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ABSTRACT: Sea surface temperature (SST) datasets underpin many climate applications, includ-

ing monitoring, attribution, model evaluation, ecosystem assessment, and boundary conditions for

atmospheric simulations. Many different SST products are available. This paper addresses why

SST products differ, what these differences mean for climate analyses, and which products are best

suited for various purposes. Differences among SST products are first reviewed with respect to im-

provements in bias adjustments, gridding and infilling techniques, and uncertainty quantification.

The implications of these advances are then assessed through historical case studies, evaluation of

spatial patterns, and comparison of global means and key regional indices. Substantial discrep-

ancies in trends are found during the satellite era using older SST products, but recently-released

datasets are much more consistent. Recent datasets also show a more-consistent SST evolution

during World War II and in trends associated with Tropical Pacific zonal gradients. Disagreements

persist, however, with respect to early-20th-century warming and in data-sparse regions such as

the Southern Ocean and Arctic. To assist users across disciplines, we articulate principles for

dataset selection based on application needs and highlight the NCAR Climate Data Guide and

an accompanying web-based data-selector tool that provides updated benchmarking and access to

SST products.
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CAPSULE: A user-oriented synthesis of the evolution of sea surface temperature (SST) datasets,37

how their differences influence climate analyses, and practical guidance and tools to help users38

choose appropriate products.39

Significance Statement40

Sea surface temperature is an “Essential Climate Variable” used for tracking climate change,41

evaluating models, and understanding events such as marine heatwaves and El Niño. Many42

different datasets exist, produced by various scientific groups. In addition, there are multiple43

versions of many of these datasets, yet older versions remain in use long after improved versions44

have superseded them. This article explains how SST datasets have developed and improved,45

shows how differences between them can influence scientific results, and highlights where recent46

versions agree and where important uncertainties persist. Alongside a general encouragement to47

use up-to-date SST products, we offer practical, application-focused guidance as well as an online48

tool that helps researchers identify, understand, and access SST datasets well-suited to their needs,49

promoting proper, consistent use of sea surface temperature information.50

1. Introduction51

Sea surface temperature (SST) is a critical variable in climate science, providing the primary52

measure of ocean surface warming and a key indicator for monitoring climate change and variabil-53

ity. It informs analyses of marine heatwaves (Oliver et al. 2021), estimates of climate sensitivity54

(Sherwood et al. 2020), and attribution of observed changes to anthropogenic forcing (Eyring et al.55

2023). SST also provides boundary conditions for atmospheric reanalyses (e.g. Hersbach et al.56

2020; Kosaka et al. 2024), atmospheric model simulations, e.g., the Atmospheric Model Intercom-57

parison Project (AMIP, Eyring et al. 2016), and represents key modes of climate variability such58

as the El Niño-Southern Oscillation (ENSO, McPhaden et al. 2006) and the Atlantic Multidecadal59

Variability (AMV, Knight et al. 2006).60

The SST datasets considered here are listed in Table 1 with acronyms defined and citation and61

access information. Each of these SST datasets generally target one of three main user requirements62

(Fig. 1):63
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Table 1: SST datasets used in this paper

Dataset Dataset Name Citation Available from

DCSST Dynamically Con-
sistent SST

Chan et al. (2024a) https://doi.org/10.7910/DVN/NU4UGW

DCSST-I Dynamically Con-
sistent SST - Infilled

Chan et al. (2026) https://doi.org/10.7910/DVN/ROG38Q

HadSST4.2 Met Office Hadley
Centre SST

Sandford and Rayner
(in review)

https://www.metoffice.gov.uk/hadobs/hadsst4

HadSST4.1 Kennedy et al. (2019) https://www.metoffice.gov.uk/hadobs/hadsst4/previous_

versions.html

HadSST3 Kennedy et al.
(2011a,b)

https://www.metoffice.gov.uk/hadobs/hadsst3

HadSST2 Rayner et al. (2006) https://www.metoffice.gov.uk/hadobs/hadsst2

ERSSTv6 Extended Recon-
structed SST

Huang et al. (2025) https://www.ncei.noaa.gov/products/

extended-reconstructed-sst

ERSSTv5 Huang et al. (2017) https://www.ncei.noaa.gov/pub/data/cmb/ersst/v5/netcdf

ERSSTv4 Huang et al. (2015) https://www.ncei.noaa.gov/pub/data/cmb/ersst/v4/netcdf

ERSSTv3b Smith et al. (2008) https://www.ncei.noaa.gov/pub/data/cmb/ersst/v3b/

netcdf

COBE-SST3 Centennial in situ
Observation-Based
Estimates

Ishii et al. (2025) https://climate.mri-jma.go.jp/pub/archives/

Ishii-et-al_COBE-SST3/cobe-sst3

COBE-SST2 Hirahara et al. (2014) https://climate.mri-jma.go.jp/pub/archives/

Hirahara-et-al_COBE-SST2/

COBE-SST Ishii et al. (2005) https://ds.data.jma.go.jp/tcc/tcc/products/elnino/

cobesst_doc.html

HadISST1 Hadley Centre Sea
Ice and Sea Surface
Temperature data set

Rayner et al. (2003) https://www.metoffice.gov.uk/hadobs/hadisst/

COBE-SST3H Centennial
Observation-Based
Estimates

Ishii et al. (2025) https://climate.mri-jma.go.jp/pub/archives/

Ishii-et-al_COBE-SST3/cobe-sst3h

OISSTv2.1 Optimum Interpola-
tion Sea Surface
Temperature

Huang et al. (2021) https://www.ncei.noaa.gov/products/

optimum-interpolation-sst

OISSTv2 Reynolds et al. (2007,
2002)

https://www.ncei.noaa.gov/data/

sea-surface-temperature-optimum-interpolation/v2

ESA CCI
SST3.0

European Space
Agency Climate
Change Initiative
SST

Embury et al. (2024) easy access: https://surftemp.net;
full global resolution: https://data.ceda.ac.uk/neodc/eocis/
data/global_and_regional/sea_surface_temperature/CDR_

v3/Analysis

CMIP6 ensem-
ble

Coupled Model
Intercomparison
Project, Phase 6

Eyring et al. (2016);
Abernathey et al.
(2021)

https://console.cloud.google.com/storage/browser/cmip6
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Fig. 1: Overview of major SST dataset families: DCSST (red); HadSST (orange); ERSST (yellow); COBE-SST (green); HadISST
(teal); COBE-SSTH (light blue); OISST (blue) and ESA CCI SST (purple). Datasets are grouped by family and ordered by version
within each family. Columns indicate input data types (ship/ buoy/ satellite), nominal temporal (Monthly/ Weekly/ Daily) and spatial
resolution (◦), spatial completeness (✓/×), ensemble size, temporal span (horizontal bar), publication year (downward triangle),
and update frequency (Annual/ Monthly/ Static/ Discontinued (–)). Symbols mark major known biases and artifacts that remain
in each product: cold canvas bucket bias (C), inter-source inhomogeneity (I), World War II warm anomaly (W), ship–buoy offsets
(O), and trend outliers in the satellite era (T), based on evaluations presented in section 2 and 3. Reference ranges for these issues
are shown in the legend below. Dataset abbreviations follow those in the text and are expanded in Table 1

1. Long historical in situ records beginning before 1900, e.g. HadSST, ERSST and COBE-SST,64

intended for decadal- to centennial-scale climate applications. These products often provide65

the oceanic component for global surface temperature datasets and new major versions are66
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released approximately every six years aligned with the Intergovernmental Panel on Climate67

Change (IPCC) assessment cycle.68

2. High-resolution SST analyses, e.g. ESA CCI SST and NOAA OISST, over the era of sustained69

satellite observations since 1980. These datasets utilize remotely sensed SST observations,70

may blend with in situ measurements, and provide data at high spatial and temporal resolutions.71

Several satellite-era analyses are also updated in near-real time for weather and climate72

prediction applications.73

3. Centennial and multi-decadal records at intermediate resolution designed for input to atmo-74

spheric reanalyses or as boundary conditions for other atmosphere-only dynamical models.75

An example is HadISST which blends in situ observations with satellite measurements to76

reconstruct global fields back to the 1870s.77

The creation of an SST product generally requires four elements: (1) data selection (and, in the78

case of satellite-based products, inference of SST from top-of-atmosphere measurements); (2) bias79

corrections to remove artifacts in measurements; (3) gridding and infilling to provide estimates80

in regions without direct measurements; and (4) derivation of an estimate of uncertainty for each81

value in the final product. Each element has improved over the years, leading to updated versions82

of the long-standing product families as well as newly-developed datasets, e.g. DCSST.83

Despite these advances, uptake of newer SST datasets by the research community can be slow. As84

a result, some datasets that do not contain any bias adjustments, e.g., the gridded summaries from85

the International Comprehensive Ocean-Atmosphere Data Set (ICOADS, Freeman et al. 2017),86

or legacy products with outdated bias adjustments, e.g., the Kaplan SST (Kaplan et al. 1998),87

remain highly cited and widely used years after release, e.g., for long-term trends in the Tropical88

Pacific zonal SST gradient (Lee et al. 2022). Another example is HadISST1 (released 2003),89

which remains among the most cited SST datasets in 2025, but is one of few products to not correct90

post-1950 ship-based SST biases. This bias leads to lower warming rate estimates since 200091

(Karl et al. 2015) and thus systematically different estimates of recent trends (Menemenlis et al.92

2025). These are just a few of many examples of the mismatch between the SST products most93

widely used in research and those that best reflect current understanding of observational biases94

and uncertainties.95
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This lag in adoption reflects the reality of research infrastructure where “switching costs” can96

be high. Familiarity often shapes dataset choice, while barriers such as non-standard data formats,97

large data volumes, difficulty finding the data, and historically fragmented documentation create98

further friction. The landscape has undoubtedly improved in recent years with comprehensive99

documentation now available in data journals (see Table 1) and user guides (e.g., HadSST4 and100

ESA CCI SST). Although fully absorbing the technical details of multiple candidate datasets may101

not seem an obvious priority, we show in this paper that where scientific analyses depend critically102

on observational estimates of SST, selecting suitable products is essential for robust and high-103

quality research. Promoting these improved SST products is also timely as the climate community104

is determining standards for the upcoming IPCC CMIP7 and AR7, shaping the next years of climate105

science (Beadling et al. 2026).106

This paper provides a starting point for SST users in navigating this evolving landscape, enabling107

them to more easily identify and consult relevant data papers and user guides for informed choices108

of SST products best suited for their particular application. Specifically, this paper addresses the109

questions: “Why do datasets differ?” by tracing the evolution of their development in section 2,110

“What do these differences mean for climate analyses?” by comparing products in section 3, and111

“How do I pick SST datasets?”, by providing guidance on the current state-of-the-art as well as112

anticipated improvements likely to affect future choices in section 4. Section 5 provides a summary.113

Our analysis focuses on long-standing and recently developed SST dataset families that are114

updated regularly. Legacy products whose methods have not been updated since before 2000115

(e.g., Kaplan SST) or those lacking any bias adjustments (e.g., gridded ICOADS) are excluded due116

to limited comparability. Several high-quality near-real-time analyses are omitted because they117

are either shorter than forty years (e.g., the Multiscale Reanalysis by Chin et al., 2017 and the118

Canadian Meteorological Center analysis by Brasnett et al., 2018) or built on a significant input119

of ESA CCI SST data (e.g., the OSTIA reprocessing by Worsfold et al., 2024). Operational SST120

analyses that principally support numerical weather prediction are coordinated by the Group for121

High Resolution Sea Surface Temperature (GHRSST, www.ghrsst.org/), and inter-comparisons122

of these datasets have been reported elsewhere (e.g., Fiedler et al. 2019; Yang et al. 2021). We123

also do not consider hybrid datasets that combine other products, for example, blends of different124
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products made for reanalysis (e.g. Hersbach et al. 2020), or surface-forcing data sets for AMIP-style125

uncoupled simulations that combine HadISST1 and OISSTv2 (Hurrell et al. 2008).126

2. History of SST Products and Recent Advances127

This section reviews how three core elements of SST product development – bias adjustment,128

gridding and infilling, and uncertainty quantification – have evolved, with each stage discussed in129

its own subsection.130

a. Bias adjustment131

Biases in SST records stem from pervasive and systematic errors that differ between measurement132

methods and platforms, their changing mix over time and their past data curation and processing133

(Kent and Kennedy 2021). Ship-based observations made with buckets are typically cold-biased134

because of evaporative cooling, and different bucket types used by various nations and periods left135

distinct bias signatures. On the other hand, engine-room intake (ERI) measurements tend to be136

warm-biased owing to heat from the vessel (Kent and Taylor 2006). These biases are often several137

tenths of a degree Celsius in magnitude and distort long-term trends, making their correction a138

central task in development of climate-quality analyses.139

Early adjustment efforts concentrated on pre-1940 bucket biases. An initial blanket adjustment140

(Folland et al. 1984) was followed by land-anchored estimates using coastal station temperatures141

(Jones et al. 1986) and, soon after, physics-based bucket models that simulated cooling as a function142

of bucket type and usage (Bottomley et al. 1990; Folland and Parker 1995). Because detailed143

metadata on bucket types and national practices are sparse, these schemes necessarily assumed144

simplified and broadly timed transitions, yielding limited regional differentiation, as implemented145

in, e.g., HadSST2. In parallel, ERSST3b pursued an anchoring strategy using nighttime marine air146

temperatures (Smith and Reynolds 2002; Kent et al. 2013), although adjustments were still only147

applied prior to 1940.148

A major indication of errors present in engine-room-intake (ERI) temperatures, which caused149

a spurious decrease in global mean surface temperature by approximately 0.3◦C following World150

War II, was discovered by Thompson et al. (2008). ERI measurements represent the majority of151

SST data available between 1930 and 1990 (Kent and Taylor 2006). Subsequent datasets (e.g.,152
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HadSST3 and COBE-SST2) extended bias corrections beyond 1940 to account for ERI biases as153

well as offsets between ship-based and buoy measurements. Time-varying offsets between ship-154

based and buoy measurements shown to affect post-2000 temperature trends (Karl et al. 2015) were155

accounted for starting ERSST4, HadSST4.0 and COBE-SST2.156

Since 2019, attention has expanded from method-specific biases to finer spatial and platform-157

dependent structures. HadSST4.0 used marine profile temperatures to estimate regional, ship-158

related biases after 1940. In parallel, Chan and Huybers (2019) developed an intercomparison159

framework that quantifies offsets among national groupings and enables pre-1940 comparisons.160

This framework has revealed a cold truncation bias in part of the Japanese data that contributed161

to the unusually heterogeneous early-20th-century warming pattern (Chan et al. 2019). This162

truncation bias has recently been adjusted in DCSST(-I), COBE-SST3, and HadSST4.2 through163

different implementations.164

The most recent identification of in situ bias is a global cold bias in decades around the 1910s165

(Chan et al. 2023; Sippel et al. 2024) that alters estimates of early warming and decadal variability166

and is attributed to incomplete correction of canvas bucket temperatures (Chan et al. 2025). To167

date, only DCSST and COBE-SST3 implement specific adjustments to account for this global cold168

bias by reviving the earlier land-anchoring idea (Jones et al. 1986).169

Satellite SSTs are obtained from relatively few (∼25) missions with differing bias characteristics170

(e.g. Yang et al. 2021; Fiedler et al. 2019). These platform-dependent effects are also on the order171

of several tenths of a degree Celsius (Merchant et al. 2008b). Satellite SST records have further172

required corrections for biases from atypical atmospheric conditions, particularly the stratospheric173

aerosol from the 1991 Pinatubo eruption (Reynolds 1993; Merchant et al. 1999).174

The satellite-only ESA CCI SST is based on physics-based estimation approaches (Merchant et al.175

2008a; Embury and Merchant 2012; Merchant et al. 2020a) to minimize biases from changing176

satellite characteristics and from volcanic perturbations to the stratosphere. The local time of177

satellite overpasses has varied, and the artificial trends arising from changing observation times178

relative to the daily cycle of SST are also addressed in ESA CCI SST through adjustments to a179

standard local time of observation. ESA CCI SST also explicitly adjusts the skin temperature180

observable from space to the SST at 20 cm depth for compatibility with centennial-scale datasets181

using in situ data from drifting buoys and buckets.182
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b. Construction of gridded fields183

A variety of approaches are used to construct gridded fields from individual measurements.184

Obvious differences between products are the spatial and temporal grid resolution (here ranging185

from 5◦ monthly to 0.05◦ daily; Fig. 1). This choice is largely shaped by application needs tempered186

by data and processing limitations. For example, while monthly products are usually sufficient187

for studying slowly varying climate backgrounds, much higher spatial and temporal resolution is188

required for studying extreme events like marine heat waves. Within a family, some products have189

trended toward finer resolution, as in OISST and COBE-SST (Fig. 1).190

A relevant concept is the distinction between nominal grid resolution and effective resolution191

(Reynolds et al. 2013). In other words, a finer grid does not guarantee that smaller-scale physical192

variations are always resolved. This distinction is particularly important for products that blend in193

situ and satellite data while aiming to provide a consistent nominal resolution across more than a194

century. HadISST1, for instance, has an effective resolution of about 4◦ before 1949, reflecting195

the reduced-space reconstruction used at that time. Some products address this issue by offering196

separate versions, such as COBE-SST3, which extends back to 1850 without satellite data, and197

COBE-SST3H, which incorporates satellite measurements but only from 1982 onward (Fig. 1).198

Another application-oriented difference is whether unsampled grid cells remain missing or are199

infilled to be globally complete. Non-infilled datasets such as the HadSST family are often preferred200

for climate monitoring as they are closer to the original observations; infilled fields are generally201

more convenient to use, but weaken the traceability to original observations by making assumptions202

about the variability to gain the spatial completeness.203

Infilling methods typically define the expected relationship between conditions at different loca-204

tions using a covariance matrix. The simplest choice of covariance between locations is isotropic205

and homogeneous, but more complex empirical relationships can be assumed to better capture206

regional variations in covariance, as implemented in DCSST-I and high-resolution satellite-based207

products such as ESA CCI SST and COBE-SST3H. Other methods explicitly account for long-208

range teleconnections, including Reduced-Space Optimal Interpolation (Kaplan et al. 1997, e.g.,209

in HadISST1), reconstructions based on Empirical Orthogonal Functions (EOFs, Hirahara et al.210

2014, e.g., in COBE-SST2 and 3), and Empirical Orthogonal Teleconnections (EOTs, Smith et al.211

1998, e.g., in ERSST v3–v5).212
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Improvements in infilling across products in the same family can also be evident. For example, an213

increasing number of EOT modes have been used in successive ERSST versions to better capture214

localized variability. In its latest version (v6), a three-layer fully connected neural network is used215

to replace EOT and has yielded better infilling skill (Huang et al. 2025).216

c. Uncertainty estimation217

Quantifying uncertainty is essential for making appropriate use of the data (Kennedy 2014). Most218

products provide uncertainty values per grid box and/or time step (e.g., ESA CCI SST, COBE-219

SST1–2) or ensembles of plausible realizations (e.g., ERSSTv4–5, DCSST(-I), COBE-SST3) or220

both (e.g., HadSST3–4.2) for uncertainty quantification. Some older products such as HadISST1221

do not provide uncertainty estimates.222

Uncertainty ensembles are convenient for tracing how uncertainty propagates into climate analy-223

ses: a diagnostic is repeated for each member and the across-member distribution defines confidence224

intervals consistent with observational error covariance. Ensembles can quantify complex error225

structures which cannot be handled analytically. Because individual members often contain more226

small-scale variability than the ensemble mean or median, variance statistics based on individual227

members can differ from those on the central measure alone. Moreover, for a given product, the228

across-member spread reflects only uncertainty associated with choices internal to that product’s229

particular methodology (known as parametric uncertainty).230

A more complete accounting of uncertainty must also reflect the full range methodological231

choices in input data, quality control, bias adjustment, and reconstruction. This “structural un-232

certainty” is commonly approximated by the spread across independently developed SST datasets233

(Thorne et al. 2005), assuming they are diverse enough to span the plausible error range. How-234

ever, many products share observational archives and methodological lineages, leading to common235

issues. For example, the SST datasets used in the last IPCC assessment all exhibited an early-20th-236

century cold bias (Sippel et al. 2024, represented here as the cold canvas bucket bias in Fig. 1),237

despite their apparent diversity. This cautions data users against treating inter-product agreement238

as evidence that structural uncertainty has been fully explored and highlights the need for genuine239

diversity in reconstruction approaches across the entire dataset development cycle.240
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These advances in bias adjustment and the construction of gridded fields, along with the addition241

of newly-available historical data, provide SST products that better represent the historical evolution242

of SST than their predecessors, as illustrated in the next section.243

3. Evaluation and Comparison of Products244

This section evaluates and compares SST datasets across a range of metrics to help data users245

determine which products reliably represent the phenomena and scales of variability relevant to246

their applications. Specifically, we investigate to what extent SST products exhibit bias signatures247

associated with known data artifacts (Section 3a, Figure 2), the spatial structures of events such as248

ENSO and marine heatwaves (Figure 3), and climate features including long-term warming, major249

modes of variability, and important regional gradients (Figure 4).250

We additionally compare the observed SST metrics with state-of-the-art CMIP6 simulations251

(Figures 2 and 4). Ideally, observational datasets should be evaluated independent of model-based252

expectations insomuch as they are to be used as checks of these models or assumptions that go253

into construction of such models. That said, climate models are useful for highlighting unexpected254

features in the datasets. Model-data discrepancies have been important for identifying systematic255

errors in observations, particularly prior to the satellite era. However, better agreement with CMIP6256

alone does not imply that a product is more accurate and model–data consistency is not used as257

a formal criterion in SST product development. Adjustments in SST data are only made when258

multiple lines of evidence — physical, statistical, or documentary — indicate data issues with a259

known cause.260

a. Bias signatures261

Global-mean SST anomalies (see Table 2 for definition) are visually similar after 1980, indicating262

broad consistency in the satellite era (Fig. 2a). Earlier periods, however, show clear differences,263

largely due to biases in observations. For example, the World War II warm anomaly (Fig. 2b; Table264

2) is due to wartime changes in measurement practice that introduced warm biases (Thompson265

et al. 2008; Chan and Huybers 2021). In legacy HadISST1, ERSST and COBE-SST versions,266

this anomaly amplitude lies outside the -0.12 to 0.11◦C (95% c.i.) range from CMIP6 historical267

simulations. In COBE-SST3 and the new DCSST family, bias corrections reduce the warm268
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Fig. 2: Comparison of global mean SST and data artifacts. (a) global mean SST (60◦S-60◦N) anomalies relative to 1982–2014
climatology. Datasets are grouped and offset by families. Within each family, thick lines show the central estimate of individual
versions (color-coded), and the shading shows the 95% c.i. for the most recent release where an ensemble is available. Simulations
from 229 CMIP6 runs, concatenating historical and SSP2-4.5 experiments, are shown at the bottom. (b) World War II warm anomaly,
calculated as the global mean SST anomaly over 1941-1945, relative to the mean over 1936-1940 and 1946-1950. Markers, sorted
by publication dates (descending) in the y-axis, denote the mean value of a dataset, while thick and thin lines, respectively, denote
the interquartile range and 95% confidence interval (c.i.), where an ensemble is available. Dashed line separates state-of-the-art
and legacy products. The histogram presents the CMIP6 distribution, and the dark and light shading denotes, respectively, the
interquartile and 95% c.i. (2.5%-97.5%). (c) as (b) but for early-20th-century cold SST anomaly, defined as the global-mean
SST over 1900–1930 minus a reference SST given by a linear trend fitted to the periods 1890–1899 and 1931–1940. (d) North
Atlantic (y-axis) versus North Pacific (x-axis) SST trends over 1908-1941. Markers are as (b), and ellipses denote 1 s.d. and 2 s.d.
uncertainty using a bi-variate Gaussian fit. The heat map squares represent the 2D histogram of CMIP6 historical simulations and
the black line depicts the one-to-one relationship, and thick and thin dashed lines denote, respectively, the interquartile range and
95% c.i. of the simulated inter-basin trend difference.
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Table 2: Definitions and calculation methods for metrics used in this study.

Metric Name How to calculate?

Global SST Area-weighted (cosine latitude) mean over 60◦S–60◦N oceans.

Early-20th-Century Cold
Bias

Global mean SST difference over 1900–1930 relative to a linear fit between 1890–1899 and
1931–1940, following Sippel et al. (2024).

WWII Warm Anomaly Global mean SST anomaly averaged over 1941–1945 relative to the mean of 1936–1940 and
1946–1950, following Chan and Huybers (2021)

North Pacific SST Area-weighted mean over 20◦N–60◦N, 100◦E–100◦W, following Chan et al. (2019).

North Atlantic SST Area-weighted mean over 20◦N–60◦N, 100◦W–10◦E (excluding Mediterranean), following
Chan et al. (2019).

Early-20th-Century Warm-
ing

Linear trend of global mean SST over 1908–1941, following Chan et al. (2019).

Niño3.4 SST Area-weighted mean over 5◦S–5◦N, 170◦W–120◦W.

West Equatorial Pacific SST Area-weighted mean over 5◦S–5◦N, 120◦E–170◦E.

East Equatorial Pacific SST Area-weighted mean over 5◦S–5◦N, 150◦W–80◦W.

Southern Ocean Area-weighted mean over 50◦S–70◦S.

AMV Index The difference between 20-year running smoothed monthly North Atlantic SST anomalies
(0◦–60◦N, 80◦W–0◦E) and global SST, following Trenberth and Shea (2006).

anomaly to within the CMIP6 envelope, suggesting better physical consistency. HadSST4.2269

similarly improved estimates of engine-room-intake bias, reducing the anomaly from 0.18 (-0.10–270

0.45)◦C in HadSST4.0 to 0.11 (-0.05–0.25)◦C (95% c.i.), closer to the CMIP6 range. ERSSTv6 is271

now the only major product family in which a pronounced WWII warm anomaly persists.272

Farther back in time, the evolution from 1850 to 1940 differs substantially across product273

families, but is relatively stable within each family. DCSST shows nearly continuous warming274

whereas ERSST exhibits the strongest cooling from 1850 to about 1910 before warming quickly.275

HadSST and COBE-SST lie between these endpoints (Fig. 2a). These four products differ due276

to the treatment of early bucket biases, modulating the magnitude of the early 20th-century cold277

anomaly (Sippel et al. 2024). In COBE-SST3, this cold anomaly is similar to earlier COBE-SST278

releases (∼0.1◦C, Fig. 2c). HadSST4.2 appears particularly cold by this measure because an279

adjustment applied to data after 1930 increases the SST in the period used as a reference (Table280

2). ERSSTv6, in contrast, produces cooler 1930s SSTs and thus a smaller anomaly relative to281

HadSST4.2. Nevertheless, most products remain outside the CMIP6 range with only DCSST and282

its infilled derivative exhibiting early 20th century SSTs consistent with model simulations.283
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On regional scales, correcting the Japanese truncation bias directly alters the contrast in early-284

20th-century warming between the North Pacific and North Atlantic (Chan et al. 2019). In legacy285

products, all families show the North Atlantic warming nearly twice as fast as the North Pacific over286

1908–1941 (Fig. 2d), a phenomenon which would require an unusually large expression of internal287

variability to explain (Delworth and Knutson 2000). In the latest versions, DCSST, HadSST4.2288

and COBE-SST3 correct for this bias, bringing the inter-basin warming rates into much closer289

agreement with each other and with the expected warming pattern under greenhouse-gas forcing.290

ERSSTv6 still exhibits a pronounced contrast between basins, similar to earlier ERSST releases.291

Fig. 2d also shows differences in the overall magnitude of early-20th-century warming: DCSST292

estimates (∼0.1◦C per decade) fall within the CMIP6 range whereas HadSST4.2 and COBE-SST3293

values (∼0.2◦C per decade) remain on the warm end of the model distribution and exceed observed294

contemporary land warming (Sippel et al. 2024).295

In general, incorporating adjustments for newly identified artifacts in data production has been296

gradual. Yet, recent versions generally apply more complete corrections, are more internally297

consistent, and better agree with CMIP simulations.298

b. Gridding and Infilling299

The different choices in the reconstruction of gridded products, including resolution and infilling,300

are important to consider for specific applications. When studying historical events with sparse301

observations, spatial infilling and smoothing can make analyses more convenient, but the resulting302

fields are highly dependent on the assumptions used to generate complete fields. Taking the 1877303

El Niño as an example, only a few ship tracks crossing the equator exist in the Pacific basin as304

shown in the non-infilled product HadSST4.2 (Fig. 3a1). Infilled products using isotropic, homo-305

geneous covariance structures, e.g., Berkeley Earth surface temperature 1 (Rohde and Hausfather306

2020), produce patterns consistent with their round kernels (Fig. 3b). By contrast, state-of-the-307

art approaches, including anisotropic kernels (DCSST-I, Fig. 3a2), AI-based methods (ERSST6,308

Fig. 3a3), and EOF-based reconstructions (HadISST1, Fig. 3a4; COBE-SST3, Fig. 3a5), yield more309

coherent El Niño structures resembling the canonical pattern seen in the satellite era. Fine-scaled310

structure still differs between products as the fields are only tightly constrained by observations311

1Note that the Berkeley product SST is an infilled version of HadSST4.0 and is shown here to illustrate this effect. As a combined land–sea
dataset, it is not used elsewhere in this SST-focused review.
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near to where they exist. For example, the positive anomaly extends further west in DCSST-I and312

ERSST6 than in COBE-SST3, contributing to the structural uncertainty across the datasets.313

For contemporary extreme events such as marine heatwaves, data availability is not the limiting314

factor. Rather, the requirement is to resolve fine spatial and temporal scales. Taking the North315

Pacific “Blob” of January 2014 as an example, all products — including the non-infilled monthly316

5◦ HadSST4.2 — show a similar warm anomaly centered near 145◦W, 45◦N (Fig. 3c). However,317

monthly fields blur the peak intensity evident in daily analyses. Over a box spanning 140–155◦W,318

38–50◦N (black box in Fig. 3c), the mean SST anomaly in January is 2.5◦C in DCSST-I, 2.4◦C in319

ERSST6, 2.9◦C in HadSST4.2, and only 1.7◦C in HadISST1, whereas on the peak date (January320

7) in daily products the corresponding values are usually higher (3.0◦C for COBE-SST3, and321

3.1◦C for OISSTv2.1 and ESA CCI SST). The daily high-resolution fields in Fig. 3 also reveal322

eddy-scale variability and fine filaments, which may be important for understanding the evolution323

and mechanisms of such events and their ecosystem impacts (Bian et al. 2023).324

Another example of reconstruction differences arises in polar regions, where the open ocean325

meets sea ice. Due to sparse in situ coverage in polar regions, some products (e.g., DCSST-I) omit326

SST values in grid cells with no open ocean values (Chan et al. 2026). Others, such as the COBE-327

SST family, use observationally-derived sea-ice concentration (SIC) with an empirical SIC–SST328

relationship that anchors SST to a spatially varying freezing point under high SIC (Hirahara et al.329

2014). Satellite products such as OISST (Huang et al. 2021) and ESA CCI SST (Embury et al.330

2024) adopt similar concepts, using product-specific freezing-point constraints in ice-covered grid331

cells.332

Fig. 3d compares absolute Arctic SSTs in January 2024. Infilled products broadly follow the ob-333

served ice edge, though ERSST6 and COBE-SST3 exhibit below freezing point temperatures within334

ice-covered regions. Such behavior may not matter for climate analyses where sea-ice–covered335

regions are masked. However, in AMIP simulations, the atmospheric model sees a weighted aver-336

age of water and sea ice boundary conditions within each atmospheric grid cell. Hence, physically337

incompatible SST and SIC fields should be used with caution for such applications. Arctic sum-338

mertime SST estimates in July 2024 diverge even more (Fig. 3e) in both open-ocean regions such339

as the Laptev–East Siberian Sea (at left of panels) and areas with partial ice cover, indicating that340

17



model runs using summertime boundary conditions could be especially sensitive to dataset choice341

in sea-ice–affected regions.342

c. Climate indicators of variability and change343

Beyond grid-level maps, widely used climate indicators such as global warming levels, regional344

trends, and metrics of climate variability, could depend strongly on the choice of SST products.345

Here, we examine several such indicators to demonstrate this sensitivity.346

Estimates of long-term trends in the global mean SST (60◦S–60◦N) remain sensitive to product-347

specific treatments of nineteenth- and early-20th-century biases (Fig. 4a, sections 2a and 3a); yet348

excluding legacy datasets only narrows the estimated 2019–2023 warming level, relative to the349

1850–1900 baseline, from 0.7–1.0 to 0.8–1.0◦C. There is also evidence that the ERSST family,350

which features pronounced cooling over 1850–1910 (Fig. 2a), is likely too warm in the late351

nineteenth century (Sippel et al. 2024; Chan et al. 2025), providing scope for further narrowing of352

the observational range.353

During the well-sampled satellite era, observational products are expected to agree more closely.354

Yet, when comparing legacy and modern datasets, Menemenlis et al. (2025) found a wide spread355

in the 1982–2024 warming trend, reproduced here (Fig. 4b). Restricting this comparison to state-356

of-the-art products tightens the range among central estimates from 0.39–0.63 to 0.49–0.63◦C per357

decade. Within this group, DCSST, ERSST6, COBE-SST3, and ESA CCI SST cluster near 0.51◦C358

per decade, with HadSST4.2 being slightly higher at 0.56◦C per decade. NOAA’s daily OISSTv2.1359

is the clear remaining outlier (0.63◦C per decade), perhaps due to its fixed 0.14◦C ship-to-buoy360

correction from 1981–2015. Hence, the observational spread in satellite-era SST warming is361

narrower than previous comparisons that included legacy datasets.362

On regional scales, an important indicator is the Equatorial Pacific zonal SST gradient which363

influences circulation, cloud, albedo, and climate sensitivity (Kang et al. 2023). Model–data364

discrepancies in the sign of the satellite-era trend in this index have been widely noted (e.g.,365

Lee et al. 2022) and the large influence of internal variability on trends over short time periods366

motivates examination of century-long trends. Over 1900–2010, CMIP6 models simulate an367

west-minus-east trend difference of –0.54 to 0.20◦C per century (95%c.i.), which, on average,368

weakens the gradient. However, legacy products such as HadISST1, HadSST2, and COBE-SST2369
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Fig. 4: Comparison of key climate indices. (a) Mean SST (60◦S–60◦N) for 2019–2023 relative to the 1850–1900 baseline.
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offset for clarity. (g) Standard deviation of the smoothed AMV index in (f). The white dot marks the s.d. of the multi-model mean,
indicating the amplitude of the forced signal.
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suggests enhanced gradient (positive trends) falling outside the simulated range (Fig. 4c). Newer370

SST versions indicate relatively weakened gradient than earlier releases; although observational371

estimates still suggest at most a near-neutral trend, they now fall within the CMIP6 spread. Despite372

better agreement in the west-minus-east trend difference in newer products, spatial patterns of373

trends still differ (Fig. S1), underscoring the need to further understand how bias adjustments and374

infilling choices affect observational estimates, as well as how model structure and configuration375

shape simulated trends.376

Average Southern Ocean SST is another key regional indicator, relevant to Antarctic sea-ice377

melt (Dong et al. 2022) and heat uptake (Gregory et al. 2024). CMIP6 models generally suggest378

warming (–0.02 to 0.18◦C per decade) over 1982–2023, but observational products show trends379

closer to zero (Fig. 4d). Spatial patterns also differ across products, particularly in the magnitude380

and extent of the cooling band (Fig. S2). Given the sparse in situ sampling in this region, satellite-381

based products are likely the most reliable for recent Southern Ocean assessments, which further382

suggests that models may be warming too strongly in recent years.383

It is also informative to consider modes of climate variability, particularly ENSO. During the384

satellite era, observational products consistently show Niño-3.4 variability of 0.85–0.95 °C (1385

s.d.), well within the CMIP6 spread (Fig. 4e). Earlier in the record, however, observational386

estimates diverge to a greater spread than model internal variability after removing model-specific387

biases. This divergence could arise from increased sampling and measurement uncertainty, as388

well as structural differences in interpolation methods. Combined with the intrinsic difficulty389

of estimating ENSO variance reliably from 30–50-year windows (Wittenberg 2009; Deser et al.390

2012), these factors suggest that current SST datasets are unlikely to provide a reliable estimate of391

long-term changes in ENSO variability.392

Finally, decadal modes of variability such as Atlantic Multidecadal Variability, show broad393

consistency in phase among products (Fig. 4f), but differ slightly in amplitude (Fig. 4g). These394

amplitude differences are mainly family-specific and vary little across versions within a family.395

Compared with CMIP6 models, observational amplitudes tend to lie on the higher end of the model396

spread, though they remain within the range sampled by individual simulation members.397

Overall, state-of-the-art SST datasets now show better agreement with each other than their398

predecessors across a range of metrics. Differences are larger in long-term trends and in data-399
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sparse regions, but they generally agree on global warming levels and major variability modes over400

the satellite era. State-of-the-art SST datasets also suggest better agreement with known physical401

process as presented in CMIP6 simulations. This improving agreement suggests that some model-402

observation discrepancies in the literature reflect now-resolved data limitations. Together, these403

results underscore the importance of being aware of how SST datasets have evolved and adopting404

up-to-date, well-documented releases matched to the intended analysis.405

4. How to Choose406

a. Principles underpinning dataset choice and usage407

We have shown that careful dataset choice is crucial for high quality and robust analyses. With408

that in mind, there are practical considerations that may restrict dataset choice. These include409

the length of record, whether fields are spatially complete, spatial and temporal resolution, the410

availability and type of uncertainty estimates, and the immediacy of updates to include the most411

recent data. All datasets are free to use for research, but some have restrictions for other purposes412

such as commercial use that need to be checked and adhered to. The web-based selector tool413

(similar to Figure 1) enables users to quickly view, subset, and access candidate datasets suitable414

for specific applications. When several products exist, results will be more robust if all are used.415

Typical dataset choices by application include:416

• Climate monitoring: compare non-infilled and infilled datasets at monthly or higher resolu-417

tion.418

• AMIP forcing: use infilled datasets at monthly or higher resolution.419

• Attribution or model–data comparisons: use ensemble datasets (either infilled or non-420

infilled) with uncertainty estimates. For non-infilled products, apply the same observational421

coverage mask to the model output to ensure a fair comparison.422

• Western boundary currents, mesoscale eddy signatures, marine heatwaves: use infilled423

high-resolution datasets (daily, finer than 1◦×1◦).424

• Paleo proxy calibration: use long records without known issues during the calibration period,425

and compare non-infilled and infilled products for consistency.426

Once candidates are thinned by practical considerations, it is necessary to assess data quality.427

The analysis presented in section 3 shows the importance of choosing the most recent dataset428
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versions in any family. Typically, older, deprecated products should be used only alongside their429

updated counterparts to aid interpretation of past analyses.430

Moreover, even the most recent releases can retain period- or region-specific issues, as described431

in section 2a and their impacts shown in section 3. If a dataset has known problems that could432

affect the analysis, it should be excluded. However, if removing such datasets results in too few433

candidates for a robust assessment, they should be used with caution, provided their limitations are434

clearly acknowledged in the interpretation.435

Another useful strategy to discriminate among SST products is to evaluate physical consistency436

with other quantities such as air temperature, sea-level pressure, precipitation, and cloudiness437

(Deser et al. 2010). Yet, this requires understanding how the datasets are constructed and the438

assumptions involved. For example, ERSST family’s bias adjustment assumes a relatively stable439

difference between SST and nighttime marine air temperatures (Smith and Reynolds 2002); so440

agreement with those temperatures is not independent support. Similarly, DCSST is adjusted to441

be dynamically consistent with its land counterpart DCLSAT (Chan et al. 2023, 2024a). Another442

often neglected assumption concerns the spatial covariance embedded in infilling. When records,443

especially in data-sparse periods, are infilled by projecting onto prescribed EOF patterns, sub-444

sequent EOF analyses will largely recover the imposed covariance structure, rather than reveal445

additional information about the underlying variability.446

In addition to checking robustness across qualified datasets, results should also be tested against447

the estimated uncertainty within each product. This can be done by perturbing the data using the448

product’s uncertainty estimates or by analyzing the ensemble. If practical constraints require using449

only a subset of an ensemble — such as when running high-resolution AMIP experiments (Chan450

et al. 2021) — it is important to understand how the ensemble was constructed so the subset still451

represents the intended uncertainty. In HadSST4, for example, the first and second sets of 100452

members use different approaches to adjust early SST measurements Kennedy et al. (2019), so453

drawing members from both sub-sets provides a more representative sample.454

Finally, follow the data-citation instructions provided by journals, which typically require citing455

both the dataset and its associated publication, and any additional information requested by dataset456

producers. Accurate citation does more than acknowledge the source: it helps dataset providers457

secure support for ongoing maintenance and understand how their products are being used, allowing458
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the datasets to evolve in ways aligned with scientific needs. In turn, this benefits users by increasing459

the likelihood that high-quality, regularly updated SST datasets remain available.460

b. Where to find more detailed information and updated advice461

This paper provides a broad overview of how SST datasets have evolved and their suit-462

ability for different climate applications. By design, it cannot cover the full details of in-463

dividual products and will freeze at the time of publication. To support users beyond this464

snapshot synthesis, we additionally provide a set of NSF NCAR Climate Data Guide pages465

(https://climatedataguide.ucar.edu/, Schneider et al. 2013) that extend guidance in two466

complementary ways.467

First, dataset-specific pages provide summary information on dataset construction, strengths, and468

known limitations, more detailed than this synthesis. Written by the developers or expert users and469

reviewed by leading climate scientists, these resources, accessible through the web-based selector470

tool, help users efficiently evaluate whether any features or issues are critical for their intended471

analysis. Once candidate datasets have been identified, there is no substitute for a deep dive into472

the linked dataset papers and product user guides for more detailed usage notes and guidance.473

Second, an SST overview page will be updated to provide an evolving summary of the SST474

dataset and evaluation landscape. By tracking newly released updates, methodological advances,475

and emerging developments, this page helps ensure that choice and usage guidance remains accurate476

and relevant as new and improved datasets become available.477

c. Anticipated improvements in SST datasets478

Better input data and metadata: ongoing efforts to rescue historical data (Teleti et al. 2024) and479

metadata (Carella et al. 2017) are essential for extending coverage and clarifying bias structures in480

the early record. Meanwhile, modern data infrastructure is needed to ensure that both rescued and481

contemporary observations and metadata flow efficiently and transparently into permanent archives482

and SST dataset production — a gap that currently prevents many recovered measurements from483

being fully used. For satellite-era products, fundamental work on the calibration of early sensors484

and SST retrieval methods will also reduce uncertainty and improve stability in the 1980s and485

1990s particularly.486
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Better coverage and finer resolution: Advances in infilling methodology, including AI ap-487

proaches, together with increased computational capacity will support higher spatial and temporal488

resolution, with at least 1◦ monthly as a baseline and finer daily or sub-daily products where obser-489

vations permit. As these developments progress, the hard boundaries between datasets designed490

for different purposes are likely to soften, as already seen in COBE-SST3. Feature resolution of491

satellite-era products pre-2000 should benefit from efforts (via international co-operation spear-492

headed by ESA, https://ceos.org/news/avhrr-data-recovery/) to consolidate full-resolution data from493

early sensors. These higher resolution observations have not been exploited in global SST analyses494

before, and provide an opportunity for better understanding changes in ecologically-important shelf495

sea regions.496

Better bias adjustments: Beyond the pervasive global- and basin-scale biases discussed in section497

2a, progress will require pushing bias estimation further toward ship-specific and hence regional498

scales, to be enabled by improved metadata such as ship tracking and advanced physical and499

statistical models. Meanwhile, broader evaluation using independent sources will be essential500

for assessing and refining bias adjustments. Improved methods are also emerging to improve501

observational stability in satellite SST records, by extending retrieval methods to be “bias aware”502

(Merchant et al. 2020b) and by harmonizing irradiance between satellite platforms prior to retrieval503

of SST.504

Better structural uncertainty estimates: As discussed in section 2c, the current practice of esti-505

mating structural uncertainty from an ad hoc ensemble of SST datasets is limited. As understanding506

of data artifacts improves, clearly inconsistent products are recommended to be excluded from cer-507

tain analyses. This strengthens confidence in the analysis and metrics of interest, but also narrows508

the ensemble and reduces its potential to span the full space of uncertainties that arise across the509

entire SST production workflow. A more complete characterization will require decomposing that510

workflow into its major components — input selection, quality control, bias adjustment, gridding,511

and infilling – and sampling alternative methods and parameter choices within each step. Such512

a modular approach would help dataset providers explore the widest range of reasonable choices513

across each component and ensure that all known errors and uncertainties are accounted for and fed514

through to the infilling schemes. This approach would also lower the barrier for new contributions515

as novel approaches could be developed for a single component. For satellite datasets, which516
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are constructed from many trillions of radiance measurements, modular exploration of structural517

uncertainty is challenging in terms of scale and expense because of the large volume, and the518

community continues to focus on metrological approaches to exposing, quantifying and correcting519

effects leading to uncertainty in SST products (Mittaz et al. 2019).520

User-friendly access and data formats: In situ SST datasets are currently dispersed across data521

centers, which complicates comparison and analysis. Moving toward common conventions for both522

input observations and products, CMIP-style access protocols, regridding and subsetting services523

such as surftemp.net and cloud-native formats (for example, zarr) will further lower these barriers524

and support more scalable, interoperable use of SST products. For satellite SSTs, products have525

long been standardized in format, provided with tools, and catalogued through cooperative efforts526

of the GHRSST international science team https://www.ghrsst.org/.527

Faster-paced innovation: Delivering the improvements outlined above will require open, stan-528

dardized, flexible, and streamlined systems that span data intake, processing, and distribution. Such529

infrastructure would better connect data producers and users, broaden participation in development530

and evaluation, and ultimately enable users to move from passive recipients of SST products to531

active participants in improving both the data and the science derived from them.532

5. Final words533

This paper has shown how careful choice of SST datasets is essential for robust research. Over534

time, SST datasets have improved in quality, and their estimates of important measures of variability535

have become more consistent. Characterization of dataset uncertainty has also improved, enabling536

users to understand the sensitivity of their results to uncertainty within each dataset as well as537

between a selection of different datasets. A number of important indicators, including recent and538

centennial global trends and the Tropical Pacific trend contrast, show that the most recent SST539

dataset versions align more closely with one another and with the latest generation of climate540

models, compared with legacy products. Observational constraints on future projected surface541

temperature changes are therefore more robust when using state-of-the-art datasets than might be542

inferred from the use of legacy products.543

These considerations can be summarized in a set of practical steps to support effective SST544

dataset selection and use:545

25

https://surftemp.net
https://www.ghrsst.org/


1. Use the data-selection tool to identify datasets appropriate for the intended application,546

taking into account record length, residual biases, spatial and temporal resolution, com-547

pleteness, uncertainty information, update latency, and specific usage restrictions (e.g., for548

commercial use).549

2. Use this paper and NSF NCAR Climate Data Guide pages to evaluate these candidates,550

gaining an understanding of their construction, strengths, and known limitations.551

3. Draw on the peer-reviewed dataset literature for the shortlisted products, including user552

guides and methodological papers, to identify issues that may be relevant for the specific553

scientific question.554

4. Wherever possible, analyze the entire uncertainty ensemble and more than one suitable555

dataset, so that conclusions can be assessed for robustness to parametric and structural556

uncertainty.557

5. Finally, cite all datasets in accordance with journal and producer guidelines, including558

both the dataset and its associated publications, which supports not only transparent scientific559

reuse but also continued maintenance and improvements.560

Taken together, these practices help ensure that present-day analyses make the best possible561

use of available SST datasets. At the same time, continued progress in observational coverage,562

data and metadata rescue, understanding of bias and uncertainty, and infrastructure capability will563

enable increasingly rapid cycles of improvement. As these advances accelerate, the coexistence564

of multiple approaches, each making different methodological choices, will help to better quantify565

structural uncertainty, supporting a more robust understanding of past climate change as well as566

improved constraints on future projections.567
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Fig. S1: Patterns of 1900–2010 SST trends over the Tropical Pacific. From top to bottom and left to right, the datasets shown
are DCSST, HadSST4.2, DCSST-I, ERSST6, ERSST5, COBE-SST3, COBE-SST2, and HadISST1. For the non-infilled datasets
(DCSST and HadSST4.2), a grid cell is considered to have a valid trend if it contains at least three valid years in each decade from
the 1900s to the 2000s, where a valid year is defined as having at least three months of data.
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Fig. S2: Patterns of 1982-2024 SST trends over the Southern Ocean. From top to bottom and left to right, the datasets shown
are DCSST, HadSST4.2, DCSST-I, ERSST6, ERSST5, COBE-SST3, COBE-SST2, HadISST1, OISSTv2.1, and ESA CCI SST3.
Similar to Fig. S1, for the non-infilled datasets (DCSST and HadSST4.2), a grid cell is considered to have a valid trend if it contains
at least three valid years in each decade from the 1980s to the 2010s, where a valid year is defined as having at least three months
of data.
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