature, we find a similar273

pattern in the geopotential heights in the mid-troposphere (𝑍500, Fig. 2b).274

During the winter, differences in sea ice between the CTL and EXP are concentrated in the275

marginal sea ice zone with reductions of up to 100% sea ice cover (Fig. 1b). The local response to276

sea ice loss can be clearly seen in the surface fluxes and SLP. Over the marginal seas where sea ice277

loss is greatest and the atmosphere is exposed to more open ocean, there is a substantial increase278

in turbulent heat flux (defined as the sum of the sensible and latent heat flux) from the ocean to the279

atmosphere (Fig. 2f). Over the Bering/Beaufort Sea and Hudson Bay this change in turbulent heat280

flux reaches 100 Wm−2. Consistent with a large decrease in surface albedo with a greater fraction281

of ice free ocean there is a large increase in net absorbed shortwave radiation at the surface with282

sea ice loss (Fig. 2h). The warmer surface temperatures of an ice free ocean, are associated with a283

larger net surface outgoing longwave radiation (Fig. 2g). Finally, there is a local reduction in SLP284

concentrated near regions of sea ice loss (Fig. 1e) consistent with a thermal low response (Fig. 2e).285

For example, over the Hudson Bay there are large negative SLP anomalies that reach −5 hPa. Over286

and downstream of these regions of newly open ocean in the Bering/Beaufort Seas and Hudson Bay287

there is enhanced total cloud cover (Fig. 2i) and precipitation ((Fig. 2f,j) consistent with enhanced288

sensible and latent heat flux associated with a transition to ice free conditions (Fig. 2f).289
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In the mid-latitudes, negative anomalies in the winter mean 𝑍500 and SLP response indicate290

a deepening of the Aleutian low in the North Pacific (Fig. 2b,e). This is dynamically consis-291

tent with an intensification and elongation of the Pacific jet, where we would expect a corre-292

sponding eastward displacement of an enhanced secondary circulation favoring a more intense293

troposphere-deep cyclonic circulation. Here we identify the jet using the wind speed on the dy-294

namic tropopause, where the dynamic tropopause is defined as the 2 potential vorticity unit (PVU;295

1 PVU=10−6Kkg−1 m−2 s−1) surface (Fig. 2c). The dynamic tropopause is an ideal surface upon296

which to examine mid-latitude jets as this is where the jet is maximized and it rises with the297

increasing column temperature (Hoskins et al. 1985) thus ensuring that the differences are due to298

changes in the jet rather than the height of the tropopause. Coinciding with the elongated North299

Pacific jet and deeper Aleutian low, we see an increase in precipitation that extends to the west300

coast of North America (Fig. 2j).301

Over the Atlantic, the response to sea ice loss includes an increase in 𝑍500 (Fig. 2b) over311

Greenland and an equatorward shift of the North Atlantic jet, as seen in the dipole of wind speed312

on the dynamic tropopause (Fig. 2c), consistent with several previous studies (Deser et al. 2015;313

Sun et al. 2015; Blackport and Kushner 2017, 2018; Screen et al. 2018; Ronalds et al. 2020).314

Furthermore, we find a dipole in precipitation over the North Atlantic as would be expected from315

an equatorward shift of the storm track along with the jet (Fig. 2j). The winter mean SLP response316

shows no clear change in the Icelandic Low (Fig. 2e).317

b. Identification of Large-Scale Patterns318

To understand the impact of sea ice loss on LSMPs, we begin by first identifying dominant large-319

scale patterns of 𝑍′
500 using SOM (Fig. 3). Fig. 3 shows the 𝑍′

500 SOM nodes (LSMPs) in color320

and composites of 𝑍500 in the control simulation (𝑆𝐶𝑇𝐿) in black lines. In general, LSMPs on the321

left side of the SOM have amplified climatological ridges (troughs) over western (eastern) North322

America and vice versa on the right side of the SOM. Enhancement of the ridge/trough patterns323

shifts from being further east in LSMPs at the top of the SOM (e.g. LSMP [1,1]) to further west324

at the bottom (e.g. LSMP [5,1]). Similarly, negative (positive) anomalies over the climatological325

ridge (trough) shift from being to the west in LSMP [1,3] to further east in LSMP [5,3].326
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a. Θ850 b. Z500

c. DT Wind d. Z50

e. SLP f. THFLX

g. LW h. SW

i. CLDTOT j. PCP

Fig. 2. Mean winter differences between simulations (EXP - CTL) in color and climatology in black contours

for a) Θ850 with climatology contoured every 5 K, b) 𝑍500 with climatology contoured every 100 m, c) wind speed

on the dynamic tropopause (DT WIND) with climatology contoured every 5 m/s, d) 50hPa geopotential height

(𝑍50) with climatology contoured every 100 m, e) SLP with climatology contoured every 4 hPa, f) turbulent

heat flux (THFLX) with climatology contoured every 10 Wms−2, g) Surface longwave radiation (LW) with

climatology contoured every 5 Wms−2, h) Surface shortwave radiation (SW) with climatology contoured every

2 Wms−2, i) Total cloud cover (CLDT) with climatology contoured every 5%, and j) Precipitation (PCP) with

climatology contoured every 2 mmd−1. Insignificant differences at the 5% significance level according to a

resampling test are stippled.
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The LSMPs [1,1] and [2,1] in the upper left corner have a pattern similar to the positive phase of327

the Pacific North American Pattern (PNA, Wallace and Gutzler (1981)) with negative anomalies in328

the Pacific and Eastern North America and positive anomalies over Alaska / the Pacific Northwest.329

Conversely, LSMP [5,3] in the bottom right corner resembles the negative PNA. LSMPs [1,1],330

[1,2] and [1,3] include anomalies over the North Atlantic that are consistent with a negative Arctic331

Oscillation (AO,Thompson and Wallace (1998)) or North Atlantic Oscillation (NAO, Hurrell332

(1995)) like pattern. LSMPs [1,1] and [1,2] have positive 𝑍′
500 near Iceland while LSMP [1,3]333

has a center of action shifted further west. LSMPs [1,2] and [1,3] have negative anomalies over334

the subtropical North Atlantic. In contrast, LSMPs [3,2] and [4,2] have weak positive AO/NAO-335

like anomalies. Although the NAO is an important feature of the Northern Hemisphere climate336

variability and exerts an impact on North American weather, our SOM is trained with data over337

North America and therefore we expect variability over the North Atlantic will have a limited338

presence as compared to other sources. LSMPs [4,1] and [5,1] have a strong positive anomaly over339

Alaska that acts to amplify and shift the climatological ridge over the Rockies further east, while340

LSMPs [3,3], [4,3], and [5,3] have a negative anomaly over Alaska. LSMPs [1,1], [1,2], [2,1],341

and [2,2] exhibit a strengthened Aleutian Low, while LSMPs [4,3], [5,1], [5,2], and [5,3] exhibit a342

weakened Aleutian low. Nodes in the center of the SOM have weaker patterns overall.343

To obtain further understanding of the synoptic conditions associated with each map LSMP and346

their sensible weather impacts, we compute control simulation composites (𝑆𝐶𝑇𝐿) for additional347

variables. LSMPs in the top left of the SOM (namely LSMPs [1,1], [1,2], [2,1], [2,2]) have deeper348

Aleutian lows as shown in their sea level pressure anomalies (SLP′, Figs. 4, 5) consistent with the349

negative values in 𝑍′
500 SOM (Fig. 3). Those on the right side of the SOM (namely LSMPs [3,3],350

[4,3], [5,3]) have Aleutian Lows that are shifted further east toward the continent and coupled with351

a high over the subtropics (Fig. 4, 5). This high/low pressure couplet of SLP over the Gulf of352

Alaska and west coast of North America acts to generate westerly lower-tropospheric winds through353

geostrophic balance arguments. This in turn can act to enhance the transport of warm maritime air354

into the continent, which is seen in the positive Θ′
850 values over western North America associated355

with these LSMPs (Fig. 4). LSMPs on the top and left side of the SOM are generally colder,356

specifically nodes [1,1], [1,2], [3,1], and [4,1]. These are associated with either an enhancement of357

the climatological high pressure and ridge over western North America (LSMPs [1,1], [2,1], [3,1],358
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Fig. 3. SOM of DJF 𝑍 ′
500 (color, m) over North America with the DJF climatological mean 𝑍500 (black

contours every 100 m).

344

345

[4,1]) and/or a weakened Iceland Low (LSMPs [1,1] and [2,1]) consistent with the negative phase359

of the NAO (Fig. 4). LSMPs [1,2] and [4,1] are associated with particularly deep cold anomalies360

down to −2◦C.361

Circulation patterns can also play a key role in the precipitation over the continental US. LSMPs362

with strong Aleutian lows that are closer to the continent ([2,2], [2,3], [3,2], [3,3]) are associated363

with enhanced precipitation along the west coast whereas nodes with weaker Aleutian Lows ([4,1],364

[5,1], [4,2], [5,2]) have less precipitation along the west coast (Fig. 5 and contours in Fig. 9).365
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Enhanced precipitation in the Southeastern US is found in LSMPs [5,1], [5,2], [5,3] and [1,3], all366

of which are characterized by a trough over the Southeastern US (Fig. 5 and contours in Fig. 9).367

In contrast, precipitation is reduced in LSMPs [2,1], [3,1], and [3,2] where the trough is located368

offshore (Fig. 5 and contours in Fig. 9).369

Fig. 4. CTL composites of Θ′
850 (color, ◦C), SLP′ (black contours every 4 hPa, dashed negative from 2 hPa),

and wind speed on the dynamic tropopause (green contours every 5 ms−1 from 35 ms−1)

370

371

Fig. 6a,b shows the associated frequency of each map node in the CTL and EXP simulations.374

All LSMPs in Fig. 3 are present in both the CTL and EXP simulations. In the CTL simulation,375

LSMPs [3,2], [4,2], and [4,3] occur most often. The LSMPs that occur least often are [1,1] and376
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Fig. 5. CTL composites of total precipitation (color, mmd−1), SLP (black contours every 4 hPa), and wind

speed on the dynamic tropopause (magenta contours every 5 ms−1 from 35 ms−1)

372

373

[1,2], both of which are characterized a deepened Aleutian low, cold Θ′
850 over North America,377

and high SLP′ over northeastern Canada and Greenland. In the EXP simulation, LSMPs [2,2],378

[4,2], and [4,3] occur most often, while LMSPs [1,1], [2,1], and [3,1] occur least often. The mean379

residency time, defined as the number of consecutive days spent in a given map node, are shown in380

Fig. 6d,e for the CTL and EXP simulations respectively. Mean residency times range from 3.2-4.3381

days with LSMP [5,1] having the highest and LSMP [4,2] the lowest residency time for both the382

CTL and EXP simulations. It should be noted that for both the frequency and residency time the383
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values will change depending on the SOM size (decreasing with increasing SOM size), therefore384

the actual values are less meaningful than how they might change between the CTL to the EXP385

simulations.386

a.
CTL

F
re
q
u
en
cy

b.
EXP

c.
CTL - EXP

d.

R
es
id
en
cy

e. f.

Fig. 6. Heatmaps of frequency of occurrence (top row) of each node in the CTL (a), EXP (b), and their

difference (c) and mean residency time (bottow row) for each node in the CTL (d), EXP (e), and their difference

(f). Differences are only shown when significant at the 95% level using a permutation test.

387

388

389

c. Impact of Sea Ice Loss on LSMP Frequency and Residency390

To understand the impact of sea ice loss on LSMPs, we will first discuss the impact on their391

frequency of occurrence and residency. Fig. 6c demonstrates the difference in frequency of each392

LSMP between the CTL and EXP. LSMP [3,2] decreases in frequency by -0.6% while LSMPs [1,2]393

and [2,2] increase in frequency by 0.7% and 0.9% respectively. These changes may seem small;394

however, relative to the CTL frequency of 6.4% in LSMP [2,2], for example, the fractional increase395

is 14%. All of these LSMPs ([1,2], [2,2], and [3,2]) have anomalously strong Aleutian Lows but396
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LSMPs [1,2] and [2,2] are stronger than LSMP [1,3] (Figs. 3 and 4) therefore these changes in397

frequency imply that patterns with deepened Aleutian Lows become more common with sea ice398

loss. It should be noted that here we have already removed the seasonal mean difference between399

the experiments that was characterized by a mean deepening of the Aleutian Low and that this400

result shows further changes in how often these deepened Aleutian Low patterns occur. We also401

see that LSMP [5,1] decreases in frequency while LSMP [4,1] increases in frequency with sea ice402

loss. Since node [5,1] has a larger positive 𝑍′
500 over Alaska than node [4,1] (Fig. 3), this can be403

interpreted as the positive anomaly over Alaska becoming de-amplified.404

Unlike the frequency, only LSMP [2,2] experiences a significant change in mean residency time,405

with an increase of 0.3 days. This LSMP also exhibited an increase in frequency, indicating that406

some of the increase in frequency is due to enhanced persistence. Since these LSMPs capture407

synoptic spatial scale variability, they include patterns associated with Rossby wave propagation408

across North America. The overall lack of change in residency times across the SOM implies that409

there is no general change in the speed of wave propagation owing to sea ice loss.410

d. Impact of Sea Ice Loss on LSMP Pattern411

To complete our investigation of sea ice impacts on LSMPs, we examine differences in LSMP412

composite mean (Δ𝑆) for a variety of atmospheric variables. The impact of Arctic sea ice loss is413

to weaken the 𝑍′
500 in many LSMPs, which can be interpreted as a reduction in variability (Fig.414

7). The best example of this is LSMP [1,2], where the magnitude of the gradient associated with415

the −NAO-like dipole in 𝑍′
500 between the Icelandic Low and Subtropical High is reduced by416

approximately 15% with sea ice loss. In many cases, the Δ𝑆 of 𝑍′
500 are not centered on the CTL417

composites 𝑍′
500 and thus are better characterized as a shift in location, for example the anomalous418

ridging along the west coast in LSMPs [4,1], [5,1], and [5,2] is shifted further south. A few LSMPs419

are amplified with sea ice loss, for example, the positive 𝑍′
500 in the subtropical Pacific in LSMPs420

[4,3] and [5,3] are deepened and in [5,3] extended further east toward the continent. LSMP [1,3]421

also has negative Δ𝑆 of 𝑍′
500 in the North Pacific consistent with a deepened Aleutian Low. In all422

cases, the Δ𝑆 of 𝑍′
500 are smaller than the CTL composites and so there is no change in the sign423

of the patterns. This is necessarily true for 𝑍′
500 since the SOM is trained and BMUs are assigned424
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based on this field. However, for other fields, LSMP composites may see larger changes if the425

conditions associated with these 𝑍′
500 patterns change.426

To understand the impact of sea ice loss on the sensible weather associated with these circulation427

patterns, we examine Δ𝑆 of Θ′
850 (Fig. 8) and precipitation anomalies (Fig. 9). The most striking428

impact of sea ice loss on Θ′
850 is in LSMP [1,2] (Fig. 8). This LSMP was associated with deep cold429

anomalies up to -1.75◦C in the CTL simulation. However, the impact of sea ice loss far exceeds this430

at up to +4◦C in Δ𝑆 of Θ′
850, resulting in a change in sign of Θ′

850 associated with this LSMP in the431

CTL relative to the EXP. LSMP [4,1] that is also associated with strong cold anomalies over North432

America reaching -2◦C in the CTL simulation experiences a large decrease in magnitude with sea433

ice loss of up to +1.5◦C. Both LSMPs [4,1] and [1,2] increase in frequency with sea ice loss, so434

the circulation patterns typically associated with deep cold anomalies become more common with435

sea ice loss; however, they are much less cold or, in the case of [1,2], now associated with a warm436

Θ′
850.437

Looking across the entire SOM, we see that a reduction in the amplitude of Θ′
850 associated438

with these 𝑍′
500 LSMPs is ubiquitous (Fig. 8). Other LSMPs associated with large cold anomalies439

(LSMPs [1,1], [2,1], [5,1], and [2,3]) become warmer and those associated with warmer anomalies440

become colder. Several of these LSMPs (namely [3,3], [4,3], [5,3]), are not associated with441

significant changes in frequency (Fig. 6), so their contribution to changes in variability is solely442

through a change in pattern. This de-amplification of Θ′
850 is consistent with the general reduction443

in 𝑍′
500 across the SOM owing to sea ice loss. One explanation is that the reduction of horizontal444

temperature gradients owing to AA may lead to a reduction in anomalous temperature advections445

occurring in these nodes, even though the mean impact of AA is already removed by virtue of446

computing the anomalies. This can result in reduced Θ′
850 and through hypsometric arguments in447

a corresponding reduction in 𝑍′
500.448

The impact of sea ice loss on precipitation anomalies associated with these LSMPs is less449

robust and more localized (Fig. 9). LSMPs [3,1], [4,1], and [4,2] all experience a small decrease450

in precipitation along the California coast, acting to amplify the precipitation anomalies values451

typically associated with these LSMPs (Fig. 9). This is consistent with a positive SLP′ that acts to452

further reduce the transport of moist air to the region (Fig. S2). The opposite is true for LSMPs453

[1,1] and [2,2] (Fig. 9, S2). LSMP [1,3] experiences an increase in Δ𝑆 of precipitation anomalies454
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in the southeastern US (Fig. 9) consistent with the enhanced troughing (Fig. 7, S2) occurring in455

proximity to the Gulf of Mexico and Atlantic Basin, well known moisture sources for the region.456

The opposite is true for LSMP [3,3].457

Fig. 7. CTL Composites of 𝑍 ′
500 (contours, every 50 m from ±50 m, dashed negative) and difference in

composites (EXP-CTL) of 𝑍 ′
500 (color, stippled insignificant using Student’s t-test).

458

459

e. Mechanisms Responsible for LSMP [1,2] Pattern Changes465

Given the striking changes in LSMP [1,2] and in particular the associated Θ′
850, a deeper466

investigation into mechanisms operating in this node is warranted. First, it is important to recognize467
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Fig. 8. CTL Composites of Θ′
850 (contours, every 0.25◦ C from ±0.25◦ C, dashed negative) and difference in

composites (EXP-CTL) of Θ′
850 (color, stippled insignificant using Student’s t-test).

460

461

that the LSMPs identified in this study are from anomalous 𝑍500 fields relative to the respective468

climatologies of each simulation (i.e. 𝑍′
500). Thus, these patterns represent atmospheric variability469

separate from mean impacts of sea ice loss. However, when it comes to understanding the impacts470

of these LSMPs on fields such as Θ850, the mean impacts of sea ice loss can still be important. As471

such, in the ensuing analysis we will be examining both composites of total fields (e.g. 𝑍500) and472

anomaly fields (e.g. 𝑍′
500).473
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Fig. 9. CTL Composites of precipitation anomalies (contours, every 1mmd−1 from ±1mmd−1, dashed

negative) and difference in composites (EXP-CTL) of precipitation anomalies (color, stippled insignificant using

Student’s t-test).

462

463

464

Fig. 10 shows the CTL and EXP composite of Θ850 and SLP. In the CTL simulation, high SLP474

over the center of the continent and low SLP over the North Atlantic implies a north-northeasterly475

geostrophic wind. Coupled with the strong meridional background temperature gradient between476

the pole and the midlatitudes, there is implied geostrophic cold air advection over northeastern477

North America. Furthermore, the anticyclonic circulation around the high pressure system would478
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aid in transporting this cold air throughout North America. This helps explain why LSMP [1,2] is479

associated with deep cold continental temperatures.480

In the EXP simulations, the background temperature gradient from equator to pole is weakened,481

as is expected with AA (Fig. 10). This in and of itself would cause a reduction in cold air advection482

in this LSMP. However, we also see that the high pressure over Hudson Bay is weakened resulting483

in a slackening of the SLP gradient over eastern Canada and a weakening of the implied north-484

northeasterly geostrophic wind by roughly 30%. Furthermore, the overall reduction in the strength485

of the high pressure system would reduce the typical transport of this cold air into the interior of486

North America. This can be seen, for example, in the slacking of the meridional pressure gradient487

from Hudson Bay to the Gulf of Mexico coast. Therefore, though we could ascribe the changes in488

cold air advection to mean AA and the weakened temperature gradient (a thermodynamic impact),489

these changes in SLP also imply a large role for dynamical impacts.490

As discussed previously, there is an increase in mean winter turbulent heat flux and decrease491

in mean winter SLP between the two simulations over Hudson Bay (Fig. 2), consistent with a492

local thermal low pressure response to sea ice loss. The difference in CTL and EXP LSMP [1,2]493

composites of SLP′ are insignificant over much of the North American continent (Fig. 11c).494

Furthermore, the effect of turbulent heat flux is smaller in LSMP [1,2] (Fig. 11d) potentially owing495

to the warmer Θ′
850 reducing the ocean-atmosphere temperature gradients (Fig. 11a). This implies496

that much of the differences in the SLP gradients discussed above are owing to differences in the497

mean climatology between the CTL and EXP simulations and how this projects onto the LSMP498

[1,2] circulation pattern rather than changes in SLP that are specific to this LSMP. For this node499

in particular, where the high pressure in this region is an important factor, this mean change acts500

to reduce the zonal SLP gradient and consequently the strong cold air advection in northeastern501

North America that characterizes the LSMP.502

In addition to changes in temperature advection, diabatic processes may also play a role in the503

increased Θ′
850 associated with LMSP [1,2]. There is an increase in total cloud cover anomalies504

and precipitation anomalies downstream (south) of Hudson Bay with sea ice loss (Fig. 11e,f). This505

is expected given the mean increase in moisture and heat flux (Fig. 2f) from the ice-free surface506

with sea ice loss (Fig. 1b). This increase in clouds and precipitation relative to other LSMPs is507

associated with less incoming net short wave radiation and less upward longwave radiation (Fig.508
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11g,h). Furthermore, we would expect an increase in diabatic heating to be associated with cloud509

and precipitation generation, though this cannot be directly confirmed with the variables saved in510

these model simulations. These results imply a role of diabatic processes in addition to temperature511

advection in producing the large differences in Θ′
850 in LSMP [1,2].512

CTL

EXP

EXP-CTL

Fig. 10. Node [1,2] composites of Θ850 (color) and SLP (black contours every 4hPa) for a) CTL, b) EXP and

c) their difference (EXP - CTL). For a) and b) SLP contours are every 4hPa and for c) SLP contours are every

1hPa with dashed negative values and the 0 contour omitted.
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514
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a. Θ′
850 b. Z ′

500

c. SLP′ d. THFLX′

e. CLDT′ f. PCP′

g. SW′ h. LW′

Fig. 11. Node [1,2] CTL composites (contours) and differences (EXP-CTL) in composites (color) for a)

Θ′
850 (contours every 0.25◦ C from ±0.25◦ C, dashed negative), b) 𝑍 ′

500 (contours every 50 m from ±50 m,

dashed negative), c) SLP′ (contours every 2 hPa from ±2 hPa, dashed negative),d) turbulent heat flux anomalies

(THFLX′, contours every 20 Wms−2 from ±20 Wms−2, dashed negative), e) total cloud cover anomalies

(CLDT′, contours every 5% from ±5%, dashed negative), f) precipitation anomalies (PCP′, contours every

1mmd−1 from ±1mmd−1, dashed negative), g) incoming shortwave radiation anomalies (SW′, positive down,

contours every 5 Wms−2 from ±5Wms−2, dashed negative), and h) outgoing longwave radiation anomalies

(LW′, positive up, contours every 5 Wms−2 from ±5Wms−2, dashed negative) . All figures have insignificant

differences at the 5% level computed using a Student’s t-test stippled.
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f. Contributions of changes in LSMPs to mean DJF response to sea ice loss525

AA is one of the most notable impacts of Arctic sea ice loss. In Fig. 2a we can see this reflected526

in the DJF seasonal mean difference between the CTL and EXP (ΔΘ850). As described above, some527

LSMPs are associated with greater changes Θ′
850 than others (e.g. LSMP [1,2]). Decomposing the528

DJF mean Θ′
850 response by LSMP contribution can provide an avenue into better understanding529

of how synoptic scale processes relate to mean Θ′
850 response and elucidate additional mechanisms530

responsible for AA that might otherwise be obscured.531

As discussed in the methods section, the mean difference between experiments can be approxi-532

mated as those arising due to changes in frequency versus pattern of the LSMPs (Eqn. 4). For Θ850533

the contribution from changes in frequency are much smaller than from changes in pattern (not534

shown). On the left side of equation 4, Δ( 𝑓 𝑆) is an approximation of the seasonal mean difference535

between experiments for a given variable (e.g. ΔΘ850). Substituting these assumptions, we can536

re-write equation 4 for Θ850 as:537

ΔΘ850 ≈
𝑛∑︁
𝑖=1

𝑓𝑎𝑣𝑔,𝑖Δ𝑆𝑖 (8)

where 𝑓𝑎𝑣𝑔,𝑖 is the mean frequency of occurrence over the CTL and EXP simulations and Δ𝑆𝑖 is the538

composite mean Θ850 of EXP minus that of CTL for a given node 𝑖. Expanding out the summation,539

dividing both sides by ΔΘ850 and multiplying by 100 we can obtain the percent contribution of540

each node to ΔΘ850.541

100 ≈
𝑓𝑎𝑣𝑔,1Δ𝑆1

ΔΘ850
·100+

𝑓𝑎𝑣𝑔,2Δ𝑆2

ΔΘ850
·100+ ...+

𝑓𝑎𝑣𝑔,15Δ𝑆15

ΔΘ850
·100 (9)

In Fig. 12, each of the terms of the right hand side are plotted, showing the percent contribution542

of each node to the mean DJF Θ850 response. The sum of all the percent contributions over all543

nodes is approximately equal to 100 (±5%) at each grid point location, confirming that changes in544

composite are indeed the greatest contributor to the mean Θ850 response.545

To avoid the creation of artificially high values of percent contribution where ΔΘ850 is very546

small, grid points where ΔΘ850 is not statistically significant are masked out in Fig. 12. This is547

computed using a permutation test applied at each grid point to determine if the mean of DJF days548

used for the SOM analysis in the CTL are different from the EXP simulation with a significance549
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level of 95%. This is similar to test used in Fig. 2 except there the DJF seasonal mean is computed550

first and the null hypothesis is that the seasonal means are the same.551

If each of these nodes contributed equally to the mean Θ850 response, we would expect the552

percent contribution over 15 nodes to be 6.6% at each grid point. To test this, we compute a null553

distribution of percent contributions using a permutation test. Here the percent contributions are554

computed as in equation 9 but using an average frequency of 6.6% and the number of days per555

composites equal to the frequency times the number of input data vectors. We then shuffle the SOM556

node labels and choose a new set of CTL and EXP randomly without replacement and compute557

the difference in their composites. This process is repeated 500 times and if the actual percent558

contribution to the mean Θ850 response is greater than the 97.5th or less than the 2.5th percentiles559

of this null distribution, it is considered significant at the 95% level.560

The results show that there are indeed nodes that contribute much more significantly to mean561

Θ850 response than others. LSMP [1,2] stands out for its significant contributions to mean DJF562

Θ850 response over the majority of North America ranging from 20-50%. Over Northern Canada563

(including the Northwest Territories, Nunavut, and Northern Quebec) where mean Θ850 response564

is greatest, LSMP [1,2] contributes up to 20% of the total mean Θ850 response. This is more than565

double the rate if there was an equal distribution across nodes. LSMP [4,1] also has a notable566

increase in contribution to the mean Θ850 response of up to 15% over the Yukon and Northwest567

Territories. It should be noted that these two LSMP were associated with deep cold anomalies in568

the CTL simulations (Fig. 4) in these regions. This implies that processes specific to these LSMPs,569

such as those outlined in Section 3c, are important for creating the mean Θ850 response and can570

occur on synoptic time scales.571

In the midlatitudes, the mean Θ850 response is much smaller and the contributions of LSMPs is578

larger. LSMP [1,2] contributes up to 50% to the mean Θ850 response in the southern United States.579

This implies that LSMP [1,2] plays an important role in propagating the mean Θ850 response into580

the mid-latitudes. There are also notable positive contributions to the mean Θ850 response in the581

southern United States from LSMPs [1,1], [2,3], and [4,2] as well as negative contribution other582

LSMPs including [2,1], [2,2], [3,1], [3,2], [3,3], [4,1], and [4,3]. This is consistent with the general583

reduction in intensity in Θ850 across LSMPs identified in Fig. 8. It should be noted that in these584

regions where ΔΘ850 is smaller, the percent contribution will be much larger for the same Δ𝑆𝑖.585
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One interpretation of these results is therefore that when the mean signal is smaller the impact of586

internal variability will be larger.

Fig. 12. Percent contribution of changes in each LSMP composite pattern to mean Θ850 in DJF (color).

For reference, the DJF mean difference between CTL and EXP (ΔΘ850) are provided in contours every 0.5◦𝐶

beginning at 0.5◦𝐶 as shown in Fig. 2a in color. Locations where ΔΘ850 is not significantly different at the

95% confidence level as determined using a permutation test are masked out. Stippling shows regions were the

percent contribution of changes in LSMP composite are not significant at a 95% level as determined using a

permutation test.
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4. Conclusions588

The goal of this study was to identify the impact of future sea ice loss on large-scale meteorological589

patterns (LSMPs) and their associated sensible weather impacts. We analyze output from two590

fully-coupled CESM-WACCM simulations, one with sea ice nudged to the ensemble mean of the591

WACCM historical runs averaged over 1980-1999, and the other simulation nudged to projected592

RCP 8.5 values over 2080-2099. A machine learning method, self-organizing maps (SOMs), is593

used to identify LSMPs of anomalous 500 hPa in both experiments. Composite analysis of days594

assigned to these LSMPs is then used to understand the associated sensible weather conditions.595

To identify the impact of sea ice loss on LSMPs, we quantify differences in how often these596

LSMPs occur (frequency) and for how many consecutive days data are classified in these LSMPs597

(residency). There are significant changes in LSMP frequency, most notably with two patterns598

associated with the coldest potential temperatures at 850 hPa (Θ850) becoming more common in599

the future. However, there were little changes in the residency across the set of LSMPs, indicating600

that there is no general change in the speed of propagation of Rossby waves or stagnation of the601

flow with sea ice loss.602

The impact of sea ice loss on LSMP patterns and their associated sensible weather impacts were603

identified by taking differences in composites of the CTL and EXP simulations for a variety of604

variables. In general, sea ice loss tends to de-amplify and in some cases shift the LSMP patterns,605

as seen in the composites differences in 𝑍′
500. The impact of sea ice loss on Θ′

850 is generally606

consistent with the general reduction in amplitude of the 𝑍′
500. This is consistent with previous607

studies that suggested that decreases in the variance of temperature can occur due to the mean AA608

(Screen 2014; Screen et al. 2015; Collow et al. 2019; Dai and Deng 2021). Since the amplitude of609

tropospheric waves can generally be attributed to the displacement of air masses, it makes sense610

that with a reduction in the background temperature gradient associated with AA we would find a611

commensurate reduction in amplitude of LSMPs and their associated Θ′
850. There are less robust612

and more localized impacts of sea ice loss on precipitation anomalies associated with the LSMPs613

that are generally consistent with SLP′ changes.614

One LSMP in particular, LSMP [1,2], exhibits a striking change in associated Θ′
850 with sea ice615

loss. In the CTL simulation, this LSMP is associated with deep cold anomalies of Θ′
850 reaching616

−1.75◦C; however, with Arctic sea ice loss there is an increase in Θ′
850 exceeding 4◦C. LSMP [1,2]617
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is associated with a ridge of higher pressure over the center of the continent that would facilitate618

Northerly flow of cold Arctic air deep into the continental US and Canada in the CTL simulation,619

as can be seen in the cold anomalies across much of the North American continent. AA reduces620

the meridional temperature gradient and thus would result in a reduction in cold air advection621

associated with this LSMP.622

In this framework, it is possible to further identify the coincident impact of dynamical forcing.623

With Arctic sea ice loss, there are enhanced turbulent heat fluxes from the newly ice free Hudson624

Bay and the resulting local thermal low pressure anomaly in the wintertime. This results in both625

a reduction in the southward extent of the high SLP ridge and a weakening of the localized SLP626

gradient, consequently limiting the geostrophic meridional flow. Since these SLP changes are627

related to a local thermal response to sea ice loss that are geographically tied to Hudson Bay,628

they are likely robust to internal variability unlike many other dynamical impacts of sea ice loss.629

The combined impact of these two changes in the background mean state, both dynamical and630

thermodynamical, would result in a reduction in cold air advection. This analysis indicates that631

when it comes to the sensible weather impacts associated with LSMPs, there is an interplay between632

changes in the mean state and changes in the LSMP.633

We further identify diabatic forcing mechanisms that may increase the Θ′
850 in this LSMP. With634

Arctic sea ice loss, there is an increase in total cloud cover anomalies downstream of Hudson Bay635

with a coinciding decrease in anomalous shortwave radiation reaching the surface and increase in636

anomalous longwave radiation down. Along with this increase total cloud cover anomalies there637

is also an enhancement of precipitation anomalies, both of which are likely associated with latent638

heating although this cannot not be confirmed given the fields available in our simulations.639

Given the association of LSMP [1,2] with large changes in Θ′
850 owing to sea ice loss, a follow-640

on question was how important this specific LSMP is to the overall mean Θ850 response which641

is largely an AA signal. We find that in the Canadian north where the mean Θ850 response is642

large, this single LSMP accounts for up to 20% of the total signal. This is significantly larger643

than the 6.6% that would be expected if that signal were equally distributed among all the LSMPs.644

Although the mean Θ850 response is weaker in the midlatitudes, the role of LSMP [1,2] is even645

greater reaching 50% in the southern United States. This implies that LSMP [1,2] play an out-sized646

role in the mean Θ850 response and its propagation further south.647
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Although we haven’t examined extreme temperature events in this study, LSMP [1,2] does648

resemble the broad-scale patterns associated with cold-air outbreaks over the Eastern US (e.g.649

Walsh et al. 2001). Previous literature has highlighted the role of AA in reducing the intensity650

of cold air outbreaks over North America (Screen et al. 2015; Ayarzagüena and Screen 2016);651

however, this analysis demonstrates that further investigation including the role of dynamics and652

diabatic effects in cold air outbreaks could yield new insight into the problem.653

The results in this study demonstrate that there are notable changes in LSMPs and their associated654

sensible weather with Arctic sea ice loss. However, here we have shown results from just a single655

set of climate model simulations. Future work conducing a similar analysis with a suite of climate656

model experiments, such as those available in the Polar Amplification Model Intercomparison657

Project (PAMIP, Smith et al. (2019)), would help confirm the robustness of these results.658
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