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Abstract19

Anthropogenic aerosols (AER) and greenhouse gases (GHG) – the leading drivers of the20

forced historical change – produce different large-scale climate response patterns, with21

varying trend pattern correlations from negative to positive over the past century. To22

understand what caused the time-evolving comparison between GHG and AER responses,23

we apply a joint low-frequency component analysis on global sea-surface temperature and24

sea-surface salinity response over 1921-2020 from CESM1 single-forcing large ensemble25

simulations. While GHG response is well-described by its first leading mode, AER re-26

sponse consists of two distinct modes. The first one features global AER increase and27

global cooling, opposite to GHG-induced warming. The second mode features multidecadal28

variations in AER distributions, where the recent shift from North America/western Eu-29

rope to southeast Asia emissions drives regional changes enhancing the GHG effect. We30

argue that AER can have both competing and synergistic effects with GHG, as their emis-31

sions change temporally and spatially.32

Plain Language Summary33

Anthropogenically forced climate change over the past century has been mainly caused34

by two types of emissions: greenhouse gases (GHG) and aerosols (AER). In general, sul-35

fate aerosols from industrial sources can reflect shortwave radiation to yield a cooling36

effect opposite to the GHG warming effect. However, model simulations isolating GHG37

and AER forcings show that the large-scale climate effect of AER does not always dampen38

the GHG effect. Instead, over recent decades, AER have produced surface ocean response39

patterns more like the GHG response. Using a novel principle component analysis, we40

find that aerosols have driven two distinct modes of climate change patterns over the his-41

torical period. The first mode is associated with global aerosol increase, resulting in global-42

wide cooling damping the GHG-induced warming. The second mode is associated with43

the shift in aerosol emissions from north America/western Europe to southeast Asia, which44

drives regional changes enhancing the GHG effect. Our results highlight the importance45

of considering the temporal and spatial evolutions of AER emissions in assessing GHG46

and AER climate effects and attributing historical anthropogenic climate changes to GHG47

and AER forcings.48

1 Introduction49

Anthropogenically forced climate change over the past century has been primar-50

ily driven by two components: greenhouse gases (GHG) and anthropogenic aerosols (AER).51

These components modulate the global-mean surface temperature through distinct ra-52

diative effects (Myhre et al., 2014; Forster et al., 2021) - GHG cause surface warming53

due to absorption and re-emission of longwave radiation, while AER change energy bud-54

get through reflection or absorption of shortwave radiation by scattering (e.g., sulfate)55

or absorbing species (e.g., black carbon). Additionally, AER have indirect effects on cli-56

mate through cloud-aerosol interactions, where aerosols can serve as cloud condensation57

nuclei affecting clouds’ albedo, lifetime, and properties (Twomey, 1977; Ackerman et al.,58

2004). Over the past century, long-term increases in global-mean GHG and AER have59

led to a large cancellation between GHG-induced warming and AER-induced cooling ef-60

fects (Deser et al., 2020).61

While a clear opposing effect from GHG and AER on global-mean surface temper-62

ature has been found, comparing the spatial patterns of their climate responses has been63

less straightforward. Focusing on global GHG and AER forcings in the 20th century, Xie64

et al. (2013) found that the first leading modes of climate response patterns to GHG and65

AER bear a great resemblance, suggesting that large-scale climate responses are governed66

by the same ocean-atmosphere feedbacks intrinsic to the climate system. Wang et al. (2016)67

further examined the differences in those leading modes, highlighting the unique features68
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of AER forced response associated with interhemispheric temperature asymmetry and69

cross-equatorial circulation change.70

The spatial distributions of GHG and AER forcings add additional complexity to71

the comparison. Unlike well-mixed GHG, AER emissions have much richer structures72

in their spatial distributions and temporal evolution (Deser et al., 2020). Emissions from73

North America (NA) and western Europe (EU) have dominated the global total AER74

loading since the early decades of the 20th century until the 1970s, after which they have75

declined substantially following emission regulations. On the other hand, emissions from76

southeast Asia (SA) have been increasing gradually since the 1950s, and more recently,77

have surpassed the emissions from NA and EU since the 1990s. This transition of ma-78

jor AER sources has been found to cause large-scale climate changes in a different way79

than global-mean AER change (Kang et al., 2021; Wang & Wen, 2022), and to some ex-80

tent can compensate for the global mean AER effect (Shi et al., 2022).81

To isolate and quantify the respective contributions of GHG and AER to forced82

historical climate change, single-forcing large ensemble (SF-LE) simulations within fully-83

coupled global climate models (GCMs) have provided valuable insights. Using CESM184

SF-LE, Deser et al. (2020) found that the contributions of GHG and AER to the large-85

scale patterns of total forced trends vary over time, with AER being the dominant driver86

before the 1970s and GHG dominating thereafter. Wang and Wen (2022) further extended87

the analysis to CMIP5 multi-model comparisons, highlighting both similarities and dis-88

parities in the spatial patterns of the trends driven by AER and GHG.89

To recap the literature and to illustrate the evolving contributions of GHG and AER90

to forced historical trends, we begin by showing the ensemble-mean response in CESM191

SF-LE for two 40-year periods, 1940-1980 and 1980-2020. Figure 1 shows the trend pat-92

terns for sea-surface temperature (SST) and sea-surface salinity (SSS), and key atmo-93

spheric variables coupled with them, sea level pressure (SLP) and surface water fluxes94

(i.e., precipitation minus evaporation, P-E). We compare these trend patterns forced by95

all forcings (“ALL”; from the CESM1 LE project, Kay et al. 2015), GHG, and AER (from96

Deser et al. 2020). As found in previous studies, during the early period (1940-1980; Fig.97

1a), the total forced response is dominated by AER, featuring an inter-hemispheric con-98

trast with pronounced cooling due to the SW absorption by AER and salinification trends99

in the northern hemisphere (NH) driven by an enhancement of Atlantic Meridional Over-100

turning Circulation (AMOC; Menary et al., 2020) and increased sea-ice formation in the101

Arctic ocean. During recent decades (1980-2020; Fig. 1b), the total forced response has102

been dominated by GHG, featuring broad global warming, a “wet-get-wetter” precip-103

itation pattern, and a “salty-get-saltier” SSS pattern, consistent with the literature (Held104

& Soden, 2006; Xie et al., 2010; Durack et al., 2012; Capotondi et al., 2012).105

Perhaps more interestingly, the climate response patterns driven by GHG and AER106

largely oppose each other during the early period, but show some resemblance during107

the later period at regional scales (e.g., NH warming and Arctic freshening). We further108

compute the pattern correlations for running 40-yr trends in global SST and SSS between109

the ALL and single forcing (GHG or AER) ensemble-means, following Deser et al. (2020).110

As expected, the pattern correlations between ALL and GHG for both SST and SSS have111

increased steadily since the 1950s (red lines in Figs. 1c, d), suggesting the increasingly112

dominant role of GHG in modulating global climate. However, the pattern correlations113

between ALL and AER decreased only over the first half of the 20th century and have114

gradually rebounded over recent decades (blue lines in Figs. 1c, d). The same non-monotonic115

behavior is also found for the pattern correlation between GHG and AER (black lines116

in Figs. 1 c, d), indicating that the surface ocean response patterns to AER have become117

closer, not opposite, to those forced by GHG over recent decades.118

This comparison between the evolving AER and GHG forced responses led us to119

ask: what caused the AER response to change over time, and particularly, to amplify120
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Figure 1. CESM1 ensemble-mean trend response to ALL, GHG and AER forcings, for (a)

1940-1980 and (b) 1980-2020. Black contours overlaid on the SST panels are SLP trends (contour

interval is 0.16 hPa/40yr, zero contours are thickened, solid contours denote positive SLP trend,

dashed contours denote negative SLP trend). Colored contours overlaid on the SSS panels are

P-E trends (contour interval is 0.18 mm/day/40yr, zero contours are omitted; green denotes pos-

itive P-E and red denotes negative P-E). (c, d) Pattern correlations for 40-yr running trends in

ensemble-mean (d) global SST and (e) global SSS between ALL, GHG and AER.
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the GHG response over recent decades? Is it because of the decline of global AER emis-121

sions, or is it because of the change in the spatial distribution of those emissions, or both?122

And what implications does this have for detecting and attributing historical low-frequency123

surface ocean changes? Motivated by these questions, in this work we apply a principal124

component analysis to investigate the leading modes of low-frequency historical surface125

ocean changes driven by GHG and AER, and distill their evolving contributions to his-126

torical forced climate change.127

2 Low-frequency component anlaysis128

One of the caveats in the trend pattern analysis in Fig. 1 and other studies (e.g.129

Deser et al., 2020; Kang et al., 2021) is that these trends are computed over arbitrary130

time intervals, thus may not capture the whole series of the forced response and time-131

evolving forcing patterns. To achieve a more systematic assessment, other prior stud-132

ies have utilized principal component (PC) analysis to linearly separate the total response133

into several empirical orthogonal functions (EOFs) (e.g., Xie et al., 2013; Wang et al.,134

2016; Bonfils et al., 2020). However, the EOF results can be affected by high-frequency135

natural variability (e.g., ENSO) that is not completely removed due to insufficient en-136

semble size. Therefore, to robustly examine the low-frequency forced response, we ap-137

ply a low-frequency component analysis (LFCA; Wills et al. 2018) to the ensemble mean138

GHG and AER forced response from CESM1 SF-LE. In the following sections, we first139

introduce the LFCA method and the data analyzed (section. 2.1), and we next show the140

results of the leading low-frequency modes for the GHG and AER forced response (sec-141

tion 2.2).142

2.1 The LFCA method and data143

Unlike conventional PC analysis which maximizes total variance, LFCA finds a lin-144

ear combination of EOFs that maximize the ratio of low-pass filtered variance to total145

variance, thereby isolating the leading modes of low-frequency variability (Wills et al.,146

2018). One can also apply LFCA to multiple spatial-temporal fields jointly, similar to147

the joint EOF analysis. Previous studies (Wills et al., 2022; Dörr et al., 2023; Bonan et148

al., 2023) suggest that the use of joint LFCA to account for low-frequency co-variability149

in multiple fields improves the isolation of long-term forced response.150

Therefore, in this study we perform joint LFCA on global monthly SST and SSS151

anomalies over 1921 – 2020 to study low-frequency modes of forced historical surface ocean152

changes. The anomalies are relative to the 1921-2020 climatology. We take the SST and153

SSS response from the ensemble-mean of ALL, GHG and AER ensembles as part of CESM1154

SF-LE (Deser et al. 2020), each containing 20 members. Note that original simulations155

in CESM1 SF-LE used the “all-but-one” forcing scenario – that is, all historical radia-156

tive forcing agents are prescribed except their GHG or AER is fixed at the 1920 condi-157

tions. The net effect of GHG and AER can be then obtained by subtracting these “all-158

but-one” SF simulations from the standard ALL simulations. We also note that in this159

set of LEs, AER specifically refers to industrial aerosols, not including biomass aerosols.160

For the joint LFCA, we use a 15-year cut-off low-pass filter to isolate multidecadal161

low-frequency variability, and we retain the 10 leading EOFs, which in total account for162

99.9%, 99% and 97% of the joint low-frequency variance for ALL, GHG and AER, re-163

spectively. Additionally, to understand the dynamical processes associated with each mode,164

we regress monthly SLP, precipitation (P), evaporation (E) and P-E anomalies onto the165

timeseries of each of the PCs.166

Although we take the ensemble mean response first to remove random internal vari-167

ability before performing the joint LFCA, one can also perform LFCA on each ensem-168

ble member to obtain (the best estimate of) its low-frequency forced response and then169
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Figure 2. Leading low-frequency modes of GHG and AER ensemble-mean responses obtained

from joint SST/SSS LFCA. Numbers in the corner of the timeseries plots show the low-frequency

variance explained by the corresponding PC. SLP regressions are overlaid on the SST patterns

(contour interval is 0.05 hPa, zero contours are thickened, solid contours denote positive SLP and

dashed contours denote negative SLP); P-E regressions are overlaid on the SSS patterns (interval

is 0.06 mm/day, zero contours are omitted, green denotes positive P-E and red denotes negative

P-E). Regressions of aerosol optical depth at the 550nm (no unit, multiplied by 100) onto AER

PC1 and PC2 are shown in panels (g) and (k).

average the leading modes across ensemble members (e.g., Wills et al., 2022; Kuo et al.,170

2023). We will show in the next section that the results remain the same regardless of171

which method is used (cf. Fig. 2 and Fig. S2)172

2.2 Low-frequency modes of GHG and AER forced responses173

Figure 2 shows the leading joint LFCA modes of SST and SSS for the GHG and174

AER forced responses. The GHG forced response is dominated by a single mode that175

explains 97.4% of the low-frequency variance; we will denote its timeseries as “GHG PC1”176

hereafter. The AER forced response consists of two leading modes, which both have strong177

multi-decadal variability and explain 75.2% and 13.9% of the total low-frequency vari-178

ance, respectively. We will denote their timeseries as “AER PC1” and “AER PC2” here-179

after.180

The GHG PC1 has increased monotonically throughout the past century, with a181

pronounced positive trend starting from 1980 (Fig. 2a). The corresponding SST pattern182

is characterized by broad global warming and enhanced tropical eastern Pacific warm-183

ing (i.e., the El Niño-like SST pattern), accompanied by a reduced tropical zonal SLP184

gradient (Fig. 2b). The global-scale warming causes precipitation to increase in the trop-185

ics and decrease in the broad subtropics (Fig. S1a), following the “wet-get-wetter” and186

“warmer get wetter” mechanism (Held & Soden, 2006; Xie et al., 2010). Associated with187

enhanced global-scale evaporation (Fig. S1b), the net P-E pattern links to a “salty-get-188

saltier” SSS pattern (Fig. 2c Durack et al., 2012; Sun et al., 2021), with an enhanced189
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SSS gradient between tropical and subtropical oceans as well as an amplified climato-190

logical contrast between the Pacific and Atlantic basins.191

On the other hand, AER PC1 and PC2 feature distinct surface ocean patterns and192

time evolutions (Figs. 2d-k). By regressing aerosol optical depth (AOD) onto PC1 and193

PC2, we find that the first mode is associated with a globally increasing AOD pattern,194

with the largest source in east Asia (Fig. 2g). The positive AOD anomalies cause global-195

scale SST cooling by reflecting SW radiation, which is most pronounced in the north Pa-196

cific downstream of the east Asian AOD source (Fig. 2e). The AOD-induced surface cool-197

ing further reduces precipitation in east Asia extending to the north Pacific (Fig. S1c),198

along with the weakly decreased evaporation (Fig. S1d), leading to increased SSS in the199

north Pacific (Fig. 2f). Additionally, global cooling reduces runoff into the Arctic Ocean200

from sea ice melting, thereby increasing its SSS. Overall, AER PC1 increases through201

most of the 20th century, with the strongest positive trend from 1940 to 1980 and a neg-202

ligible trend after 1980 (Fig. 2d).203

By contrast, AER PC2 is associated with the relative difference in AOD between204

northeast America/western Europe and southeast Asia (Fig. 2k). This PC has a neg-205

ative trend from the early 20th century to 1970 and a reversed (positive) trend from 1980206

to present day (Fig. 2h), reflecting the transition of major AER emissions from NA/EU207

to SA over the course of the 20th century. In the positive phase of PC2, the negative AOD208

in NA/EU drives NH SST warming confined to mid-to-high latitudes (Fig. 2i) and Arc-209

tic freshening via increased runoff from sea-ice melting (Fig. 2j). The positive AOD in210

SA drives weak cooling (Fig. 2i) and drying locally in the Indo-Pacific ocean (Fig. S1e),211

which excites a Rossby wave response weakening the Aleutian Low (Fig. 2i; also see Smith212

et al. (2016); Dittus et al. (2021)). Due to the zonal-mean energy budget constraint, the213

ITCZ shifts northward towards the warmer NH as required by cross-equatorial heat trans-214

port (Kang et al., 2008; Hwang et al., 2013), resulting in enhanced precipitation north215

of the equator and reduced precipitation in the south (Fig. S1e). This zonal-mean pre-216

cipitation dipole pattern further links to a meridional SSS gradient in the tropical Pa-217

cific, with decreased (increased) SSS in the north (south) (Fig. 2j).218

In summary, the leading low-frequency modes of GHG and AER forced responses219

are diverse in both their spatial patterns and temporal evolutions. The GHG response220

can be largely captured by a single leading mode, which has increased monotonically through-221

out the past century. The AER forced response, however, features two distinct modes.222

AER PC1 is associated with increasing global AER emissions and resulting global cool-223

ing as well as enhanced regional responses in the NH western Pacific associated with east224

Asian emissions. AER PC2 represents a multidecadal variation in AER distribution, high-225

lighting the emission shift from high-latitude NA/EU to low-latitude SA over recent decades.226

This mode features an inter-hemispheric SST gradient and a shift in zonal-mean precip-227

itation and SSS anomalies. The spatial patterns of the two AER modes are consistent228

with previous studies; however, their relative order and temporal characteristics may de-229

pend on the period analyzed. For example, when accounting for a longer period includ-230

ing the 21st century, Gu et al. (2024) find that the AER shift mode (our 2nd mode) is231

the leading PC, followed by the AER global mode (our 1st mode).232

3 Time-evolving contributions of the leading modes of AER and GHG233

responses234

Having quantified the leading modes of AER and GHG responses, in this section,235

we aim to attribute the changes in the total forced response to these individual modes236

to gain physical insights.237

First, we approximate the time-varying forced responses using their leading LFCA238

modes, and perform the pattern correlation analysis for running 40-yr trends in global239
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Figure 3. Pattern correlations for running 40-yr trends in (left) global SST and global SSS

(right) response reconstructed using the LFCA leading modes, between (a, b) ALL and GHG or

AER responses and (c, d) between GHG and AER responses.

–8–



manuscript submitted to Geophysical Research Letters

SST and SSS as in Fig. 1 but use the PC-reconstructed responses. We find that using240

the first leading mode for GHG response and the leading two modes for AER and ALL241

response can faithfully reproduce the results of the simulated total response (cf. Fig. 3242

and Fig. 1 c, d). The PC-based pattern correlations capture the increasingly high val-243

ues between ALL and GHG and the non-monotonic evolution of the correlations between244

ALL and AER and between GHG and AER for both SST and SSS trend patterns.245

Having verified that the LFCA modes can sufficiently reproduce the total response,246

now we come back to the questions raised at the beginning: what caused the AER re-247

sponse to change over time and to amplify (rather than offset) the GHG response over248

recent decades? More specifically, is it because of the change in AER PC1 associated with249

global AER emissions or the change in PC2 associated with shifting AER emissions, or250

both?251

To answer these questions, we repeat the pattern correlation analysis with individ-252

ual AER PCs. When only accounting for AER PC1, the pattern correlations between253

ALL and AER decrease monotonically after the 1940s (Figs 3a and b, blue circled lines),254

unlike the total AER response which bounces back after the 1960s (blue solid lines). Fur-255

thermore, the pattern correlations between AER PC1 and GHG PC1 stay at a constant256

negative value of -0.88 for SST and -0.69 for SSS (Figs. 3c and d, black circled lines),257

indicating that the response patterns associated with AER PC1 have continuously op-258

posed those driven by GHG PC1. The high (albeit negative) pattern correlations between259

GHG PC1 and AER PC1 can already be seen in Fig. 2: both modes feature a global-260

wide SST response driven by global forcing (with sign reversed), and a similar hydro-261

logical cycle response constrained by global warming or cooling, all consistent with ear-262

lier findings by Xie et al. (2013).263

Turning to AER PC2, although this mode has a much weaker pattern correlation264

with GHG PC1 overall, the correlation switches sign from negative to positive around265

mid-century (Figs. 3c and d, black dashed lines), suggesting that it is AER PC2, not PC1,266

that makes the total AER forced response patterns more similar to the GHG response267

patterns (Figs. 3c and d, black solid lines). The abrupt change in the running trend pat-268

tern correlations arises from the phase transition in the AER PC2 timeseries around the269

1980s associated with the shift in major AER emissions from NA/EU to SA. As AER270

emissions increase over SA and decrease over NA/EU after the 1980s, this mode produce271

north Pacific warming, Arctic freshening and SH subtropical drying, similar to the GHG-272

induced local changes (Fig. 2), thus making the AER forced response more like the GHG273

response.274

To further illustrate the different contributions of AER PC1 and PC2 to the to-275

tal forced response, we show the trend patterns for AER and GHG PCs over 1940-1980276

and 1980-2020 (Fig. 4). First, the PC-based trend patterns (Fig. 4, left two columns)277

are remarkably consistent with the actual simulated trend patterns (Fig. 1), confirm-278

ing that using the leading modes can reproduce the total forced response. Next, turn-279

ing to the trend patterns for AER PC1 and PC2 individually, we find that AER forced280

trends over 1940-1980 arise primarily from PC1 (Fig. 4a) and over 1980-2020 arise nearly281

entirely from PC2 (Fig. 4b). Moreover, the increase in global AOD from the early 20th282

century to the 1980s is predominately associated with PC1 and the moderate decline in283

global AOD afterward is caused mainly by PC2 (Fig. S3).284

Overall, these findings suggest that both PC1 and PC2 make significant contribu-285

tions to the AER response, but their roles vary in time. Over the first half of the 20th286

century until the 1980s, PC1 dominates the total AER forcing and the forced response,287

with patterns largely opposite to those of GHG. If the spatial pattern of AER emissions288

had remained unchanged from that of PC1 but continued to increase in magnitude over289

the past 40 years, the GHG response would have been largely compensated for by AER,290

resulting in a less detectable anthropogenically forced signal over the past century. How-291
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Figure 4. Similar to Fig. 1, except for the linear trend patterns associated with GHG and

AER PCs for (a) 1940-1980, and (b) 1980-2020.

ever, the geographical distribution of AER emissions did change, shifting from NA/EU292

to SA, which led to the prominent phase transition in PC2 over recent decades. Although293

PC2 is associated with small global-mean AOD anomalies, the dynamical response as-294

sociated with this AER shift mode can be large at regional scales. Some of the regional295

responses appear to enhance the GHG-induced changes, leading to a synergistic effect296

of AER with GHG over recent decades rather than a competing effect as in earlier pe-297

riods.298

4 Implications for detection and attribution299

The time-evolving similarities and disparities between GHG and AER forced re-300

sponses have important implications for detecting and attributing (D&A) historical cli-301

mate change. Previous D&A studies, e.g. Bonfils et al. (2020), used an EOF approach302

with historical simulations and identified two externally forced fingerprints. They argued303

that the first one, featuring global warming and intensified wet-dry patterns, is driven304

by GHG, and that the second one, featuring an inter-hemispheric temperature contrast305

and meridional shift in ITCZ location, is driven by AER.306

Using the SST/SSS joint LFCA, we also find two leading modes in the CESM1 ALL307

ensemble-mean response (Fig. S4), similar to the results of Bonfils et al. (2020). Indeed,308

at first glance, ALL PC1 and PC2 seem to bear a strong resemblance to GHG PC1 and309

AER PC1, respectively (Fig. 2). However, there are substantial differences between the310

patterns of ALL PC1 and GHG PC1. For example, GHG PC1 is characterized by a strong311

El Niño-like SST warming pattern (Fig. 2b), a zonal-mean wet-dry hydrological pattern312

(Fig. S1a) and a corresponding zonal SSS pattern (Fig. 2c). By contrast, ALL PC1 has313

a more uniform tropical SST pattern (Fig. S4b), a zonally-asymmetric precipitation pat-314

tern with drying in the west Pacific and wetting in the central Pacific (Fig. S5a), and315

a resulting SSS dipole pattern with increased salinity in the western Pacific (Fig. S4e).316

These mismatches, however, appear to be consistent with AER PC1, with a high pat-317
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tern correlation of -0.7 for global SST between ALL PC1 (Fig. S4b) and AER PC1 (Fig.318

2e). Similarly, while the response patterns of ALL PC2 are overall anti-correlated with319

AER PC1, there are noticeable spatial features that cannot be explained by AER PCs320

but rather resemble GHG PC1. Collectively, this suggests that the two modes of histor-321

ical anthropogenic fingerprints obtained from CESM1 ALL simulations are forced by the322

combined effects of GHG and AER, rather than by each forcing agent individually as323

previously proposed (Bonfils et al., 2020).324

Thus, we argue that previous D&A approaches that separate the leading modes325

of historical fingerprints to GHG and AER may be biased, as they don’t account for the326

two distinct modes of AER response and their evolving synergistic and competing cli-327

mate effects with GHG. Our CESM1 results suggest that robustly detecting and attribut-328

ing historical forced climate change requires careful separation of GHG and AER responses,329

which are not mutually independent.330

5 Summary331

In this study, we have analyzed the leading modes of low-frequency climate responses332

to GHG and AER forcing and distilled their respective contributions to historical forced333

climate change in CESM1. While the GHG response can be well represented by a sin-334

gle dominant mode, the AER response features two distinct modes. The first mode is335

associated with an increase in global AER emissions over the past century, driving global-336

wide cooling and regional “wet-get-wetter” precipitation and “salty-get-saltier” salinity337

response patterns. This AER mode is spatially anti-correlated with the leading GHG338

mode, largely offsetting impacts from GHG, with some notable regional exceptions such339

as the western Pacific close to the source of east Asian AER emissions. The second AER340

mode is associated with a spatial redistribution of AER, featuring the shift of major emis-341

sions from north America/western Europe to southeast Asia over recent decades. This342

zonally asymmetric AER forcing pattern, however, yields meridional shifts in the zonal343

mean response of SST, hydrological and SSS, owing to large-scale energy budget con-344

straints. Although this mode has a weaker correlation with the GHG response, the tran-345

sition of this mode from a negative to positive phase over recent decades results in re-346

gional anomalies that can enhance the GHG-induced changes.347

While our analysis has focused on the past century, the results and conclusions may348

change for future forcing scenarios. As global AER emissions are projected to decrease349

with clean-air efforts, AER PC1 will likely change sign in the future. Given the anti-correlation350

between AER PC1 and GHG PC1, the future AER effect may exacerbate GHG-induced351

climate change and enhance the detectability. Hence, it remains to be further investi-352

gated how our proposed framework will evolve in the future, accounting for various un-353

certainties arising from model structures, emission scenarios, and representations of AER354

(direct and indirect) forcings.355

Open Research356

The CESM1 Large Ensemble data (Kay et al., 2015) and single-forcing large en-357

semble data (Deser et al., 2020) are available from https://www.cesm.ucar.edu/community358

-projects/lens and https://www.cesm.ucar.edu/working-groups/climate/simulations/359

cesm1-single-forcing-le. Code to perform LFCA (Wills et al., 2018) is available on360

Github https://github.com/rcjwills/lfca.361
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Figure S1. Precipitation (left) and evaporation (right) regressions onto GHG PC1

(top), AER PC1 (middle) and AER PC2 (bottom). Units: mm/day/std.
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Figure S2. Results of LFCA applied to each of the individual ensemble members.

(left) PC time series. Grey lines are individual members; black lines and color filling

are the average of all members; red lines are the LFCA results applied to the ensemble-

mean response as in Fig. 2. (middle) SST and (right) SSS patterns are averaged over all

individual members’ PC patterns.
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Figure S3. Global-mean AOD anomalies (relative to 1921-2020 climatology) from AER

simulations (black) and PC reconstructions (blue and orange). Red dashed line denotes

the sum of PC1 and PC2 associated AOD anomalies.
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Figure S4. Same with Fig. 2 except for the two leading modes obtained from CESM1

ALL ensemble-mean responses.
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Figure S5. Regressions of (left) precipitation and (right) evaporation onto ALL PC1

and PC2.
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