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Abstract
The observed sea-surface temperature (SST) trends over recent decades feature cooling in
the tropical eastern Pacific and the Southern Ocean (SO). Growing evidence suggests that
tropical cooling trends may partly stem from remote impacts of the SO. Using a hierarchy
of multi-model simulations, we demonstrate that these teleconnections are robustly
modulated by the mean-state inter-tropical convergence zone (ITCZ): models with a more
realistic ITCZ structure simulate a stronger tropical SST response to SO forcing via
stronger surface winds in the tropical eastern Pacific. When realistic Antarctic meltwater
forcing is accounted for, correcting the model’s tropical mean-state bias yields a stronger
tropical cooling response to meltwater-driven SO cooling, improving the agreement
between simulated and observed SST trends. Our results suggest that the SO’s
contribution to tropical warming patterns is systematically underestimated due to model
mean-state biases. Improving representations of SO teleconnections is critical for
accurately assessing historical and future warming patterns.

Teaser
The Southern Ocean’s contribution to the observed tropical La Nifia-like warming pattern
has been systematically underestimated due to model mean-state biases

MAIN TEXT

Introduction
Observations over recent decades have exhibited a distinctive sea-surface temperature
(SST) trend pattern, characterized by broad cooling in the tropical eastern Pacific and the

Southern Ocean (SO) (1, 2). This observed SST trend pattern has been linked to a wide
range of changes in climate and extreme events across regional to global scales (3—6).
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However, reproducing this pattern remains a challenge for Global Climate Models
(GCMs) participated in the Climate Model Intercomparison Project Phase 5 (CMIP5) and
Phase 6 (CMIP6) (1, 2, 7), calling into question the credibility of GCM-based future
climate projections.

A diverse pool of mechanisms has been put forward to explain the observed tropical SST
trend pattern and model-observational discrepancies (2, §); however, consensus has yet to
be reached on their relative importance. Tropical eastern Pacific cooling may arise from
the transient oceanic response to greenhouse gas (GHG) forcing via the ocean thermostat
mechanism (9, /0), which indicates a possible persistence of the recent La Nifia-like
warming pattern into the near future under continued GHG forcing. On the other hand,
contributions of anthropogenic aerosol emissions (//) and natural variability in the Pacific
(12, 13) may point to a possible shift toward an opposite El Nino-like warming pattern in
the future. Unraveling the causes of the recent historical SST pattern is therefore critical
for accurately predicting its future evolution.

Among the proposed mechanisms, remote impacts from the SO have received increasing
attention. Like the tropical eastern Pacific, the SO has experienced significant SST cooling
over recent decades, particularly in the eastern Pacific sector (/, /4). Various modeling
evidence has revealed that SO cooling can drive a tropical La Nifia-like SST response
through atmospheric and oceanic teleconnections (/4—18), suggesting a potential
extratropical origin of the observed tropical cooling trends. Indeed, recent studies
demonstrated that a La Nifa-like tropical SST pattern can arise from Antarctic ice-sheet
meltwater input (/9) and Antarctic ozone depletion (20, 21), both of which are leading
hypotheses for the observed SO cooling (22—25). Furthermore, directly nudging the
observed SO SST anomalies in a fully-coupled GCM improved the agreement between
simulated and observed tropical SST patterns (/8), highlighting the SO's role as a
pacemaker of tropical and global climate change (26).

However, several gaps remain in our understanding of the SO's contribution to the recent
and near-future tropical warming patterns. First, although a La Nifa-like tropical SST
response to SO cooling is consistently simulated, models often use idealized SO forcings
that are unrealistically strong (27), or simulate a tropical SST response that is weaker than
observed (/9). Second, existing modeling work exhibits varying degrees of tropical SST
response (17, 18, 28), reflecting a wide spread in the strength of SO teleconnections.
Furthermore, while the Southern Hemisphere (SH) subtropical eastern Pacific SST
response is relatively robust, large uncertainty exists in the equatorial SST response (19,
29), which governs remote impacts on the northern hemisphere (NH) hydroclimate (30,
31) and global warming rate (32). Ultimately, despite progress from numerical model
experiments, we are left with the question: to what extent has the SO contributed to the
recent tropical SST trends and global climate change observed in nature?

In this study, we aim to better constrain the SO teleconnection strength by examining the
key physical processes that modulate the SO teleconnections in individual GCMs and their
inter-model spread. We focus specifically on two factors: subtropical cloud feedback and
the tropical mean-state climate. Subtropical cloud feedback has been identified as a major
contributor to the inter-model spread in SO teleconnection strength (/7). The tropical
mean state—particularly precipitation and surface winds—Ilikely also plays a critical role
in shaping the tropical SST response to SO forcings, yet its influence remains poorly
understood. Like cloud feedbacks, tropical mean-state biases are prevalent in GCMs, most
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notably associated with the Intertropical Convergence Zone (ITCZ) known as the “double-
ITCZ” problem (Fig. S1) (33, 34). While such mean-state biases may directly affect the
local SST response to CO> forcing (9, 35), here we focus on the tropical SST response to
remote SO forcings and ask: do tropical mean-state biases affect the simulated strength of
SO-tropical Pacific teleconnections? If so, what are the implications for understanding the
observed tropical warming pattern?

To address these questions, we leverage multiple lines of evidence, including a suite of
idealized simulations with the Community Earth System Model version 1 (CESM1, a
CMIP5-class GCM), two multi-model intercomparison projects that uniquely incorporated
SO thermal and freshwater forcings, and ensembles of transient historical simulations with
realistic SO corrections using the NASA Goddard Institute for Space Studies version E2.1
climate model (GISS-E2-1-G, a CMIP6-class GCM). By comparing model results with
observations, we provide new constraints on the remote tropical impact of SO SST
changes.

Results

Sensitivity of the SO-tropical Pacific teleconnection strength

We begin by presenting results from idealized simulations with the slab-ocean
configuration of CESM1 (Methods). To isolate the impacts of subtropical cloud feedbacks
and the tropical mean state, we conduct three sets of control and SO-cooling simulations.
The three control runs feature distinct mean-state climates, namely: (1) a “base” mean
state, derived from a long control simulation of the fully-coupled CESM1, which carries
all intrinsic model biases; (2) a “flux-adjusted” mean state, in which we modify
climatological surface heat fluxes (“qflux”) to better align the simulated SST and
precipitation patterns with observations; (3) a “cloud-adjusted” mean state, in which we
modify the model’s radiation code to increase low-cloud-SST sensitivity over the
subtropical stratocumulus deck to better match satellite observations. For each mean state,
we perform a corresponding SO cooling experiment by imposing a constant qflux
anomaly in the SO to induce local SST cooling (Methods).

First, we show the mean-state differences across the three control runs. Focusing on the
tropical zonal-mean precipitation (Fig. 1C), the “base” control run exhibits a typical
“double-ITCZ” bias, similar to other CMIP6 models. The “cloud-adjusted” control run
produces a nearly identical precipitation pattern, retaining the same double-ITCZ bias. In
contrast, the “flux-adjusted” control run substantially improves the ITCZ representation,
producing a more asymmetric precipitation pattern that closely matches observations (Fig.
1C and Fig. S2). This is because the “flux adjustment” effectively changes the mean-state
SST distribution (Fig. S3A) and therefore precipitation patterns (Fig. S3B). By contrast,
the “cloud adjustment” is designed to increase the sensitivity of low cloud amount to
instantaneous SST anomalies relative to the mean state. Although this significantly
increases the SST variance in the tropical eastern Pacific (36), it does not affect the SST
mean state averaged over a long period (Fig. S3D; see also ref (36) for similar results
using fully-coupled CESM1). Meanwhile, the shortwave (SW) cloud-SST feedback
(Ac1asw) over the SH subtropical eastern Pacific region substantially strengthens in the
“cloud-adjusted” control run (Fig. S3F), while remaining largely unchanged in the “flux-
adjusted” control run (Fig. S3C). Overall, the “flux-adjustment” reduces the double-ITCZ
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bias, and the “cloud adjustment” strengthens subtropical cloud-SST feedback—both
aligning better with observations.
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Figure 1: Mean-state climate and simulated response to Southern Ocean qflux perturbation in CESM1. (4, B)
Annual-mean climatology of SST (shading), surface winds (arrows), and precipitation (white contour denotes 6.5
mm/day level) in (4) observations and (B) CESM1 “base” control run. (C) Zonal-mean annual-mean precipitation
normalized by the tropical mean from GPCP observations (red), CMIP6 multi-model mean (grey), CESM1 “base”
control run (black), “‘flux-adjusted” control run (orange) and “cloud adjusted” control run (blue). The grey shading
denotes one standard deviation across CMIP6 models. (D—F) Simulated annual-mean SST (shading) and surface wind
(arrows) response to the imposed qflux perturbation in the “base”, “flux-adjusted”, “cloud-adjusted” simulations,
respectively. White box illustrates where the anomalous qflux forcing is imposed (Methods). (H-1) Simulated annual-
mean precipitation response.

We next examine the quasi-equilibrium tropical response to the imposed SO qflux forcing
(over the white box in Fig. 1D-F). With the “base” mean state, the imposed SO cooling
produces a remote tropical response (Fig. 1D), including a La Nifia-like cooling,
strengthened SH trade winds, and a northward displacement of the ITCZ. This response
pattern resembles the previously identified SO teleconnection response (14, 15, 27),
driven by a series of coupled processes: SO SST anomalies are first advected into the
tropics by mean winds in the southeast Pacific, initiating an anomalous zonal SST
gradient; this SST gradient is further amplified by subtropical cloud feedback and the
wind-evaporation-SST (WES) feedback in the tropical eastern Pacific (14, 17). These
tropical responses strengthen further in the flux- and cloud-adjusted mean states. Both
adjustments produce stronger tropical eastern Pacific SST cooling (Fig. 1E, F), enhanced
tropical zonal SST gradients (Fig. S4A), and more pronounced precipitation anomalies
(Fig. 1H, I, Fig. S4B). Notably, with the mean-state adjustments, the remote SST and
precipitation responses extend further into NH midlatitudes (Fig. 1) exerting more

Science Advances Manuscript Template Page 4 of 19



167
168
169
170
171

172

173
174
175
176
177
178
179
180

181
182
183

widespread global impacts. The results suggest that both subtropical cloud-SST feedback
and the mean ITCZ structure are critical for the remote response to SO cooling, and that
biases in either may lead to underestimation of the teleconnection. While our simulations
correct these two biases separately by design, we next ask: do they influence the tropical
response through independent mechanisms?
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Figure 2: Surface energy budget analysis for the simulated tropical SST response in CESM1 simulations. (A)
Contributions of individual energy flux terms to the SST response averaged over the tropical eastern Pacific (the grey
box illustrated in panels B-G). From left to right are actual simulated SST response (ASST), contributions from
shortwave flux (SW), latent heat flux due to wind speed changes (LH,ina), latent heat flux due to relative humidity
changes (LHgy), latent heat flux due to stability (LHr4), longwave flux (LW), sensible heat flux (SH), residual (res). (B—
G) Difference in the actual SST response (B, C), the SW-induced SST response (D, E), and the LH,ina-induced SST
response (F, G) between “flux-adjusted” and “base” runs (left), and between “cloud-adjusted” and “base” runs
(right).

To understand the mechanisms, we perform a mixed-layer heat budget analysis of the
tropical SST cooling response in all three simulations (Methods). Focusing on the broad
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tropical eastern Pacific region (box in Fig. 2B—G), we find that the SW radiative effect and
the latent heat effect due to changes in wind speed (LHwing) consistently dominate the SST
response, confirming the leading roles of low cloud feedback and the WES feedback (17,
18, 37). However, their relative roles and spatial patterns differ across mean states. In the
“cloud-adjusted” run, the tropical eastern Pacific SST cooling is predominantly driven by
SW flux (Fig. 2A), which accounts for most of the additional cooling relative to the “base”
simulation (Fig. 2E). In contrast, the “flux-adjustment” produces stronger tropical cooling
primarily through an enhanced WES feedback (Fig. 2A) over the subtropical trade wind
regions (Fig. 2F), with the cloud feedback making limited contribution confined to areas
off the coast of south America (Fig. 2D). The enhanced WES feedback is associated with
the improved ITCZ mean state (Fig. S3A), characterized by stronger trade winds in the SH
subtropical eastern Pacific and cross-equatorial southerlies converging into the band of
deep convection north of the equator. These intensified mean-state winds enable stronger
advection of SO SST anomalies into the tropical central Pacific and equatorial eastern
Pacific, and also enhance the WES feedback further amplifying the cooling.

Overall, the idealized CESM1 simulations suggest that, in addition to the subtropical
cloud feedback, the ITCZ representation is also critical to the strength of SO-tropical
Pacific teleconnections. Importantly, the effect of an improved ITCZ is independent of
improved cloud feedback in our model, implying an additional and previously
underappreciated role for mean-state ITCZ modulation of SO teleconnections.

Inter-model spread in tropical response to SO SST forcing

Building on the CESM1 slab-ocean simulations, next we revisit the inter-model spread in
the tropical response to SO cooling provided by the Extratropical-Tropical Model Inter-
comparison Project (ETIN-MIP) (27). In the ETIN-MIP fully-coupled simulations used
here, solar flux is reduced between 65°S and 45°S to force the SH extratropical surface
temperature to cool, which subsequently drives a La Nifia-like response in the tropical
Pacific (16, 17, 27). Although this tropical response is robust in the multi-model mean
(Fig. 3D), its pattern and magnitude vary widely across individual models (Fig. S5). As
shown in ref. (/7), the inter-model diversity in the tropical responses can be attributed to
differences in subtropical cloud feedback off the west coast of South America (CFysa)—
models with a larger CFysa tend to produce a greater SST cooling response in the
subtropical eastern Pacific.

Is the inter-model spread in the tropical SST response across ETIN-MIP also connected to
models’ ITCZ biases, as indicated by our CESM1 simulations? A first look at the
precipitation mean state in ETIN-MIP’s control simulations reveals diverse ITCZ
structures across the models (Fig. 3A), but nearly all exhibit a consistent double-ITCZ
bias. To quantify the bias, we define a precipitation asymmetry metric (pr*) as the
difference between NH and SH zonal-mean precipitation maxima, normalized by the
tropical mean precipitation (Methods). Changing the precipitation averages to the Pacific
yields similar results. Most models simulate a pr* smaller than the observed (Fig. 3B),
reflecting the double-ITCZ bias. We further regress the tropical eastern Pacific SST
response to SH cooling (white box in Fig. 3D) onto each model’s mean-state pr” across all
seven models. A significant correlation is obtained (Fig. 3B), with pr* explaining ~75%
of the inter-model variance in the tropical eastern Pacific SST response. Models with a
larger pr” tend to simulate a stronger tropical eastern Pacific SST cooling response to SO
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forcing. A global regression of SST response onto pr” also confirms its broad influence on
the tropical SST pattern (Fig. 3F).
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Figure 3: Mean-state climate and response to SO forcing in ETIN-MIP experiments. (A) Annual-mean zonal-mean
precipitation normalized by the tropical mean from observations and ETIN-MIP models. Solid red line denotes GPCP
observations, dashed magenta line denotes ERAS; thick black line denotes the average of seven ETIN-MIP models, and
thin grey lines denote individual models. (B) Inter-model correlation between tropical eastern Pacific SST response (the
white box illustrated in panel D) and mean-state pr”. (C) Inter-model correlation between mean-state pr*and subtropical
cloud-SST feedback (CF\s4) for ETIN-MIP models (colored scatters) and 24 CMIP6 models (grey unfilled scatters).
Correlation coefficient (r) and p-values for ETIN-MIP and CMIP6 inter-model correlations are shown in black and
grey text, respectively. (D) ETIN-MIP multi-model mean SST and surface wind response to SH extratropical forcing.
Magenta contour denotes the 6 mm/day level of the annual-mean climatological precipitation. (E) Inter-model
regression between mean-state precipitation and surface winds onto pr”. (F) Inter-model regression between local SST
and surface wind response onto pr”. (G) Inter-model regression between local SST and surface wind response onto
CFs4. Stippling denotes where the inter-model regression is statistically significant at the 95% confidence level.

How does the mean-state ITCZ influence the tropical SST response to SO forcing? We
show in Fig. 3E that models with a larger pr" tend to simulate a mean-state climate with
more (less) precipitation in the north (south) of the equator, as well as stronger surface
southeasterly winds in the subtropical southeastern Pacific and more pronounced
southerlies along the equator. As demonstrated in the CESM1 “flux-adjusted” simulations,
stronger mean winds promote the advection of SST anomalies from the SO to the tropical
Pacific and enhance the WES feedback, thereby amplifying the SST cooling response in
the trade wind regions (Fig. 3F). Although the CESM1 simulations are conducted in a
slab-ocean configuration and the ETIN-MIP results are obtained from fully-coupled
GCMs, the resemblance between the two datasets strongly supports the mechanism by
which the ITCZ modulates SO teleconnections.
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That said, it is unclear whether the inter-model spread in the ITCZ biases (pr”) is
correlated with—if not caused by—the spread in subtropical cloud feedback (CFywsa). It
has been proposed that biases in subtropical cloud feedback may contribute to the double
ITCZ biases by locally influencing eastern Pacific SSTs (38). Here we regress pr* onto
CFuwsa across the seven ETIN-MIP models, and find the correlation is overall positive but
insignificant (Fig. 3C). This weak positive correlation is also evident in the piControl
simulations from the broader CMIP6 models (grey scatters in Fig. 3C), with a correlation
coefficient of only 0.32. These results suggest that although models with a more realistic
ITCZ structure generally tend to also have a stronger subtropical cloud feedback, the
spread in the ITCZ and the spread in cloud feedback are more likely associated with other
independent factors. Furthermore, by regressing the SST response to SH cooling at each
grid box onto pr* (Fig. 3F) and CFysa (Fig. 3G), we find notable differences in their
spatial patterns: stronger cloud feedback (larger CFwsa) is associated with stronger cooling
mostly in the subtropics, whereas better ITCZ (greater pr”) is linked to more widespread
cooling that can extend into the equatorial eastern Pacific. This is because models with a
more realistic ITCZ also simulate stronger cross-equatorial meridional winds (Fig. 3E),
which enables the advection of SST anomalies into the deep tropics, consistent with the
“flux-adjusted” CESM1 simulation (cf. Fig. 3B and 3C).

In summary, the inter-model spread in the tropical SST response across ETIN-MIP models
is associated with differences in the mean-state ITCZ, and this effect is largely
independent of the subtropical cloud-SST feedback highlighted in previous studies. While
both mechanisms influence the magnitude of subtropical SST response, the ITCZ also
plays a crucial role in determining how effectively SO-induced SST anomalies extend into
the equatorial eastern Pacific. Current GCMs often simulate the remote SST response to
observed SO cooling as confined south of the equator (/8). Our results indicate that this
limited equatorial extension may be a bias due to the model's mean-state “double-ITCZ”
bias.

Constraining the tropical response to Antarctic meltwater input

Idealized CESM1 simulations and ETIN-MIP experiments both suggest that the SO-
tropical Pacific teleconnections may be underestimated in current GCMs, reinforcing the
possibility that the observed tropical eastern Pacific cooling trends may arise partly from
the SO. While it remains unclear what causes the observed SO cooling trends and GCM
warm biases, one increasingly recognized mechanism is Antarctic ice-sheet meltwater
input—a process lacking in current GCMs. Accounting for Antarctic meltwater input in a
variety of GCMs produces SO surface cooling and freshening response resembling
observations (22, 23, 39—41). This is primarily because the meltwater-induced freshening
increases upper-ocean stratification, reducing the upward heat transport from the relatively
warm subsurface (39, 47). A recent study (/9) found that the meltwater-induced SO
cooling trends can further expand into the tropics, driving a tropical SST trend pattern
closer to observations.

Here we leverage a recent community effort—the Southern Ocean Freshwater Input from
Antarctica initiative (SOFIA) (42)— to examine the inter-model uncertainty in the tropical
SST response to Antarctic meltwater forcing. SOFIA provides near-equilibrium meltwater
hosing simulations with a constant freshwater release around Antarctica (Methods).
Preliminary results from eight fully-coupled GCMs show that the addition of freshwater
yields a robust SO surface cooling response and Antarctic sea-ice expansion (42, 43). We
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304 focus on the remote tropical impact and find that the multi-model mean near-surface air

305 temperature (TS) response (as the SST output is not readily available for all models)
306 shows a La Nifia-like tropical cooling pattern (Fig. 4C), consistent with the previous single
307 model study (/9). The magnitude of the tropical response, however, varies greatly across
308 individual models (Fig. S6), along with a large spread in their precipitation mean state
309 (Fig. 4A and Fig. S5). To quantify the spread in tropical TS response related to the mean-
310 state ITCZ, we repeat the regression analysis with pr*. As the SO TS cooling response to
311 meltwater input is highly model-dependent, which we expect is not directly driven by
312 tropical processes, we normalize the tropical TS response for each model by its SO TS
313 change before performing the regression analysis.
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Figure 4: Mean-state climate and response to Antarctic meltwater in SOFIA meltwater experiments. (A) Annual-mean
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zonal-mean precipitation normalized by the tropical mean from observations and SOFIA models. Similar to Fig. 34,

except thick black line denotes the average of seven SOFIA models, and the thin grey lines denote individual models. (B)

Inter-model correlation between tropical eastern Pacific TS response and mean-state pr”. The TS response has been
normalized by each model’s SO (south of 60°S) TS response. (C) Multi-model mean TS and surface wind response to
Antarctic meltwater input. Magenta contour denotes the 6 mm/day level of the annual-mean climatological

precipitation. (D) Inter-model regression between mean-state precipitation and surface winds onto pr”. (E) Inter-model
regression between normalized TS and surface wind response onto pr’. Stippling denotes where the inter-model

regression of normalized TS is statistically significant at the 95% confidence level.
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The results show that mean-state pr” inter-model differences again explain a major portion
(~80%) of the inter-model spread in the normalized tropical TS response (Fig. 4B). Inter-
model regression of the tropical mean-state climate onto pr"supports the same mechanism
as in the idealized CESM1 simulations and ETIN-MIP models: models with a greater
mean-state pr” have a reduced precipitation bias in the SH tropics and therefore stronger
mean-state trade winds and cross-equatorial meridional winds in the tropical eastern
Pacific (Fig. 4D). These intensified mean-state winds in turn drive a stronger tropical TS
response to meltwater-driven SO cooling (Fig. 4B and 4E). We note that the mean-state
precipitation regression maps among the ETIN-MIP and SOFIA models, although largely
resembling each other, also show slight spatial differences (Fig. 3E and Fig. 4D). For
example, the ETIN-MIP models highlight wetting in the NH equatorial Pacific and
Atlantic, whereas the SOFIA models highlight drying in the SH subtropical eastern Pacific
and eastern Atlantic. These minor differences may arise from the different sets of models
considered and the lengths of their control simulations.

A GISTEMP TS trends (1990-2021)

tropical EP TS trend (1990-2021)

30°N -+
0.4

0.3

0.2

0.1

TS trend (K/dec)

0.04 GISTEMP

= -0.1 T T
120°W 40°W control MW pr* corrected MW

80°E 160°E

C  Historical control TS trends (1990-2021)

D Historical MW TS trends (1990-2021) K/dec
— 0.4

0A2
0.0
—-0.2

T T — - T
80°E 160°E 120°w 40°wW 80°E 160°E 120°w 40°wW

30°N -+ 30°N~+

30°S 30°S

60°S.. ..coinochonin e iirniiiins e ol 0 60°S i e

E Meltwater effect K/dec F pr*-corrected meltwater effect K/dec
D = =
< 30°N A :

30°N+

30°S+ 30°S+

60°S 60°S

80°E 80°E 160°E 120°W 40°W

Figure 5: Observed and GISS-E2-1-G simulated TS trends over 1990-2021. (A) TS trends from the GISTEMP v4
observational dataset. (B) Tropical eastern Pacific TS trends (box in panel a) in the historical control ensemble,
historical meltwater ensemble, and adjusted values based on the pr* regression and observed pr” (Methods). Note that
the results of the control ensemble (left column) and the adjusted ensemble (vight column) are statistically different from
each other at the 95% confidence level. The box area is chosen to capture the pronounced tropical Pacific cooling over
this period. (C, D) TS trends from the ensemble-mean of GISS-E2-1-G historical control and meltwater simulations.
Stippling in (4, C, D) represents trend values that are not significant at the 95% confidence level. (E) TS trend
difference between historical and meltwater simulations, representing the meltwater impact. Magenta contour denotes
the 6 mm/day level of the annual-mean climatological precipitation from GISS-E2-1-G historical control simulations
(1950-2021). (F) Similar to (E) except the tropical TS response (between 30°S-30°N, illustrated by grey lines) is
adjusted based on the inter-model pr* regression (Fig. 3E), assuming that the model had reproduced the observed ITCZ.
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Magenta contour denotes the 6 mm/day level of the annual-mean climatological precipitation from ERAS5 reanalysis
(1950-2021).

As most models are unable to reproduce the observed ITCZ structure (Fig. 4A), their
simulated tropical response may be systematically underestimated, implying that the
contribution of historical Antarctic meltwater to observed tropical SST trends may have
been larger. We consider an example of historical transient meltwater simulations within a
CMIP6-class fully-coupled GCM, GISS-E2-1-G, where an observational estimate of
Antarctic meltwater input was imposed from 1990-2021 (23, 44). Note that observational
estimates of Antarctic ice imbalance based on satellite altimetry are not currently available
before 1990. It has been found that the addition of meltwater flux gives rise to SO SST
cooling trends (Fig. 5D), improving the model's agreement with observations (44).
Beyond the SO, the meltwater input in this model produces only a marginal influence on
the tropics (Fig. SE), making insignificant differences in the simulated tropical eastern
Pacific TS trends (Fig. 5B). This result seems to suggest a negligible contribution of
Antarctic meltwater to the observed tropical warming pattern. However, GISS-E2-1-G
appears to have a severe double-ITCZ bias (Fig. 4B and Fig. SE), implying that its
simulated SO teleconnection may be greatly underestimated. Indeed, adjusting its SO-
tropics teleconnection strength based on inter-model pr* correlations (Methods), we find
that the tropical impacts of Antarctic meltwater input could have been more pronounced if
the model had reproduced the observed ITCZ mean state (Fig. 5F). Furthermore,
accounting for both the meltwater-induced SO changes and the observationally-
constrained SO teleconnection strength brings the simulated tropical eastern Pacific TS
trends into better agreement with observations (Fig. 5B). These results highlight the
potentially underestimated role of Antarctic meltwater input in the observed tropical La
Nifia-like cooling trends.

Discussion

While the teleconnection from the tropics to the extratropics has long been established
(45, 46), the reverse branch—from the SO-tropical to the tropical Pacific—remains an
area of active research. There is a large uncertainty in the strength of SO teleconnections
in current models, limiting our ability to robustly quantify their contributions to the
observed tropical SST trends in recent decades. Using a hierarchy of model simulations
with distinct SO thermal and freshwater forcings, we here demonstrate that the tropical
mean-state climate, particularly the position and strength of the ITCZ, strongly modulates
SO-tropical Pacific teleconnections. Models with a more realistic ITCZ tend to simulate
stronger mean-state winds in the tropical eastern Pacific, which enable a stronger tropical
SST response to SO forcing via mean-wind advection and the WES feedback. Given that
GCMs commonly struggle with the “double-ITCZ” bias, our results imply that the remote
tropical impacts of the SO may have been systematically underestimated, and that model
deficiencies in the tropics may have biased our understanding of the broader impacts of
polar climate change.

These results underscore the importance of improving the model mean state for accurately
simulating historical climate change. For example, when forced with observed SO SST
anomalies, CESM1 and CESM2 produce markedly different tropical SST responses (78,
28). The stronger tropical response in CESM2 has been attributed to its more realistic
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subtropical cloud feedback (18). However, CESM2 also has a reduced double ITCZ bias
compared to CESM1 (Fig. S7), which may contribute to its improvement in tropical SST
trends. Thus, improving both cloud feedbacks and the ITCZ mean state is essential for
understanding large-scale teleconnections and developing the next generation of climate
models.

More broadly, improving model representation of SO teleconnections could provide new
insights into tropical variability and predictability. Recent work has shown promising
advances in tropical decadal prediction from improved simulations of the SO in a high-
resolution GCM (47). A more realistic mean state would likely yield a stronger and more
far-reaching tropical SST response to SO changes, with potential implications for
equatorial variability such as ENSO.

Under increased CO; forcing, SO SST is projected to warm up eventually at a rate
exceeding the global average (48—50). Even in recent years (post—2016), rapid sea-ice loss
and ocean subsurface warming around Antarctica have occurred, indicating a possible
regime shift (57, 52) in contrast to the cooling trends in earlier decades (53). The delayed
future SO warming is expected to exert broad remote influences, including impacts on NH
midlatitude precipitation (3/) and Arctic warming (54). Advancing the representation and
understanding of the SO's remote climate impacts is therefore critical for accurately
constraining future global climate change.

Methods

CESMI1 simulations. Simulations with mean-state modifications shown in Fig. 1 and Fig.
2 are carried out by a slab-ocean configuration of the Community Earth System Model
version 1 (CESM1) with the Community Atmospheric Model version 4 (CAM4) at 2-
degree horizontal resolution. All simulations are forced by a qflux climatology (e.g.
prescribed ocean heat transport) and radiative forcing agents (greenhouse gases, aerosols,
solar cycle, etc.) at the present-day climatological levels. The ocean mixed-layer depth is
set to a uniform 50 m in all simulations to ensure consistency. We conduct three sets of
simulations—*“base”, “cloud adjusted”, and “flux adjusted”—each containing a control
run and a SO-cooling experiment. For all three groups, the quasi-equilibrium responses
are taken from the average of the last 30 years of the corresponding control and SO-

cooling simulations.

For the “base” case, the control run is carried out for 120 years and uses a qflux
climatology derived from a long piControl simulation within the fully-coupled CESM1.
The corresponding SO-cooling experiment is branched from the 61st year of the control
run and carried out for 60 years. Its qflux climatology is identical to that in the control run,
except uniform negative gflux anomalies of 15W/m? are added over the southeast Pacific
sector of the SO (55°S—-35°S, 220°E-280°E), following the setup in (/4).

For the “cloud adjusted” case, both the control and the SO-cooling simulations are
branched from the 61st year of the “base” control simulation and carried out for another
60 years. The cloud modification is applied in both control and SO-cooling simulations,
and is designed to increase the low cloud amount-SST sensitivity over the Southern
Hemisphere (SH) subtropical Pacific stratocumulus deck, which is too low in CAM4
compared to the MODIS observation (36). We follow the method developed by (36), by
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adding a perturbation to all cloud layers at or below 700 hPa at every radiation time step
proportional to the instantaneous SST anomaly relative to the SST mean state from the
“base” control run. The cloud perturbation is set to be —3% of local low-cloud amount
anomaly per degree of local SST anomaly. The modification is only applied in the CAM4
radiative transfer code to account for the radiative effect of enhanced low-cloud
sensitivity. The qflux climatology data used in the control and SO-cooling simulations are
identical to those used in the two “base” simulations.

The “flux adjusted” control and SO-cooling simulations are similar to the “base”
simulations, except the control qflux climatology is derived from a long “flux-corrected”
piControl simulation in CESM1-CAM4, where an annual-cycle of surface heat flux
anomalies is applied to nudge the model’s SST mean state to observations (/4). The qflux
anomalies over the SO are further added to this flux-adjusted qflux climatology for its SO-
cooling simulation. The control run is conducted for 120 years and the SO-cooling
simulation is conducted for 60 years, branched off from the 61st year of the control run.

Observations and CMIP6 models. We use precipitation observations from the Global
Precipitation Climatology Project (GPCP) (55) and ERAS Reanalysis (56). We also
analyze 24 CMIP6 models and obtain the modeled precipitation climatology from their
historical (1979-2014) and SSP3-7.0 (2015-2024) simulations, with one ensemble
member per model. Both observed and modeled precipitation mean states are computed
using annual means over 1979-2024. In Fig. 5, we use TS observations from GISTEMP
v4 dataset (57) to compute the equatorial eastern Pacific TS trend over 1990-2021.

Surface energy budget analysis. We perform a mixed-layer heat budget analysis to
decompose the contributions to the tropical SST response in CESM1 SO-cooling
simulations. Following previous studies (15, 16, 28), we consider the surface energy
budget as:

!

CHa
PEpt ¢

= SW' + LW’ +LH' + SH' +res (1)

The left hand side represents the mixed-layer heat storage, with p being the density of
ocean, C, the specific heat of the ocean, H the ocean mixed-layer depth and T surface
temperature (i.e. SST over the ocean). The right-hand side represents the mixed-layer heat
budget terms, with S presenting surface shortwave flux, LW surface longwave flux, LH
latent heat flux, SH sensible heat flux, and res residuals (all heat fluxes are defined as
positive downward). The prime symbol ' represents the anomalies between the control and
the SO-cooling simulations (the response). Since our CESM1 simulations are quasi-
equilibrium, the left hand side (the tendency term) is close to zero. Based on the linearized
bulk formula for evaporation, latent heat changes associated with Newtonian cooling can

b~ 006K ~1 LH is the climatological mean LH.

T2

be simplified as a LHT'where a =

v

Eq. (1) can thus be rewritten into a diagnostic equation for the SST response:

!

_SW'+ LW 4 LH' ying + LH gy + LH'p4 + SH' + res -
B alH

where LH' ,)inq, LH' gy, LH' 14 represent latent heat trend changes due to changes in wind
speed, changes in relative humidity and changes in stability, respectively.
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Regional metrics. The precipitation asymmetry index (pr”, unitless) is defined as the
difference between the NH (0—15°N) and SH (15°S—0) zonal-mean precipitation maxima,
normalized by the tropical mean precipitation (15°S—15°N). Averaging precipitation over
the Pacific (e.g., between 120°E-330°E) yields similar results.

The tropical east Pacific SST response presented in Fig. 3B and Fig. 4B is computed as
the average over 10°S—10°N and 220°E-290°E. Changing the area or the location of the
targeted region by 5° yields similar results.

The subtropical cloud feedback over the west of South America (CFysa) is computed
following (/7) by regressing de-seasonalized monthly shortwave cloud radiative effect
(SWCRE) onto the underlying SST anomalies in the long control simulations, averaged
over 260°E—290°FE and 45°S—15°S. Data for the ETIN-MIP models is obtained from (/7).
Data for CMIP6 models (Fig. 3C) is from model piControl simulations.

SOFIA meltwater simulation. We use two experiments provided by the SOFIA project
(42), piControl and antwater (in Tier 1), which are currently available for eight GCMs.
The first is identical to the CMIP6 piControl setup, with no additional ice-sheet meltwater
included. The second is the idealized meltwater hosing experiment, branched from the
piControl simulation. It applies a freshwater flux anomaly of 0.1 Sv at the ocean surface
around Antarctica. The antwater simulations are generally carried out for > 100 years,
and we use the last 30 years to obtain quasi-equilibrium response. As the “tos” (sea-
surface temperature) and “ts” (surface temperature) variables are not readily available for
most of SOFIA models, we use “tas” (near-surface air temperature) instead for the
analysis. For each model, we normalize the tropical TS response by its average over
Antarctica (60°S—90°S, including both ocean and land), before conducting the inter-model
regression analysis.

GISS-E2-1-G meltwater simulation and analysis. The transient historical meltwater
simulations within the NASA Goddard Institute for Space Studies (GISS) version E2.1
climate model (GISS-E2-1-G) are provided by and documented in (23) and (44). The
control and meltwater ensembles each consist of 10 members. The control ensemble spans
1950-2021: from 1950-2014, the simulations used the CMIP6 “historical” forcing
scenario with all time-varying radiative forcing agents; extensions from 2015-2021 used
observed greenhouse gases and solar forcing while keeping other compositions and land
use changes at 2014 levels. The meltwater ensemble builds on the control ensemble and
spans the period from 1990-2021. It includes time-varying anomalous freshwater based
on the observed post—1990 “ice imbalance” from Antarctica and Greenland ice sheets
constrained by satellite observations (58). Meltwater is added to the Southern Ocean (500
km wide around the Antarctic continent) uniformly from the surface to 200 m below. We
obtain the meltwater-induced surface temperature response by comparing the ensemble
means of control and meltwater simulations (shown in Fig. 5C and Fig. 5D).

We further correct the meltwater-induced tropical TS anomalies (between 30°S—30°N)
based on the model’s mean-state ITCZ. Specifically, we first compute the pr* values from
GISS-E2-1-G historical control simulations and ERAS reanalysis over 1950-2021,
denoted as prgg 45 and prg, s, respectively. We then compute the adjusted tropical TS
response (AT S¢yqpics) as:
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9 ATStropics (X, y)
ATSso

dpr*

AT‘S't*ropics (x' y) = (prLj:RAS - pr(}kISS) ATSSO + ATStropics (x, y) (3)

ATStropics*Y)
ATSgq

apr*
normalized TS response onto pr*across eight SOFTIA models (shown in Fig. 4E), AT S, is
the TS response averaged over the SO (60°S-90°S), and ATS,,pics(x,y) is the originally
simulated tropical TS response pattern. In our estimate, we retain ATSg, from the
meltwater simulations unchanged, and only apply the pr*adjustment to the tropical TS
response pattern. The adjusted tropical response AT S, opcs (, ¥) thus represents the more
realistic tropical response to the simulated meltwater-driven SO TS changes, assuming the
model had accurately reproduced the observed ITCZ (pr").

where represents the coefficient from the inter-model regression of

Statistical Analysis

Statistical significance is evaluated using a two-sided t-test above 95% confidence level.
Regression analysis is performed using the least-square linear regression.
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Fig. S1.
Annual-mean precipitation climatology (1979-2024) in observations and CMIP6 models. (A)
GPCP observations; (B) CMIP6 historical multi-model mean; (C) differences between

observation and CMIP6 multi-model mean. Precipitation patterns have been normalized by the
tropical mean (15°S — 15°N).
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Fig. S2.
Annual-mean precipitation climatology between GPCP observations and CESM1 simulations.
(A) CESM1 “base” control run minus GPCP. (B) CESM1 “flux-adjusted” control run minus

GPCP. Same with Figure S1, all precipitation mean states have been normalized by the tropical
mean (15°S — 15°N).
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Fig. S3.

Differences in mean states between “adjusted” and “base” simulations within CESM1. Top row:
difference between “flux-adjusted” run and the “base” run; bottom row: difference between
“cloud-adjusted” and the “base” run. From left to right are SST (K), precipitation (mm/day), and
shortwave cloud feedback (W m~2K~1). Black contours in (C) and (F) illustrate the subtropical
Pacific stratocumulus deck region where cloud adjustment is applied.
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Fig. S4.

Tropical SST and zonal-mean precipitation response to SO qflux forcing simulated in CESM1
simulations. (A) Tropical Pacific SST averaged over 10°S — 10°N. (B) Zonal-mean
precipitation between 60°S — 60°N.
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Fig. S5.

Individual ETINMIP model result. (A) mean-state precipitation from the ETINMIP control
simulations; (B) SST response to imposed SH extratropical radiative forcing from the ETINMIP
stoa simulations. Magenta contours show the 6 mm/day contour of precipitation climatology.
The bottom right panels in both (A) and (B) show the multi-model mean results.
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Fig. Se.

Individual SOFIA model results. (A) mean-state precipitation from the SOFIA control
simulations; (B) surface air temperature response to imposed Antarctic meltwater from SOFIA
hosing simulations. Magenta contours show the 6 mm/day contour of precipitation climatology.
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Fig. S7.

CESM1 and CESM2 mean-state climates from piControl simulations. (A-B) mean-state SST
(shading), surface winds (arrows) and precipitation (6 mm/day contour) in CESM1 and CESM2.
(C) Difference in SST (shading) and cloud-SST feedback (contours) between CESM1 and
CESM2. Pink (green) denotes more positive (negative) cloud-SST feedback values. (D)
Differences in precipitation (shading) and surface winds (arrows).



