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ABSTRACT: Sea surface temperature (SST) datasets underpin many climate applications, includ-
ing monitoring, attribution, model evaluation, ecosystem assessment, and boundary conditions for
atmospheric simulations. Many different SST products are available. This paper addresses why
SST products differ, what these differences mean for climate analyses, and which products are best
suited for various purposes. Differences among SST products are first reviewed with respect to im-
provements in bias adjustments, gridding and infilling techniques, and uncertainty quantification.
The implications of these advances are then assessed through historical case studies, evaluation of
spatial patterns, and comparison of global means and key regional indices. Substantial discrep-
ancies in trends are found during the satellite era using older SST products, but recently-released
datasets are much more consistent. Recent datasets also show a more-consistent SST evolution
during World War II and in trends associated with Tropical Pacific zonal gradients. Disagreements
persist, however, with respect to early-20"-century warming and in data-sparse regions such as
the Southern Ocean and Arctic. To assist users across disciplines, we articulate principles for
dataset selection based on application needs and highlight the NCAR Climate Data Guide and
an accompanying web-based data-selector tool that provides updated benchmarking and access to

SST products.
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CAPSULE: A user-oriented synthesis of the evolution of sea surface temperature (SST) datasets,
how their differences influence climate analyses, and practical guidance and tools to help users

choose appropriate products.

Significance Statement

Sea surface temperature is an “Essential Climate Variable” used for tracking climate change,
evaluating models, and understanding events such as marine heatwaves and El Nifio. Many
different datasets exist, produced by various scientific groups. In addition, there are multiple
versions of many of these datasets, yet older versions remain in use long after improved versions
have superseded them. This article explains how SST datasets have developed and improved,
shows how differences between them can influence scientific results, and highlights where recent
versions agree and where important uncertainties persist. Alongside a general encouragement to
use up-to-date SST products, we offer practical, application-focused guidance as well as an online
tool that helps researchers identify, understand, and access SST datasets well-suited to their needs,

promoting proper, consistent use of sea surface temperature information.

1. Introduction

Sea surface temperature (SST) is a critical variable in climate science, providing the primary
measure of ocean surface warming and a key indicator for monitoring climate change and variabil-
ity. It informs analyses of marine heatwaves (Oliver et al.|2021), estimates of climate sensitivity
(Sherwood et al.[2020), and attribution of observed changes to anthropogenic forcing (Eyring et al.
2023). SST also provides boundary conditions for atmospheric reanalyses (e.g. Hersbach et al.
2020; Kosaka et al.[2024)), atmospheric model simulations, e.g., the Atmospheric Model Intercom-
parison Project (AMIP, Eyring et al.|2016)), and represents key modes of climate variability such
as the El Nifio-Southern Oscillation (ENSO, McPhaden et al.[2006]) and the Atlantic Multidecadal
Variability (AMYV, Knight et al.|2006).

The SST datasets considered here are listed in Table |1| with acronyms defined and citation and

access information. Each of these SST datasets generally target one of three main user requirements

(Fig. [I):



TaBLE 1: SST datasets used in this paper

Available from

https://www.metoffice

https://www.metoffice
versions.html

https://www.metoffice

Rayner et al.|(2006) https://www.metoffice

https://www.ncei.noaa

https://doi.org/10.7910/DVN/NU4UGH

https://doi.org/10.7910/DVN/ROG38Q

.gov.uk/hadobs/hadsst4

.gov.uk/hadobs/hadsst4/previous_

.gov.uk/hadobs/hadsst3

.gov.uk/hadobs/hadsst2

.gov/products/

extended-reconstructed-sst

https://www.ncei.noaa
https://www.ncei.noaa

https://www.ncei.noaa
netcdf]

.gov/pub/data/cmb/ersst/v5/netcdf
.gov/pub/data/cmb/ersst/v4/netcdf

.gov/pub/data/cmb/ersst/v3b/

https://climate.mri-jma.go. jp/pub/archives/

Ishii-et-al_COBE-SST3/cobe-sst3

https://climate.mri-jma.go. jp/pub/archives/

Hirahara-et-al_COBE-SST2/

cobesst_doc.html

https://ds.data.jma.go.jp/tcc/tcc/products/elnino/

https://www.metoffice

.gov.uk/hadobs/hadisst/

https://climate.mri-jma.go. jp/pub/archives/

Ishii-et-al_COBE-SST3/cobe-sst3h

https://www.ncei.noaa

.gov/products/

optimum-interpolation-sst

https://www.ncei.noaa

.gov/data/

sea-surface-temperature-optimum-interpolation/v2

easy access: https://surftemp.net;

full global resolution: https://data.ceda.ac.uk/neodc/eocis/
data/global_and_regional/sea_surface_temperature/CDR_

v3/Analysis

https://console.cloud

Dataset Dataset Name Citation
DCSST Dynamically Con- |Chan et al.|(2024a)
sistent SST
DCSST-1 Dynamically Con- |Chan et al.|(2026)
sistent SST - Infilled
HadSST4.2 Met Office Hadley |Sandford and Raynen
Centre SST (in review)
HadSST4.1 Kennedy et al.|(2019)
HadSST3 Kennedy et al.
(2011ajb)
HadSST2
ERSSTv6 Extended Recon- |Huang et al.|(2025)
structed SST
ERSSTvS Huang et al.{(2017)
ERSSTv4 Huang et al.{(2015)
ERSSTv3b Smith et al.| (2008)
COBE-SST3 Centennial in situ [Ishii et al.|(2025)
Observation-Based
Estimates
COBE-SST2 Hirahara et al.|(2014)
COBE-SST Ishii et al.|(2005)
HadISST1 Hadley Centre Sea |Rayner et al.|(2003)
Ice and Sea Surface
Temperature data set
COBE-SST3H Centennial Ishii et al.|(2025)
Observation-Based
Estimates
OISSTv2.1 Optimum Interpola-  [Huang et al.|(2021)
tion Sea Surface
Temperature
OISSTv2 Reynolds et al.| (2007}
2002)
ESA CCI  European Space  |[Embury et al.|(2024)
SST3.0 Agency Climate
Change  Initiative
SST
CMIP6 ensem-  Coupled Model |[Eyring et al.| (2016);
ble Intercomparison Abernathey et al.

Project, Phase 6

(2021)

.google.com/storage/browser/cmip6



https://doi.org/10.7910/DVN/NU4UGW
https://doi.org/10.7910/DVN/ROG38Q
https://www.metoffice.gov.uk/hadobs/hadsst4
https://www.metoffice.gov.uk/hadobs/hadsst4/previous_versions.html
https://www.metoffice.gov.uk/hadobs/hadsst4/previous_versions.html
https://www.metoffice.gov.uk/hadobs/hadsst3
https://www.metoffice.gov.uk/hadobs/hadsst2
https://www.ncei.noaa.gov/products/extended-reconstructed-sst
https://www.ncei.noaa.gov/products/extended-reconstructed-sst
https://www.ncei.noaa.gov/pub/data/cmb/ersst/v5/netcdf
https://www.ncei.noaa.gov/pub/data/cmb/ersst/v4/netcdf
https://www.ncei.noaa.gov/pub/data/cmb/ersst/v3b/netcdf
https://www.ncei.noaa.gov/pub/data/cmb/ersst/v3b/netcdf
https://climate.mri-jma.go.jp/pub/archives/Ishii-et-al_COBE-SST3/cobe-sst3
https://climate.mri-jma.go.jp/pub/archives/Ishii-et-al_COBE-SST3/cobe-sst3
https://climate.mri-jma.go.jp/pub/archives/Hirahara-et-al_COBE-SST2/
https://climate.mri-jma.go.jp/pub/archives/Hirahara-et-al_COBE-SST2/
https://ds.data.jma.go.jp/tcc/tcc/products/elnino/cobesst_doc.html
https://ds.data.jma.go.jp/tcc/tcc/products/elnino/cobesst_doc.html
https://www.metoffice.gov.uk/hadobs/hadisst/
https://climate.mri-jma.go.jp/pub/archives/Ishii-et-al_COBE-SST3/cobe-sst3h
https://climate.mri-jma.go.jp/pub/archives/Ishii-et-al_COBE-SST3/cobe-sst3h
https://www.ncei.noaa.gov/products/optimum-interpolation-sst
https://www.ncei.noaa.gov/products/optimum-interpolation-sst
https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2
https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2
https://surftemp.net
https://data.ceda.ac.uk/neodc/eocis/data/global_and_regional/sea_surface_temperature/CDR_v3/Analysis
https://data.ceda.ac.uk/neodc/eocis/data/global_and_regional/sea_surface_temperature/CDR_v3/Analysis
https://data.ceda.ac.uk/neodc/eocis/data/global_and_regional/sea_surface_temperature/CDR_v3/Analysis
https://console.cloud.google.com/storage/browser/cmip6

Dataset Input Reso En Timeline (V: publication year) ¢
DCSST & é M5° 200 EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE A
DCSST-1 & $ M5° 200 NN A
HadSST4.2 & b M5° 200 EEEEEEECEEEEEEEy v
PPy @O @® i
& b ©O=O® k
A b O O® v
i b @O @® 4
Y O =OW M
i b OO @® v
i b O O®
COBE-SST3 & DO.25° 300 O S
i b OO @® v
i b O O® &
HadISST1 & 6 M m1° 1 mmEECOEsO( (D M
COBE-SST3H 4 .4 W DO0.25° 1 e Y
0ISSTv2.1 & & M D0.25° 1 mmmDE v
e é IH V®
| Y
& & Wi A\
ESA-CCI SST3.0 I D0.05° 1 sy M
1860 1880 1900 1920 1940 1960 1980 2000 2020
Cold canvas bucket bias (Sippel et al., 2024, Chan et al., 2025) @
Inter-source inhomogeneity (Chan et al., 2019), @
World War 2 Warm Anomaly (Thompson et al., 2009, Chan & Huybers, 2021) @

_@_
—®-

Ship-buoy Offsets (Karl et al., 2015).
Trend outlier in the satellite era (Menemenlis et al., 2025)

FiG. 1: Overview of major SST dataset families: DCSST (red); HadSST (orange); ERSST (yellow); COBE-SST (green); HadISST
(teal); COBE-SSTH (light blue); OISST (blue) and ESA CCI SST (purple). Datasets are grouped by family and ordered by version
within each family. Columns indicate input data types (ship/ buoy/ satellite), nominal temporal (Monthly/ Weekly/ Daily) and spatial
resolution (°), spatial completeness (v'/x), ensemble size, temporal span (horizontal bar), publication year (downward triangle),
and update frequency (Annual/ Monthly/ Static/ Discontinued (-)). Symbols mark major known biases and artifacts that remain
in each product: cold canvas bucket bias (C), inter-source inhomogeneity (I), World War II warm anomaly (W), ship—buoy offsets
(O), and trend outliers in the satellite era (T), based on evaluations presented in section 2 and 3. Reference ranges for these issues
are shown in the legend below. Dataset abbreviations follow those in the text and are expanded in TableEl

« 1. Long historical in situ records beginning before 1900, e.g. HadSST, ERSST and COBE-SST,
6 intended for decadal- to centennial-scale climate applications. These products often provide
6 the oceanic component for global surface temperature datasets and new major versions are
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released approximately every six years aligned with the Intergovernmental Panel on Climate
Change (IPCC) assessment cycle.

2. High-resolution SST analyses, e.g. ESA CCI SST and NOAA OISST, over the era of sustained
satellite observations since 1980. These datasets utilize remotely sensed SST observations,
may blend with in situ measurements, and provide data at high spatial and temporal resolutions.
Several satellite-era analyses are also updated in near-real time for weather and climate
prediction applications.

3. Centennial and multi-decadal records at intermediate resolution designed for input to atmo-
spheric reanalyses or as boundary conditions for other atmosphere-only dynamical models.
An example is HadISST which blends in sifu observations with satellite measurements to
reconstruct global fields back to the 1870s.

The creation of an SST product generally requires four elements: (1) data selection (and, in the
case of satellite-based products, inference of SST from top-of-atmosphere measurements); (2) bias
corrections to remove artifacts in measurements; (3) gridding and infilling to provide estimates
in regions without direct measurements; and (4) derivation of an estimate of uncertainty for each
value in the final product. Each element has improved over the years, leading to updated versions
of the long-standing product families as well as newly-developed datasets, e.g. DCSST.

Despite these advances, uptake of newer SST datasets by the research community can be slow. As
a result, some datasets that do not contain any bias adjustments, e.g., the gridded summaries from
the International Comprehensive Ocean-Atmosphere Data Set (ICOADS, [Freeman et al. 2017),
or legacy products with outdated bias adjustments, e.g., the Kaplan SST (Kaplan et al.[[1998),
remain highly cited and widely used years after release, e.g., for long-term trends in the Tropical
Pacific zonal SST gradient (Lee et al. [2022). Another example is HadISST1 (released 2003),
which remains among the most cited SST datasets in 2025, but is one of few products to not correct
post-1950 ship-based SST biases. This bias leads to lower warming rate estimates since 2000
(Karl et al.|2015]) and thus systematically different estimates of recent trends (Menemenlis et al.
20235). These are just a few of many examples of the mismatch between the SST products most
widely used in research and those that best reflect current understanding of observational biases

and uncertainties.
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This lag in adoption reflects the reality of research infrastructure where “switching costs” can
be high. Familiarity often shapes dataset choice, while barriers such as non-standard data formats,
large data volumes, difficulty finding the data, and historically fragmented documentation create
further friction. The landscape has undoubtedly improved in recent years with comprehensive
documentation now available in data journals (see Table 1) and user guides (e.g., HadSST4 and
ESA CCI SST). Although fully absorbing the technical details of multiple candidate datasets may
not seem an obvious priority, we show in this paper that where scientific analyses depend critically
on observational estimates of SST, selecting suitable products is essential for robust and high-
quality research. Promoting these improved SST products is also timely as the climate community
is determining standards for the upcoming [PCC CMIP7 and AR7, shaping the next years of climate
science (Beadling et al.|2026).

This paper provides a starting point for SST users in navigating this evolving landscape, enabling
them to more easily identify and consult relevant data papers and user guides for informed choices
of SST products best suited for their particular application. Specifically, this paper addresses the
questions: “Why do datasets differ?” by tracing the evolution of their development in section 2,
“What do these differences mean for climate analyses?” by comparing products in section 3, and
“How do I pick SST datasets?”, by providing guidance on the current state-of-the-art as well as
anticipated improvements likely to affect future choices in section 4. Section 5 provides a summary.

Our analysis focuses on long-standing and recently developed SST dataset families that are
updated regularly. Legacy products whose methods have not been updated since before 2000
(e.g., Kaplan SST) or those lacking any bias adjustments (e.g., gridded ICOADS) are excluded due
to limited comparability. Several high-quality near-real-time analyses are omitted because they
are either shorter than forty years (e.g., the Multiscale Reanalysis by Chin et al., 2017 and the
Canadian Meteorological Center analysis by Brasnett et al., 2018) or built on a significant input
of ESA CCI SST data (e.g., the OSTIA reprocessing by Worsfold et al., 2024). Operational SST
analyses that principally support numerical weather prediction are coordinated by the Group for
High Resolution Sea Surface Temperature (GHRSST, www . ghrsst.org/), and inter-comparisons
of these datasets have been reported elsewhere (e.g., Fiedler et al.[|2019; Yang et al.[|2021). We

also do not consider hybrid datasets that combine other products, for example, blends of different
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products made for reanalysis (e.g. Hersbach et al.|2020), or surface-forcing data sets for AMIP-style
uncoupled simulations that combine HadISST1 and OISSTv2 (Hurrell et al. 2008).

2. History of SST Products and Recent Advances

This section reviews how three core elements of SST product development — bias adjustment,
gridding and infilling, and uncertainty quantification — have evolved, with each stage discussed in

its own subsection.

a. Bias adjustment

Biases in SST records stem from pervasive and systematic errors that differ between measurement
methods and platforms, their changing mix over time and their past data curation and processing
(Kent and Kennedy|2021). Ship-based observations made with buckets are typically cold-biased
because of evaporative cooling, and different bucket types used by various nations and periods left
distinct bias signatures. On the other hand, engine-room intake (ERI) measurements tend to be
warm-biased owing to heat from the vessel (Kent and Taylor|2006). These biases are often several
tenths of a degree Celsius in magnitude and distort long-term trends, making their correction a
central task in development of climate-quality analyses.

Early adjustment efforts concentrated on pre-1940 bucket biases. An initial blanket adjustment
(Folland et al.|[1984) was followed by land-anchored estimates using coastal station temperatures
(Jones et al.| 1986)) and, soon after, physics-based bucket models that simulated cooling as a function
of bucket type and usage (Bottomley et al.||1990; Folland and Parker |1995). Because detailed
metadata on bucket types and national practices are sparse, these schemes necessarily assumed
simplified and broadly timed transitions, yielding limited regional differentiation, as implemented
in, e.g., HadSST2. In parallel, ERSST3b pursued an anchoring strategy using nighttime marine air
temperatures (Smith and Reynolds/[2002; Kent et al.|2013)), although adjustments were still only
applied prior to 1940.

A major indication of errors present in engine-room-intake (ERI) temperatures, which caused
a spurious decrease in global mean surface temperature by approximately 0.3°C following World
War II, was discovered by Thompson et al. (2008)). ERI measurements represent the majority of

SST data available between 1930 and 1990 (Kent and Taylor 2006). Subsequent datasets (e.g.,
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HadSST3 and COBE-SST2) extended bias corrections beyond 1940 to account for ERI biases as
well as offsets between ship-based and buoy measurements. Time-varying offsets between ship-
based and buoy measurements shown to affect post-2000 temperature trends (Karl et al.[2015) were
accounted for starting ERSST4, HadSST4.0 and COBE-SST2.

Since 2019, attention has expanded from method-specific biases to finer spatial and platform-
dependent structures. HadSST4.0 used marine profile temperatures to estimate regional, ship-
related biases after 1940. In parallel, Chan and Huybers| (2019) developed an intercomparison
framework that quantifies offsets among national groupings and enables pre-1940 comparisons.
This framework has revealed a cold truncation bias in part of the Japanese data that contributed
to the unusually heterogeneous early-20"-century warming pattern (Chan et al|2019). This
truncation bias has recently been adjusted in DCSST(-I), COBE-SST3, and HadSST4.2 through
different implementations.

The most recent identification of in situ bias is a global cold bias in decades around the 1910s
(Chan et al.|2023} Sippel et al.[2024) that alters estimates of early warming and decadal variability
and is attributed to incomplete correction of canvas bucket temperatures (Chan et al. 2025). To
date, only DCSST and COBE-SST3 implement specific adjustments to account for this global cold
bias by reviving the earlier land-anchoring idea (Jones et al.|1986)).

Satellite SSTs are obtained from relatively few (~25) missions with differing bias characteristics
(e.g.|Yang et al.|2021}; Fiedler et al.[2019). These platform-dependent effects are also on the order
of several tenths of a degree Celsius (Merchant et al.|2008b). Satellite SST records have further
required corrections for biases from atypical atmospheric conditions, particularly the stratospheric
aerosol from the 1991 Pinatubo eruption (Reynolds||1993; Merchant et al.||1999).

The satellite-only ESA CCI SST is based on physics-based estimation approaches (Merchant et al.
2008a; Embury and Merchant|[2012; Merchant et al.|[2020a) to minimize biases from changing
satellite characteristics and from volcanic perturbations to the stratosphere. The local time of
satellite overpasses has varied, and the artificial trends arising from changing observation times
relative to the daily cycle of SST are also addressed in ESA CCI SST through adjustments to a
standard local time of observation. ESA CCI SST also explicitly adjusts the skin temperature
observable from space to the SST at 20 cm depth for compatibility with centennial-scale datasets

using in situ data from drifting buoys and buckets.
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b. Construction of gridded fields

A variety of approaches are used to construct gridded fields from individual measurements.
Obvious differences between products are the spatial and temporal grid resolution (here ranging
from 5° monthly to 0.05° daily; Fig.[I). This choice is largely shaped by application needs tempered
by data and processing limitations. For example, while monthly products are usually sufficient
for studying slowly varying climate backgrounds, much higher spatial and temporal resolution is
required for studying extreme events like marine heat waves. Within a family, some products have
trended toward finer resolution, as in OISST and COBE-SST (Fig. [I).

A relevant concept is the distinction between nominal grid resolution and effective resolution
(Reynolds et al.|2013). In other words, a finer grid does not guarantee that smaller-scale physical
variations are always resolved. This distinction is particularly important for products that blend in
situ and satellite data while aiming to provide a consistent nominal resolution across more than a
century. HadISSTI, for instance, has an effective resolution of about 4° before 1949, reflecting
the reduced-space reconstruction used at that time. Some products address this issue by offering
separate versions, such as COBE-SST3, which extends back to 1850 without satellite data, and
COBE-SST3H, which incorporates satellite measurements but only from 1982 onward (Fig. [I)).

Another application-oriented difference is whether unsampled grid cells remain missing or are
infilled to be globally complete. Non-infilled datasets such as the HadSST family are often preferred
for climate monitoring as they are closer to the original observations; infilled fields are generally
more convenient to use, but weaken the traceability to original observations by making assumptions
about the variability to gain the spatial completeness.

Infilling methods typically define the expected relationship between conditions at different loca-
tions using a covariance matrix. The simplest choice of covariance between locations is isotropic
and homogeneous, but more complex empirical relationships can be assumed to better capture
regional variations in covariance, as implemented in DCSST-I and high-resolution satellite-based
products such as ESA CCI SST and COBE-SST3H. Other methods explicitly account for long-
range teleconnections, including Reduced-Space Optimal Interpolation (Kaplan et al.[1997, e.g.,
in HadISSTT1), reconstructions based on Empirical Orthogonal Functions (EOFs, Hirahara et al.
2014} e.g., in COBE-SST2 and 3), and Empirical Orthogonal Teleconnections (EOTs, |Smith et al.
1998, e.g., in ERSST v3-v5).
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Improvements in infilling across products in the same family can also be evident. For example, an
increasing number of EOT modes have been used in successive ERSST versions to better capture
localized variability. In its latest version (v6), a three-layer fully connected neural network is used

to replace EOT and has yielded better infilling skill (Huang et al.[2025).

c¢. Uncertainty estimation

Quantifying uncertainty is essential for making appropriate use of the data (Kennedy|2014)). Most
products provide uncertainty values per grid box and/or time step (e.g., ESA CCI SST, COBE-
SST1-2) or ensembles of plausible realizations (e.g., ERSSTv4-5, DCSST(-1), COBE-SST3) or
both (e.g., HadSST3—4.2) for uncertainty quantification. Some older products such as HadISST1
do not provide uncertainty estimates.

Uncertainty ensembles are convenient for tracing how uncertainty propagates into climate analy-
ses: adiagnostic is repeated for each member and the across-member distribution defines confidence
intervals consistent with observational error covariance. Ensembles can quantify complex error
structures which cannot be handled analytically. Because individual members often contain more
small-scale variability than the ensemble mean or median, variance statistics based on individual
members can differ from those on the central measure alone. Moreover, for a given product, the
across-member spread reflects only uncertainty associated with choices internal to that product’s
particular methodology (known as parametric uncertainty).

A more complete accounting of uncertainty must also reflect the full range methodological
choices in input data, quality control, bias adjustment, and reconstruction. This “structural un-
certainty”” is commonly approximated by the spread across independently developed SST datasets
(Thorne et al.[2005), assuming they are diverse enough to span the plausible error range. How-
ever, many products share observational archives and methodological lineages, leading to common
issues. For example, the SST datasets used in the last IPCC assessment all exhibited an early-20"-
century cold bias (Sippel et al.|2024] represented here as the cold canvas bucket bias in Fig. [I),
despite their apparent diversity. This cautions data users against treating inter-product agreement
as evidence that structural uncertainty has been fully explored and highlights the need for genuine

diversity in reconstruction approaches across the entire dataset development cycle.
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These advances in bias adjustment and the construction of gridded fields, along with the addition
of newly-available historical data, provide SST products that better represent the historical evolution

of SST than their predecessors, as illustrated in the next section.

3. Evaluation and Comparison of Products

This section evaluates and compares SST datasets across a range of metrics to help data users
determine which products reliably represent the phenomena and scales of variability relevant to
their applications. Specifically, we investigate to what extent SST products exhibit bias signatures
associated with known data artifacts (Section 3] Figure2)), the spatial structures of events such as
ENSO and marine heatwaves (Figure|3)), and climate features including long-term warming, major
modes of variability, and important regional gradients (Figure A]).

We additionally compare the observed SST metrics with state-of-the-art CMIP6 simulations
(Figures [2]and ). Ideally, observational datasets should be evaluated independent of model-based
expectations insomuch as they are to be used as checks of these models or assumptions that go
into construction of such models. That said, climate models are useful for highlighting unexpected
features in the datasets. Model-data discrepancies have been important for identifying systematic
errors in observations, particularly prior to the satellite era. However, better agreement with CMIP6
alone does not imply that a product is more accurate and model—data consistency is not used as
a formal criterion in SST product development. Adjustments in SST data are only made when
multiple lines of evidence — physical, statistical, or documentary — indicate data issues with a

known cause.

a. Bias signatures

Global-mean SST anomalies (see Table 2 for definition) are visually similar after 1980, indicating
broad consistency in the satellite era (Fig. ). Earlier periods, however, show clear differences,
largely due to biases in observations. For example, the World War I warm anomaly (Fig. 2b; Table
R2) is due to wartime changes in measurement practice that introduced warm biases (Thompson
et al. 2008; Chan and Huybers 2021). In legacy HadISST1, ERSST and COBE-SST versions,
this anomaly amplitude lies outside the -0.12 to 0.11°C (95% c.i.) range from CMIP6 historical

simulations. In COBE-SST3 and the new DCSST family, bias corrections reduce the warm
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Fic. 2: Comparison of global mean SST and data artifacts. (a) global mean SST (60°S-60°N) anomalies relative to 1982-2014
climatology. Datasets are grouped and offset by families. Within each family, thick lines show the central estimate of individual
versions (color-coded), and the shading shows the 95% c.i. for the most recent release where an ensemble is available. Simulations
from 229 CMIP6 runs, concatenating historical and SSP2-4.5 experiments, are shown at the bottom. (b) World War II warm anomaly,
calculated as the global mean SST anomaly over 1941-1945, relative to the mean over 1936-1940 and 1946-1950. Markers, sorted
by publication dates (descending) in the y-axis, denote the mean value of a dataset, while thick and thin lines, respectively, denote
the interquartile range and 95% confidence interval (c.i.), where an ensemble is available. Dashed line separates state-of-the-art
and legacy products. The histogram presents the CMIP6 distribution, and the dark and light shading denotes, respectively, the
interquartile and 95% c.i. (2.5%-97.5%). (c) as (b) but for early-ZOth-century cold SST anomaly, defined as the global-mean
SST over 1900-1930 minus a reference SST given by a linear trend fitted to the periods 1890-1899 and 1931-1940. (d) North
Atlantic (y-axis) versus North Pacific (x-axis) SST trends over 1908-1941. Markers are as (b), and ellipses denote 1 s.d. and 2 s.d.
uncertainty using a bi-variate Gaussian fit. The heat map squares represent the 2D histogram of CMIP6 historical simulations and
the black line depicts the one-to-one relationship, and thick and thin dashed lines denote, respectively, the interquartile range and
95% c.i. of the simulated inter-basin trend difference. 13
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TaBLE 2: Definitions and calculation methods for metrics used in this study.

Metric Name

How to calculate?

Global SST

Early-20"-Century ~ Cold

Bias

WWII Warm Anomaly

North Pacific SST
North Atlantic SST

Early-20"-Century  Warm-
ing

Nifio3.4 SST

West Equatorial Pacific SST
East Equatorial Pacific SST
Southern Ocean

AMV Index

Area-weighted (cosine latitude) mean over 60°S—60°N oceans.

Global mean SST difference over 1900-1930 relative to a linear fit between 1890-1899 and
1931-1940, following Sippel et al.[(2024).

Global mean SST anomaly averaged over 1941-1945 relative to the mean of 1936-1940 and
1946-1950, following |(Chan and Huybers|(2021)

Area-weighted mean over 20°N-60°N, 100°E~100°W, following (Chan et al.| (2019).

Area-weighted mean over 20°N-60°N, 100°W-10°E (excluding Mediterranean), following
Chan et al.|(2019).

Linear trend of global mean SST over 1908-1941, following|Chan et al.{(2019).

Area-weighted mean over 5°S-5°N, 170°W-120°W.
Area-weighted mean over 5°S-5°N, 120°E-170°E.
Area-weighted mean over 5°S—5°N, 150°W-80°W.
Area-weighted mean over 50°S-70°S.

The difference between 20-year running smoothed monthly North Atlantic SST anomalies

(0°-60°N, 80°W-0°E) and global SST, following Trenberth and Sheal (2006).

anomaly to within the CMIP6 envelope, suggesting better physical consistency. HadSST4.2
similarly improved estimates of engine-room-intake bias, reducing the anomaly from 0.18 (-0.10—
0.45)°C in HadSST4.0 to 0.11 (-0.05-0.25)°C (95% c.i.), closer to the CMIP6 range. ERSSTv6 is
now the only major product family in which a pronounced WWII warm anomaly persists.

Farther back in time, the evolution from 1850 to 1940 differs substantially across product
families, but is relatively stable within each family. DCSST shows nearly continuous warming
whereas ERSST exhibits the strongest cooling from 1850 to about 1910 before warming quickly.
HadSST and COBE-SST lie between these endpoints (Fig. [2a). These four products differ due
to the treatment of early bucket biases, modulating the magnitude of the early 20"-century cold
anomaly (Sippel et al.|2024). In COBE-SST3, this cold anomaly is similar to earlier COBE-SST
releases (~0.1°C, Fig. 2c). HadSST4.2 appears particularly cold by this measure because an
adjustment applied to data after 1930 increases the SST in the period used as a reference (Table
2). ERSSTv6, in contrast, produces cooler 1930s SSTs and thus a smaller anomaly relative to
HadSST4.2. Nevertheless, most products remain outside the CMIP6 range with only DCSST and

its infilled derivative exhibiting early 20th century SSTs consistent with model simulations.
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On regional scales, correcting the Japanese truncation bias directly alters the contrast in early-
20"-century warming between the North Pacific and North Atlantic (Chan et al.[2019). In legacy
products, all families show the North Atlantic warming nearly twice as fast as the North Pacific over
1908-1941 (Fig.[2[d), a phenomenon which would require an unusually large expression of internal
variability to explain (Delworth and Knutson |2000). In the latest versions, DCSST, HadSST4.2
and COBE-SST3 correct for this bias, bringing the inter-basin warming rates into much closer
agreement with each other and with the expected warming pattern under greenhouse-gas forcing.
ERSSTVv6 still exhibits a pronounced contrast between basins, similar to earlier ERSST releases.
Fig. [2d also shows differences in the overall magnitude of early-20"-century warming: DCSST
estimates (~0.1°C per decade) fall within the CMIP6 range whereas HadSST4.2 and COBE-SST3
values (~0.2°C per decade) remain on the warm end of the model distribution and exceed observed
contemporary land warming (Sippel et al.|2024)).

In general, incorporating adjustments for newly identified artifacts in data production has been
gradual. Yet, recent versions generally apply more complete corrections, are more internally

consistent, and better agree with CMIP simulations.

b. Gridding and Infilling

The different choices in the reconstruction of gridded products, including resolution and infilling,
are important to consider for specific applications. When studying historical events with sparse
observations, spatial infilling and smoothing can make analyses more convenient, but the resulting
fields are highly dependent on the assumptions used to generate complete fields. Taking the 1877
El Nifio as an example, only a few ship tracks crossing the equator exist in the Pacific basin as
shown in the non-infilled product HadSST4.2 (Fig. [3p;). Infilled products using isotropic, homo-
geneous covariance structures, e.g., Berkeley Earth surface temperature E] (Rohde and Hausfather
2020), produce patterns consistent with their round kernels (Fig. [3b). By contrast, state-of-the-
art approaches, including anisotropic kernels (DCSST-I, Fig. 2), Al-based methods (ERSST6,
Fig.[3h3), and EOF-based reconstructions (HadISST1, Fig.[3as; COBE-SST3, Fig.[3hs), yield more
coherent El Nifo structures resembling the canonical pattern seen in the satellite era. Fine-scaled

structure still differs between products as the fields are only tightly constrained by observations

Note that the Berkeley product SST is an infilled version of HadSST4.0 and is shown here to illustrate this effect. As a combined land—sea
dataset, it is not used elsewhere in this SST-focused review.
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near to where they exist. For example, the positive anomaly extends further west in DCSST-I and
ERSST6 than in COBE-SST3, contributing to the structural uncertainty across the datasets.

For contemporary extreme events such as marine heatwaves, data availability is not the limiting
factor. Rather, the requirement is to resolve fine spatial and temporal scales. Taking the North
Pacific “Blob” of January 2014 as an example, all products — including the non-infilled monthly
5° HadSST4.2 — show a similar warm anomaly centered near 145°W, 45°N (Fig. ). Howeyver,
monthly fields blur the peak intensity evident in daily analyses. Over a box spanning 140-155°W,
38-50°N (black box in Fig. [3c), the mean SST anomaly in January is 2.5°C in DCSST-I, 2.4°C in
ERSST6, 2.9°C in HadSST4.2, and only 1.7°C in HadISST1, whereas on the peak date (January
7) in daily products the corresponding values are usually higher (3.0°C for COBE-SST3, and
3.1°C for OISSTv2.1 and ESA CCI SST). The daily high-resolution fields in Fig. [3| also reveal
eddy-scale variability and fine filaments, which may be important for understanding the evolution
and mechanisms of such events and their ecosystem impacts (Bian et al.|2023)).

Another example of reconstruction differences arises in polar regions, where the open ocean
meets sea ice. Due to sparse in situ coverage in polar regions, some products (e.g., DCSST-I) omit
SST values in grid cells with no open ocean values (Chan et al.[2026). Others, such as the COBE-
SST family, use observationally-derived sea-ice concentration (SIC) with an empirical SIC-SST
relationship that anchors SST to a spatially varying freezing point under high SIC (Hirahara et al.
2014)). Satellite products such as OISST (Huang et al. 2021) and ESA CCI SST (Embury et al.
2024])) adopt similar concepts, using product-specific freezing-point constraints in ice-covered grid
cells.

Fig.|3d compares absolute Arctic SSTs in January 2024. Infilled products broadly follow the ob-
served ice edge, though ERSST6 and COBE-SST3 exhibit below freezing point temperatures within
ice-covered regions. Such behavior may not matter for climate analyses where sea-ice—covered
regions are masked. However, in AMIP simulations, the atmospheric model sees a weighted aver-
age of water and sea ice boundary conditions within each atmospheric grid cell. Hence, physically
incompatible SST and SIC fields should be used with caution for such applications. Arctic sum-
mertime SST estimates in July 2024 diverge even more (Fig. [3¢) in both open-ocean regions such

as the Laptev—East Siberian Sea (at left of panels) and areas with partial ice cover, indicating that

17



341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

model runs using summertime boundary conditions could be especially sensitive to dataset choice

in sea-ice—affected regions.

c¢. Climate indicators of variability and change

Beyond grid-level maps, widely used climate indicators such as global warming levels, regional
trends, and metrics of climate variability, could depend strongly on the choice of SST products.
Here, we examine several such indicators to demonstrate this sensitivity.

Estimates of long-term trends in the global mean SST (60°S—60°N) remain sensitive to product-
specific treatments of nineteenth- and early-20"-century biases (Fig. , sections [2al and @); yet
excluding legacy datasets only narrows the estimated 2019-2023 warming level, relative to the
1850-1900 baseline, from 0.7-1.0 to 0.8—1.0°C. There is also evidence that the ERSST family,
which features pronounced cooling over 1850-1910 (Fig. [2h), is likely too warm in the late
nineteenth century (Sippel et al.2024; Chan et al. 2025), providing scope for further narrowing of
the observational range.

During the well-sampled satellite era, observational products are expected to agree more closely.
Yet, when comparing legacy and modern datasets, Menemenlis et al.| (2025) found a wide spread
in the 1982-2024 warming trend, reproduced here (Fig. dp). Restricting this comparison to state-
of-the-art products tightens the range among central estimates from 0.39-0.63 to 0.49-0.63°C per
decade. Within this group, DCSST, ERSST6, COBE-SST3, and ESA CCI SST cluster near 0.51°C
per decade, with HadSST4.2 being slightly higher at 0.56°C per decade. NOAA’s daily OISSTv2.1
is the clear remaining outlier (0.63°C per decade), perhaps due to its fixed 0.14°C ship-to-buoy
correction from 1981-2015. Hence, the observational spread in satellite-era SST warming is
narrower than previous comparisons that included legacy datasets.

On regional scales, an important indicator is the Equatorial Pacific zonal SST gradient which
influences circulation, cloud, albedo, and climate sensitivity (Kang et al. 2023). Model-data
discrepancies in the sign of the satellite-era trend in this index have been widely noted (e.g.,
Lee et al.[[2022) and the large influence of internal variability on trends over short time periods
motivates examination of century-long trends. Over 1900-2010, CMIP6 models simulate an
west-minus-east trend difference of —0.54 to 0.20°C per century (95%c.i.), which, on average,

weakens the gradient. However, legacy products such as HadISST1, HadSST2, and COBE-SST2
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19



370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

suggests enhanced gradient (positive trends) falling outside the simulated range (Fig. ). Newer
SST versions indicate relatively weakened gradient than earlier releases; although observational
estimates still suggest at most a near-neutral trend, they now fall within the CMIP6 spread. Despite
better agreement in the west-minus-east trend difference in newer products, spatial patterns of
trends still differ (Fig. [ST), underscoring the need to further understand how bias adjustments and
infilling choices affect observational estimates, as well as how model structure and configuration
shape simulated trends.

Average Southern Ocean SST is another key regional indicator, relevant to Antarctic sea-ice
melt (Dong et al. 2022)) and heat uptake (Gregory et al.[2024). CMIP6 models generally suggest
warming (—0.02 to 0.18°C per decade) over 1982-2023, but observational products show trends
closer to zero (Fig. 4d). Spatial patterns also differ across products, particularly in the magnitude
and extent of the cooling band (Fig.[S2)). Given the sparse in situ sampling in this region, satellite-
based products are likely the most reliable for recent Southern Ocean assessments, which further
suggests that models may be warming too strongly in recent years.

It is also informative to consider modes of climate variability, particularly ENSO. During the
satellite era, observational products consistently show Nifio-3.4 variability of 0.85-0.95 °C (1
s.d.), well within the CMIP6 spread (Fig. Efk). Earlier in the record, however, observational
estimates diverge to a greater spread than model internal variability after removing model-specific
biases. This divergence could arise from increased sampling and measurement uncertainty, as
well as structural differences in interpolation methods. Combined with the intrinsic difficulty
of estimating ENSO variance reliably from 30-50-year windows (Wittenberg 2009; Deser et al.
2012), these factors suggest that current SST datasets are unlikely to provide a reliable estimate of
long-term changes in ENSO variability.

Finally, decadal modes of variability such as Atlantic Multidecadal Variability, show broad
consistency in phase among products (Fig. @), but differ slightly in amplitude (Fig. flg). These
amplitude differences are mainly family-specific and vary little across versions within a family.
Compared with CMIP6 models, observational amplitudes tend to lie on the higher end of the model
spread, though they remain within the range sampled by individual simulation members.

Overall, state-of-the-art SST datasets now show better agreement with each other than their

predecessors across a range of metrics. Differences are larger in long-term trends and in data-
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sparse regions, but they generally agree on global warming levels and major variability modes over
the satellite era. State-of-the-art SST datasets also suggest better agreement with known physical
process as presented in CMIP6 simulations. This improving agreement suggests that some model-
observation discrepancies in the literature reflect now-resolved data limitations. Together, these
results underscore the importance of being aware of how SST datasets have evolved and adopting

up-to-date, well-documented releases matched to the intended analysis.

4. How to Choose

a. Principles underpinning dataset choice and usage

We have shown that careful dataset choice is crucial for high quality and robust analyses. With
that in mind, there are practical considerations that may restrict dataset choice. These include
the length of record, whether fields are spatially complete, spatial and temporal resolution, the
availability and type of uncertainty estimates, and the immediacy of updates to include the most
recent data. All datasets are free to use for research, but some have restrictions for other purposes
such as commercial use that need to be checked and adhered to. The web-based selector tool
(similar to Figure 1) enables users to quickly view, subset, and access candidate datasets suitable
for specific applications. When several products exist, results will be more robust if all are used.
Typical dataset choices by application include:

* Climate monitoring: compare non-infilled and infilled datasets at monthly or higher resolu-

tion.

* AMIP forcing: use infilled datasets at monthly or higher resolution.

* Attribution or model-data comparisons: use ensemble datasets (either infilled or non-
infilled) with uncertainty estimates. For non-infilled products, apply the same observational
coverage mask to the model output to ensure a fair comparison.

*  Western boundary currents, mesoscale eddy signatures, marine heatwaves: use infilled
high-resolution datasets (daily, finer than 1°x1°).

* Paleo proxy calibration: use long records without known issues during the calibration period,
and compare non-infilled and infilled products for consistency.

Once candidates are thinned by practical considerations, it is necessary to assess data quality.

The analysis presented in section |3| shows the importance of choosing the most recent dataset
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versions in any family. Typically, older, deprecated products should be used only alongside their
updated counterparts to aid interpretation of past analyses.

Moreover, even the most recent releases can retain period- or region-specific issues, as described
in section [Zp] and their impacts shown in section 3| If a dataset has known problems that could
affect the analysis, it should be excluded. However, if removing such datasets results in too few
candidates for a robust assessment, they should be used with caution, provided their limitations are
clearly acknowledged in the interpretation.

Another useful strategy to discriminate among SST products is to evaluate physical consistency
with other quantities such as air temperature, sea-level pressure, precipitation, and cloudiness
(Deser et al.[2010). Yet, this requires understanding how the datasets are constructed and the
assumptions involved. For example, ERSST family’s bias adjustment assumes a relatively stable
difference between SST and nighttime marine air temperatures (Smith and Reynolds|2002); so
agreement with those temperatures is not independent support. Similarly, DCSST is adjusted to
be dynamically consistent with its land counterpart DCLSAT (Chan et al. 2023, 2024a). Another
often neglected assumption concerns the spatial covariance embedded in infilling. When records,
especially in data-sparse periods, are infilled by projecting onto prescribed EOF patterns, sub-
sequent EOF analyses will largely recover the imposed covariance structure, rather than reveal
additional information about the underlying variability.

In addition to checking robustness across qualified datasets, results should also be tested against
the estimated uncertainty within each product. This can be done by perturbing the data using the
product’s uncertainty estimates or by analyzing the ensemble. If practical constraints require using
only a subset of an ensemble — such as when running high-resolution AMIP experiments (Chan
et al. 2021) — it is important to understand how the ensemble was constructed so the subset still
represents the intended uncertainty. In HadSST4, for example, the first and second sets of 100
members use different approaches to adjust early SST measurements Kennedy et al. (2019)), so
drawing members from both sub-sets provides a more representative sample.

Finally, follow the data-citation instructions provided by journals, which typically require citing
both the dataset and its associated publication, and any additional information requested by dataset
producers. Accurate citation does more than acknowledge the source: it helps dataset providers

secure support for ongoing maintenance and understand how their products are being used, allowing
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the datasets to evolve in ways aligned with scientific needs. In turn, this benefits users by increasing

the likelihood that high-quality, regularly updated SST datasets remain available.

b. Where to find more detailed information and updated advice

This paper provides a broad overview of how SST datasets have evolved and their suit-
ability for different climate applications. By design, it cannot cover the full details of in-
dividual products and will freeze at the time of publication. To support users beyond this
snapshot synthesis, we additionally provide a set of NSF NCAR Climate Data Guide pages
(https://climatedataguide.ucar.edu/, Schneider et al.|2013) that extend guidance in two
complementary ways.

First, dataset-specific pages provide summary information on dataset construction, strengths, and
known limitations, more detailed than this synthesis. Written by the developers or expert users and
reviewed by leading climate scientists, these resources, accessible through the web-based selector
tool, help users efficiently evaluate whether any features or issues are critical for their intended
analysis. Once candidate datasets have been identified, there is no substitute for a deep dive into
the linked dataset papers and product user guides for more detailed usage notes and guidance.

Second, an SST overview page will be updated to provide an evolving summary of the SST
dataset and evaluation landscape. By tracking newly released updates, methodological advances,
and emerging developments, this page helps ensure that choice and usage guidance remains accurate

and relevant as new and improved datasets become available.

c. Anticipated improvements in SST datasets

Better input data and metadata: ongoing efforts to rescue historical data (Teleti et al.|2024)) and
metadata (Carella et al.[2017) are essential for extending coverage and clarifying bias structures in
the early record. Meanwhile, modern data infrastructure is needed to ensure that both rescued and
contemporary observations and metadata flow efficiently and transparently into permanent archives
and SST dataset production — a gap that currently prevents many recovered measurements from
being fully used. For satellite-era products, fundamental work on the calibration of early sensors
and SST retrieval methods will also reduce uncertainty and improve stability in the 1980s and

1990s particularly.
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Better coverage and finer resolution: Advances in infilling methodology, including Al ap-
proaches, together with increased computational capacity will support higher spatial and temporal
resolution, with at least 1° monthly as a baseline and finer daily or sub-daily products where obser-
vations permit. As these developments progress, the hard boundaries between datasets designed
for different purposes are likely to soften, as already seen in COBE-SST3. Feature resolution of
satellite-era products pre-2000 should benefit from efforts (via international co-operation spear-
headed by ESA, https://ceos.org/news/avhrr-data-recovery/) to consolidate full-resolution data from
early sensors. These higher resolution observations have not been exploited in global SST analyses
before, and provide an opportunity for better understanding changes in ecologically-important shelf
sea regions.

Better bias adjustments: Beyond the pervasive global- and basin-scale biases discussed in section

progress will require pushing bias estimation further toward ship-specific and hence regional
scales, to be enabled by improved metadata such as ship tracking and advanced physical and
statistical models. Meanwhile, broader evaluation using independent sources will be essential
for assessing and refining bias adjustments. Improved methods are also emerging to improve
observational stability in satellite SST records, by extending retrieval methods to be “bias aware”
(Merchant et al.[2020b)) and by harmonizing irradiance between satellite platforms prior to retrieval
of SST.

Better structural uncertainty estimates: As discussed in section [2c| the current practice of esti-
mating structural uncertainty from an ad hoc ensemble of SST datasets is limited. As understanding
of data artifacts improves, clearly inconsistent products are recommended to be excluded from cer-
tain analyses. This strengthens confidence in the analysis and metrics of interest, but also narrows
the ensemble and reduces its potential to span the full space of uncertainties that arise across the
entire SST production workflow. A more complete characterization will require decomposing that
workflow into its major components — input selection, quality control, bias adjustment, gridding,
and infilling — and sampling alternative methods and parameter choices within each step. Such
a modular approach would help dataset providers explore the widest range of reasonable choices
across each component and ensure that all known errors and uncertainties are accounted for and fed
through to the infilling schemes. This approach would also lower the barrier for new contributions

as novel approaches could be developed for a single component. For satellite datasets, which
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are constructed from many trillions of radiance measurements, modular exploration of structural
uncertainty is challenging in terms of scale and expense because of the large volume, and the
community continues to focus on metrological approaches to exposing, quantifying and correcting
effects leading to uncertainty in SST products (Mittaz et al.[2019).

User-friendly access and data formats: /n siru SST datasets are currently dispersed across data
centers, which complicates comparison and analysis. Moving toward common conventions for both
input observations and products, CMIP-style access protocols, regridding and subsetting services
such as surftemp.net and cloud-native formats (for example, zarr) will further lower these barriers
and support more scalable, interoperable use of SST products. For satellite SSTs, products have
long been standardized in format, provided with tools, and catalogued through cooperative efforts
of the GHRSST international science team https://www.ghrsst.org/.

Faster-paced innovation: Delivering the improvements outlined above will require open, stan-
dardized, flexible, and streamlined systems that span data intake, processing, and distribution. Such
infrastructure would better connect data producers and users, broaden participation in development
and evaluation, and ultimately enable users to move from passive recipients of SST products to

active participants in improving both the data and the science derived from them.

5. Final words

This paper has shown how careful choice of SST datasets is essential for robust research. Over
time, SST datasets have improved in quality, and their estimates of important measures of variability
have become more consistent. Characterization of dataset uncertainty has also improved, enabling
users to understand the sensitivity of their results to uncertainty within each dataset as well as
between a selection of different datasets. A number of important indicators, including recent and
centennial global trends and the Tropical Pacific trend contrast, show that the most recent SST
dataset versions align more closely with one another and with the latest generation of climate
models, compared with legacy products. Observational constraints on future projected surface
temperature changes are therefore more robust when using state-of-the-art datasets than might be
inferred from the use of legacy products.

These considerations can be summarized in a set of practical steps to support effective SST

dataset selection and use:
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1. Use the data-selection tool to identify datasets appropriate for the intended application,
taking into account record length, residual biases, spatial and temporal resolution, com-
pleteness, uncertainty information, update latency, and specific usage restrictions (e.g., for
commercial use).

2. Use this paper and NSF NCAR Climate Data Guide pages to evaluate these candidates,
gaining an understanding of their construction, strengths, and known limitations.

3. Draw on the peer-reviewed dataset literature for the shortlisted products, including user
guides and methodological papers, to identify issues that may be relevant for the specific
scientific question.

4. Wherever possible, analyze the entire uncertainty ensemble and more than one suitable
dataset, so that conclusions can be assessed for robustness to parametric and structural
uncertainty.

5. Finally, cite all datasets in accordance with journal and producer guidelines, including
both the dataset and its associated publications, which supports not only transparent scientific
reuse but also continued maintenance and improvements.

Taken together, these practices help ensure that present-day analyses make the best possible
use of available SST datasets. At the same time, continued progress in observational coverage,
data and metadata rescue, understanding of bias and uncertainty, and infrastructure capability will
enable increasingly rapid cycles of improvement. As these advances accelerate, the coexistence
of multiple approaches, each making different methodological choices, will help to better quantify
structural uncertainty, supporting a more robust understanding of past climate change as well as

improved constraints on future projections.
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Fic. S1: Patterns of 1900-2010 SST trends over the Tropical Pacific. From top to bottom and left to right, the datasets shown
are DCSST, HadSST4.2, DCSST-1, ERSST6, ERSST5, COBE-SST3, COBE-SST2, and HadISST1. For the non-infilled datasets
(DCSST and HadSST4.2), a grid cell is considered to have a valid trend if it contains at least three valid years in each decade from
the 1900s to the 2000s, where a valid year is defined as having at least three months of data.
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Fic. S2: Patterns of 1982-2024 SST trends over the Southern Ocean. From top to bottom and left to right, the datasets shown
are DCSST, HadSST4.2, DCSST-I, ERSST6, ERSSTS, COBE-SST3, COBE-SST2, HadISST1, OISSTv2.1, and ESA CCI SST3.
Similar to Fig. S1, for the non-infilled datasets (DCSST and HadSST4.2), a grid cell is considered to have a valid trend if it contains
at least three valid years in each decade from the 1980s to the 2010s, where a valid year is defined as having at least three months
of data.
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