

Choosing the Right Sea Surface Temperature Dataset: Benchmarking and Guidance for Climate Applications

Duo Chan^a, Elizabeth C. Kent^b, Nathan Lenssen^{c,d}, Clara Deser^d, Christopher J. Merchant^{e,f},
Masayoshi Ishii^{g,h}, Caroline Sandfordⁱ, Boyin Huang^j, Xungang Yin^j, John J. Kennedy^k,
Richard C. Cornes^b, Peter Huybers^l, Geoffrey Gebbie^m, Nick Raynerⁱ

^a *School of Ocean and Earth Science, University of Southampton, UK*

^b *National Oceanography Centre, Southampton, UK*

^c *Colorado School of Mines, Applied Mathematics and Statistics, USA*

^d *National Center for Atmospheric Research, USA*

^e *National Centre for Earth Observation, Reading, UK*

^f *Department of Meteorology, University of Reading, Reading, UK*

^g *Department of Climate and Geochemistry Research, Meteorological Research Institute, Japan*
Meteorological Agency, Tsukuba, Japan

^h *Geoenvironmental Sciences, University of Tsukuba, Tsukuba, Japan*

ⁱ *Met Office, Exeter, UK*

^j *NOAA / National Centers for Environmental Information, North Carolina, USA*

^k *Independent researcher, Verdun, France*

^l *Department of Earth and Planetary Sciences, Harvard University, USA*

^m *Department of Physical Oceanography, Woods Hole Oceanographic Institution, USA*

²⁰ *Corresponding author: Duo Chan, Duo.Chan@soton.ac.uk*

21 ABSTRACT: Sea surface temperature (SST) datasets underpin many climate applications, includ-
22 ing monitoring, attribution, model evaluation, ecosystem assessment, and boundary conditions for
23 atmospheric simulations. Many different SST products are available. This paper addresses why
24 SST products differ, what these differences mean for climate analyses, and which products are best
25 suited for various purposes. Differences among SST products are first reviewed with respect to im-
26 provements in bias adjustments, gridding and infilling techniques, and uncertainty quantification.
27 The implications of these advances are then assessed through historical case studies, evaluation of
28 spatial patterns, and comparison of global means and key regional indices. Substantial discrep-
29 ancies in trends are found during the satellite era using older SST products, but recently-released
30 datasets are much more consistent. Recent datasets also show a more-consistent SST evolution
31 during World War II and in trends associated with Tropical Pacific zonal gradients. Disagreements
32 persist, however, with respect to early-20th-century warming and in data-sparse regions such as
33 the Southern Ocean and Arctic. To assist users across disciplines, we articulate principles for
34 dataset selection based on application needs and highlight the NCAR Climate Data Guide and
35 an accompanying web-based data-selector tool that provides updated benchmarking and access to
36 SST products.

37 CAPSULE: A user-oriented synthesis of the evolution of sea surface temperature (SST) datasets,
38 how their differences influence climate analyses, and practical guidance and tools to help users
39 choose appropriate products.

40 **Significance Statement**

41 Sea surface temperature is an “Essential Climate Variable” used for tracking climate change,
42 evaluating models, and understanding events such as marine heatwaves and El Niño. Many
43 different datasets exist, produced by various scientific groups. In addition, there are multiple
44 versions of many of these datasets, yet older versions remain in use long after improved versions
45 have superseded them. This article explains how SST datasets have developed and improved,
46 shows how differences between them can influence scientific results, and highlights where recent
47 versions agree and where important uncertainties persist. Alongside a general encouragement to
48 use up-to-date SST products, we offer practical, application-focused guidance as well as an online
49 tool that helps researchers identify, understand, and access SST datasets well-suited to their needs,
50 promoting proper, consistent use of sea surface temperature information.

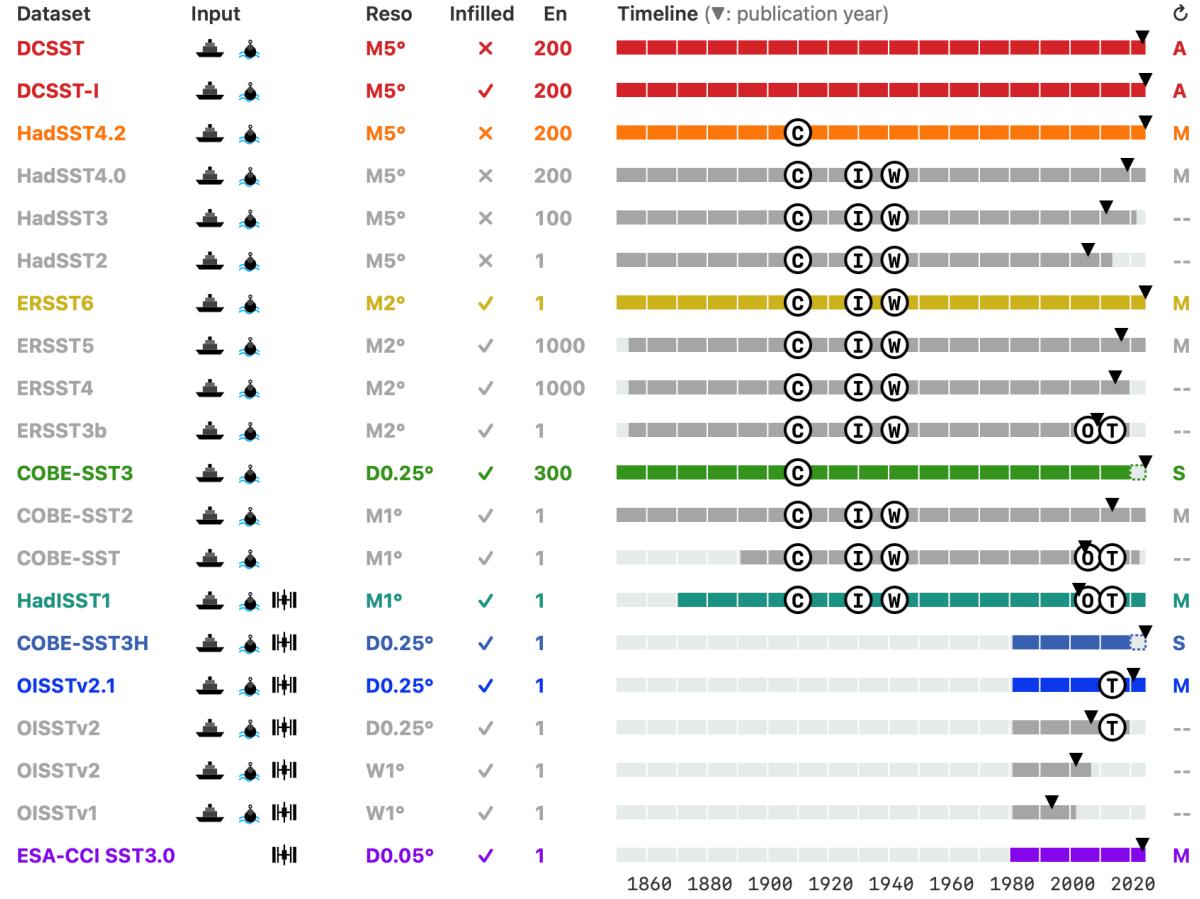
51 **1. Introduction**

52 Sea surface temperature (SST) is a critical variable in climate science, providing the primary
53 measure of ocean surface warming and a key indicator for monitoring climate change and variabil-
54 ity. It informs analyses of marine heatwaves (Oliver et al. 2021), estimates of climate sensitivity
55 (Sherwood et al. 2020), and attribution of observed changes to anthropogenic forcing (Eyring et al.
56 2023). SST also provides boundary conditions for atmospheric reanalyses (e.g. Hersbach et al.
57 2020; Kosaka et al. 2024), atmospheric model simulations, e.g., the Atmospheric Model Intercom-
58 parison Project (AMIP, Eyring et al. 2016), and represents key modes of climate variability such
59 as the El Niño-Southern Oscillation (ENSO, McPhaden et al. 2006) and the Atlantic Multidecadal
60 Variability (AMV, Knight et al. 2006).

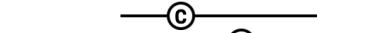
61 The SST datasets considered here are listed in Table 1 with acronyms defined and citation and
62 access information. Each of these SST datasets generally target one of three main user requirements
63 (Fig. 1):

TABLE 1: SST datasets used in this paper

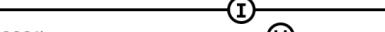
Dataset	Dataset Name	Citation	Available from
DCSST	Dynamically Consistent SST	Chan et al. (2024a)	https://doi.org/10.7910/DVN/NU4UGW
DCSST-I	Dynamically Consistent SST - Infilled	Chan et al. (2026)	https://doi.org/10.7910/DVN/ROG38Q
HadSST4.2	Met Office Hadley Centre SST	Sandford and Rayner (in review)	https://www.metoffice.gov.uk/hadobs/hadsst4
HadSST4.1		Kennedy et al. (2019)	https://www.metoffice.gov.uk/hadobs/hadsst4/previous_versions.html
HadSST3		Kennedy et al. (2011a,b)	https://www.metoffice.gov.uk/hadobs/hadsst3
HadSST2		Rayner et al. (2006)	https://www.metoffice.gov.uk/hadobs/hadsst2
ERSSTv6	Extended Reconstructed SST	Huang et al. (2025)	https://www.ncei.noaa.gov/products/extended-reconstructed-sst
ERSSTv5		Huang et al. (2017)	https://www.ncei.noaa.gov/pub/data/cmb/ersst/v5/netcdf
ERSSTv4		Huang et al. (2015)	https://www.ncei.noaa.gov/pub/data/cmb/ersst/v4/netcdf
ERSSTv3b		Smith et al. (2008)	https://www.ncei.noaa.gov/pub/data/cmb/ersst/v3b/netcdf
COBE-SST3	Centennial in situ Observation-Based Estimates	Ishii et al. (2025)	https://climate.mri-jma.go.jp/pub/archives/Ishii-et-al_COBE-SST3/cobe-sst3
COBE-SST2		Hirahara et al. (2014)	https://climate.mri-jma.go.jp/pub/archives/Hirahara-et-al_COBE-SST2/
COBE-SST		Ishii et al. (2005)	https://ds.data.jma.go.jp/tcc/tcc/products/elnino/cobesst_doc.html
HadISST1	Hadley Centre Sea Ice and Sea Surface Temperature data set	Rayner et al. (2003)	https://www.metoffice.gov.uk/hadobs/hadisst/
COBE-SST3H	Centennial Observation-Based Estimates	Ishii et al. (2025)	https://climate.mri-jma.go.jp/pub/archives/Ishii-et-al_COBE-SST3/cobe-sst3h
OISSTv2.1	Optimum Interpolation Sea Surface Temperature	Huang et al. (2021)	https://www.ncei.noaa.gov/products/optimum-interpolation-sst
OISSTv2		Reynolds et al. (2007, 2002)	https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2
ESA SST3.0	European Agency Climate Change SST	Embury et al. (2024)	easy access: https://surftemp.net ; full global resolution: https://data.ceda.ac.uk/neodc/eocis/data/global_andRegional/sea_surface_temperature/CDR_v3/Analysis
CMIP6 ensemble	Coupled Model Intercomparison Project, Phase 6	Eyring et al. (2016); Abernathay et al. (2021)	https://console.cloud.google.com/storage/browser/cmip6



Cold canvas bucket bias ([Sippel et al., 2024](#), [Chan et al., 2025](#)).

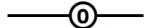


Inter-source inhomogeneity ([Chan et al., 2019](#)).



World War 2 Warm Anomaly ([Thompson et al., 2009](#), [Chan & Huybers, 2021](#)).

Ship-buoy Offsets ([Karl et al., 2015](#)).



Trend outlier in the satellite era ([Menemenlis et al., 2025](#)).

FIG. 1: **Overview of major SST dataset families:** DCSST (red); HadSST (orange); ERSST (yellow); COBE-SST (green); HadISST (teal); COBE-SSTH (light blue); OISST (blue) and ESA CCI SST (purple). Datasets are grouped by family and ordered by version within each family. Columns indicate input data types (ship/ buoy/ satellite), nominal temporal (Monthly/ Weekly/ Daily) and spatial resolution (°), spatial completeness (✓/ ✗), ensemble size, temporal span (horizontal bar), publication year (downward triangle), and update frequency (Annual/ Monthly/ Static/ Discontinued (–)). Symbols mark major known biases and artifacts that remain in each product: cold canvas bucket bias (C), inter-source inhomogeneity (I), World War II warm anomaly (W), ship–buoy offsets (O), and trend outliers in the satellite era (T), based on evaluations presented in section 2 and 3. Reference ranges for these issues are shown in the legend below. Dataset abbreviations follow those in the text and are expanded in Table 1

64 1. Long historical *in situ* records beginning before 1900, e.g. HadSST, ERSST and COBE-SST,
 65 intended for decadal- to centennial-scale climate applications. These products often provide
 66 the oceanic component for global surface temperature datasets and new major versions are

67 released approximately every six years aligned with the Intergovernmental Panel on Climate
68 Change (IPCC) assessment cycle.

69 2. High-resolution SST analyses, e.g. ESA CCI SST and NOAA OISST, over the era of sustained
70 satellite observations since 1980. These datasets utilize remotely sensed SST observations,
71 may blend with *in situ* measurements, and provide data at high spatial and temporal resolutions.
72 Several satellite-era analyses are also updated in near-real time for weather and climate
73 prediction applications.

74 3. Centennial and multi-decadal records at intermediate resolution designed for input to atmo-
75 spheric reanalyses or as boundary conditions for other atmosphere-only dynamical models.
76 An example is HadISST which blends *in situ* observations with satellite measurements to
77 reconstruct global fields back to the 1870s.

78 The creation of an SST product generally requires four elements: (1) data selection (and, in the
79 case of satellite-based products, inference of SST from top-of-atmosphere measurements); (2) bias
80 corrections to remove artifacts in measurements; (3) gridding and infilling to provide estimates
81 in regions without direct measurements; and (4) derivation of an estimate of uncertainty for each
82 value in the final product. Each element has improved over the years, leading to updated versions
83 of the long-standing product families as well as newly-developed datasets, e.g. DCSST.

84 Despite these advances, uptake of newer SST datasets by the research community can be slow. As
85 a result, some datasets that do not contain any bias adjustments, e.g., the gridded summaries from
86 the International Comprehensive Ocean-Atmosphere Data Set (ICOADS, Freeman et al. 2017),
87 or legacy products with outdated bias adjustments, e.g., the Kaplan SST (Kaplan et al. 1998),
88 remain highly cited and widely used years after release, e.g., for long-term trends in the Tropical
89 Pacific zonal SST gradient (Lee et al. 2022). Another example is HadISST1 (released 2003),
90 which remains among the most cited SST datasets in 2025, but is one of few products to not correct
91 post-1950 ship-based SST biases. This bias leads to lower warming rate estimates since 2000
92 (Karl et al. 2015) and thus systematically different estimates of recent trends (Menemenlis et al.
93 2025). These are just a few of many examples of the mismatch between the SST products most
94 widely used in research and those that best reflect current understanding of observational biases
95 and uncertainties.

96 This lag in adoption reflects the reality of research infrastructure where “switching costs” can
97 be high. Familiarity often shapes dataset choice, while barriers such as non-standard data formats,
98 large data volumes, difficulty finding the data, and historically fragmented documentation create
99 further friction. The landscape has undoubtedly improved in recent years with comprehensive
100 documentation now available in data journals (see Table 1) and user guides (e.g., HadSST4 and
101 ESA CCI SST). Although fully absorbing the technical details of multiple candidate datasets may
102 not seem an obvious priority, we show in this paper that where scientific analyses depend critically
103 on observational estimates of SST, selecting suitable products is essential for robust and high-
104 quality research. Promoting these improved SST products is also timely as the climate community
105 is determining standards for the upcoming IPCC CMIP7 and AR7, shaping the next years of climate
106 science (Beadling et al. 2026).

107 This paper provides a starting point for SST users in navigating this evolving landscape, enabling
108 them to more easily identify and consult relevant data papers and user guides for informed choices
109 of SST products best suited for their particular application. Specifically, this paper addresses the
110 questions: “Why do datasets differ?” by tracing the evolution of their development in section 2,
111 “What do these differences mean for climate analyses?” by comparing products in section 3, and
112 “How do I pick SST datasets?”, by providing guidance on the current state-of-the-art as well as
113 anticipated improvements likely to affect future choices in section 4. Section 5 provides a summary.

114 Our analysis focuses on long-standing and recently developed SST dataset families that are
115 updated regularly. Legacy products whose methods have not been updated since before 2000
116 (e.g., Kaplan SST) or those lacking any bias adjustments (e.g., gridded ICOADS) are excluded due
117 to limited comparability. Several high-quality near-real-time analyses are omitted because they
118 are either shorter than forty years (e.g., the Multiscale Reanalysis by Chin et al., 2017 and the
119 Canadian Meteorological Center analysis by Brasnett et al., 2018) or built on a significant input
120 of ESA CCI SST data (e.g., the OSTIA reprocessing by Worsfold et al., 2024). Operational SST
121 analyses that principally support numerical weather prediction are coordinated by the Group for
122 High Resolution Sea Surface Temperature (GHRSST, www.ghrsst.org/), and inter-comparisons
123 of these datasets have been reported elsewhere (e.g., Fiedler et al. 2019; Yang et al. 2021). We
124 also do not consider hybrid datasets that combine other products, for example, blends of different

125 products made for reanalysis (e.g. Hersbach et al. 2020), or surface-forcing data sets for AMIP-style
126 uncoupled simulations that combine HadISST1 and OISSTv2 (Hurrell et al. 2008).

127 **2. History of SST Products and Recent Advances**

128 This section reviews how three core elements of SST product development – bias adjustment,
129 gridding and infilling, and uncertainty quantification – have evolved, with each stage discussed in
130 its own subsection.

131 *a. Bias adjustment*

132 Biases in SST records stem from pervasive and systematic errors that differ between measurement
133 methods and platforms, their changing mix over time and their past data curation and processing
134 (Kent and Kennedy 2021). Ship-based observations made with buckets are typically cold-biased
135 because of evaporative cooling, and different bucket types used by various nations and periods left
136 distinct bias signatures. On the other hand, engine-room intake (ERI) measurements tend to be
137 warm-biased owing to heat from the vessel (Kent and Taylor 2006). These biases are often several
138 tenths of a degree Celsius in magnitude and distort long-term trends, making their correction a
139 central task in development of climate-quality analyses.

140 Early adjustment efforts concentrated on pre-1940 bucket biases. An initial blanket adjustment
141 (Folland et al. 1984) was followed by land-anchored estimates using coastal station temperatures
142 (Jones et al. 1986) and, soon after, physics-based bucket models that simulated cooling as a function
143 of bucket type and usage (Bottomley et al. 1990; Folland and Parker 1995). Because detailed
144 metadata on bucket types and national practices are sparse, these schemes necessarily assumed
145 simplified and broadly timed transitions, yielding limited regional differentiation, as implemented
146 in, e.g., HadSST2. In parallel, ERSST3b pursued an anchoring strategy using nighttime marine air
147 temperatures (Smith and Reynolds 2002; Kent et al. 2013), although adjustments were still only
148 applied prior to 1940.

149 A major indication of errors present in engine-room-intake (ERI) temperatures, which caused
150 a spurious decrease in global mean surface temperature by approximately 0.3°C following World
151 War II, was discovered by Thompson et al. (2008). ERI measurements represent the majority of
152 SST data available between 1930 and 1990 (Kent and Taylor 2006). Subsequent datasets (e.g.,

153 HadSST3 and COBE-SST2) extended bias corrections beyond 1940 to account for ERI biases as
154 well as offsets between ship-based and buoy measurements. Time-varying offsets between ship-
155 based and buoy measurements shown to affect post-2000 temperature trends (Karl et al. 2015) were
156 accounted for starting ERSST4, HadSST4.0 and COBE-SST2.

157 Since 2019, attention has expanded from method-specific biases to finer spatial and platform-
158 dependent structures. HadSST4.0 used marine profile temperatures to estimate regional, ship-
159 related biases after 1940. In parallel, Chan and Huybers (2019) developed an intercomparison
160 framework that quantifies offsets among national groupings and enables pre-1940 comparisons.
161 This framework has revealed a cold truncation bias in part of the Japanese data that contributed
162 to the unusually heterogeneous early-20th-century warming pattern (Chan et al. 2019). This
163 truncation bias has recently been adjusted in DCSST(-I), COBE-SST3, and HadSST4.2 through
164 different implementations.

165 The most recent identification of *in situ* bias is a global cold bias in decades around the 1910s
166 (Chan et al. 2023; Sippel et al. 2024) that alters estimates of early warming and decadal variability
167 and is attributed to incomplete correction of canvas bucket temperatures (Chan et al. 2025). To
168 date, only DCSST and COBE-SST3 implement specific adjustments to account for this global cold
169 bias by reviving the earlier land-anchoring idea (Jones et al. 1986).

170 Satellite SSTs are obtained from relatively few (~25) missions with differing bias characteristics
171 (e.g. Yang et al. 2021; Fiedler et al. 2019). These platform-dependent effects are also on the order
172 of several tenths of a degree Celsius (Merchant et al. 2008b). Satellite SST records have further
173 required corrections for biases from atypical atmospheric conditions, particularly the stratospheric
174 aerosol from the 1991 Pinatubo eruption (Reynolds 1993; Merchant et al. 1999).

175 The satellite-only ESA CCI SST is based on physics-based estimation approaches (Merchant et al.
176 2008a; Embury and Merchant 2012; Merchant et al. 2020a) to minimize biases from changing
177 satellite characteristics and from volcanic perturbations to the stratosphere. The local time of
178 satellite overpasses has varied, and the artificial trends arising from changing observation times
179 relative to the daily cycle of SST are also addressed in ESA CCI SST through adjustments to a
180 standard local time of observation. ESA CCI SST also explicitly adjusts the skin temperature
181 observable from space to the SST at 20 cm depth for compatibility with centennial-scale datasets
182 using *in situ* data from drifting buoys and buckets.

183 *b. Construction of gridded fields*

184 A variety of approaches are used to construct gridded fields from individual measurements.
185 Obvious differences between products are the spatial and temporal grid resolution (here ranging
186 from 5° monthly to 0.05° daily; Fig. 1). This choice is largely shaped by application needs tempered
187 by data and processing limitations. For example, while monthly products are usually sufficient
188 for studying slowly varying climate backgrounds, much higher spatial and temporal resolution is
189 required for studying extreme events like marine heat waves. Within a family, some products have
190 trended toward finer resolution, as in OISST and COBE-SST (Fig. 1).

191 A relevant concept is the distinction between nominal grid resolution and effective resolution
192 (Reynolds et al. 2013). In other words, a finer grid does not guarantee that smaller-scale physical
193 variations are always resolved. This distinction is particularly important for products that blend *in*
194 *situ* and satellite data while aiming to provide a consistent nominal resolution across more than a
195 century. HadISST1, for instance, has an effective resolution of about 4° before 1949, reflecting
196 the reduced-space reconstruction used at that time. Some products address this issue by offering
197 separate versions, such as COBE-SST3, which extends back to 1850 without satellite data, and
198 COBE-SST3H, which incorporates satellite measurements but only from 1982 onward (Fig. 1).

199 Another application-oriented difference is whether unsampled grid cells remain missing or are
200 infilled to be globally complete. Non-infilled datasets such as the HadSST family are often preferred
201 for climate monitoring as they are closer to the original observations; infilled fields are generally
202 more convenient to use, but weaken the traceability to original observations by making assumptions
203 about the variability to gain the spatial completeness.

204 Infilling methods typically define the expected relationship between conditions at different locations
205 using a covariance matrix. The simplest choice of covariance between locations is isotropic
206 and homogeneous, but more complex empirical relationships can be assumed to better capture
207 regional variations in covariance, as implemented in DCSST-I and high-resolution satellite-based
208 products such as ESA CCI SST and COBE-SST3H. Other methods explicitly account for long-
209 range teleconnections, including Reduced-Space Optimal Interpolation (Kaplan et al. 1997, e.g.,
210 in HadISST1), reconstructions based on Empirical Orthogonal Functions (EOFs, Hirahara et al.
211 2014, e.g., in COBE-SST2 and 3), and Empirical Orthogonal Teleconnections (EOTs, Smith et al.
212 1998, e.g., in ERSST v3–v5).

213 Improvements in infilling across products in the same family can also be evident. For example, an
214 increasing number of EOT modes have been used in successive ERSST versions to better capture
215 localized variability. In its latest version (v6), a three-layer fully connected neural network is used
216 to replace EOT and has yielded better infilling skill (Huang et al. 2025).

217 *c. Uncertainty estimation*

218 Quantifying uncertainty is essential for making appropriate use of the data (Kennedy 2014). Most
219 products provide uncertainty values per grid box and/or time step (e.g., ESA CCI SST, COBE-
220 SST1–2) or ensembles of plausible realizations (e.g., ERSSTv4–5, DCSST(-I), COBE-SST3) or
221 both (e.g., HadSST3–4.2) for uncertainty quantification. Some older products such as HadISST1
222 do not provide uncertainty estimates.

223 Uncertainty ensembles are convenient for tracing how uncertainty propagates into climate analy-
224 ses: a diagnostic is repeated for each member and the across-member distribution defines confidence
225 intervals consistent with observational error covariance. Ensembles can quantify complex error
226 structures which cannot be handled analytically. Because individual members often contain more
227 small-scale variability than the ensemble mean or median, variance statistics based on individual
228 members can differ from those on the central measure alone. Moreover, for a given product, the
229 across-member spread reflects only uncertainty associated with choices internal to that product’s
230 particular methodology (known as parametric uncertainty).

231 A more complete accounting of uncertainty must also reflect the full range methodological
232 choices in input data, quality control, bias adjustment, and reconstruction. This “structural un-
233 certainty” is commonly approximated by the spread across independently developed SST datasets
234 (Thorne et al. 2005), assuming they are diverse enough to span the plausible error range. How-
235 ever, many products share observational archives and methodological lineages, leading to common
236 issues. For example, the SST datasets used in the last IPCC assessment all exhibited an early-20th-
237 century cold bias (Sippel et al. 2024, represented here as the cold canvas bucket bias in Fig. 1),
238 despite their apparent diversity. This cautions data users against treating inter-product agreement
239 as evidence that structural uncertainty has been fully explored and highlights the need for genuine
240 diversity in reconstruction approaches across the entire dataset development cycle.

241 These advances in bias adjustment and the construction of gridded fields, along with the addition
242 of newly-available historical data, provide SST products that better represent the historical evolution
243 of SST than their predecessors, as illustrated in the next section.

244 **3. Evaluation and Comparison of Products**

245 This section evaluates and compares SST datasets across a range of metrics to help data users
246 determine which products reliably represent the phenomena and scales of variability relevant to
247 their applications. Specifically, we investigate to what extent SST products exhibit bias signatures
248 associated with known data artifacts (Section 3a, Figure 2), the spatial structures of events such as
249 ENSO and marine heatwaves (Figure 3), and climate features including long-term warming, major
250 modes of variability, and important regional gradients (Figure 4).

251 We additionally compare the observed SST metrics with state-of-the-art CMIP6 simulations
252 (Figures 2 and 4). Ideally, observational datasets should be evaluated independent of model-based
253 expectations insomuch as they are to be used as checks of these models or assumptions that go
254 into construction of such models. That said, climate models are useful for highlighting unexpected
255 features in the datasets. Model-data discrepancies have been important for identifying systematic
256 errors in observations, particularly prior to the satellite era. However, better agreement with CMIP6
257 alone does not imply that a product is more accurate and model–data consistency is not used as
258 a formal criterion in SST product development. Adjustments in SST data are only made when
259 multiple lines of evidence — physical, statistical, or documentary — indicate data issues with a
260 known cause.

261 *a. Bias signatures*

262 Global-mean SST anomalies (see Table 2 for definition) are visually similar after 1980, indicating
263 broad consistency in the satellite era (Fig. 2a). Earlier periods, however, show clear differences,
264 largely due to biases in observations. For example, the World War II warm anomaly (Fig. 2b; Table
265 2) is due to wartime changes in measurement practice that introduced warm biases (Thompson
266 et al. 2008; Chan and Huybers 2021). In legacy HadISST1, ERSST and COBE-SST versions,
267 this anomaly amplitude lies outside the -0.12 to 0.11°C (95% c.i.) range from CMIP6 historical
268 simulations. In COBE-SST3 and the new DCSST family, bias corrections reduce the warm

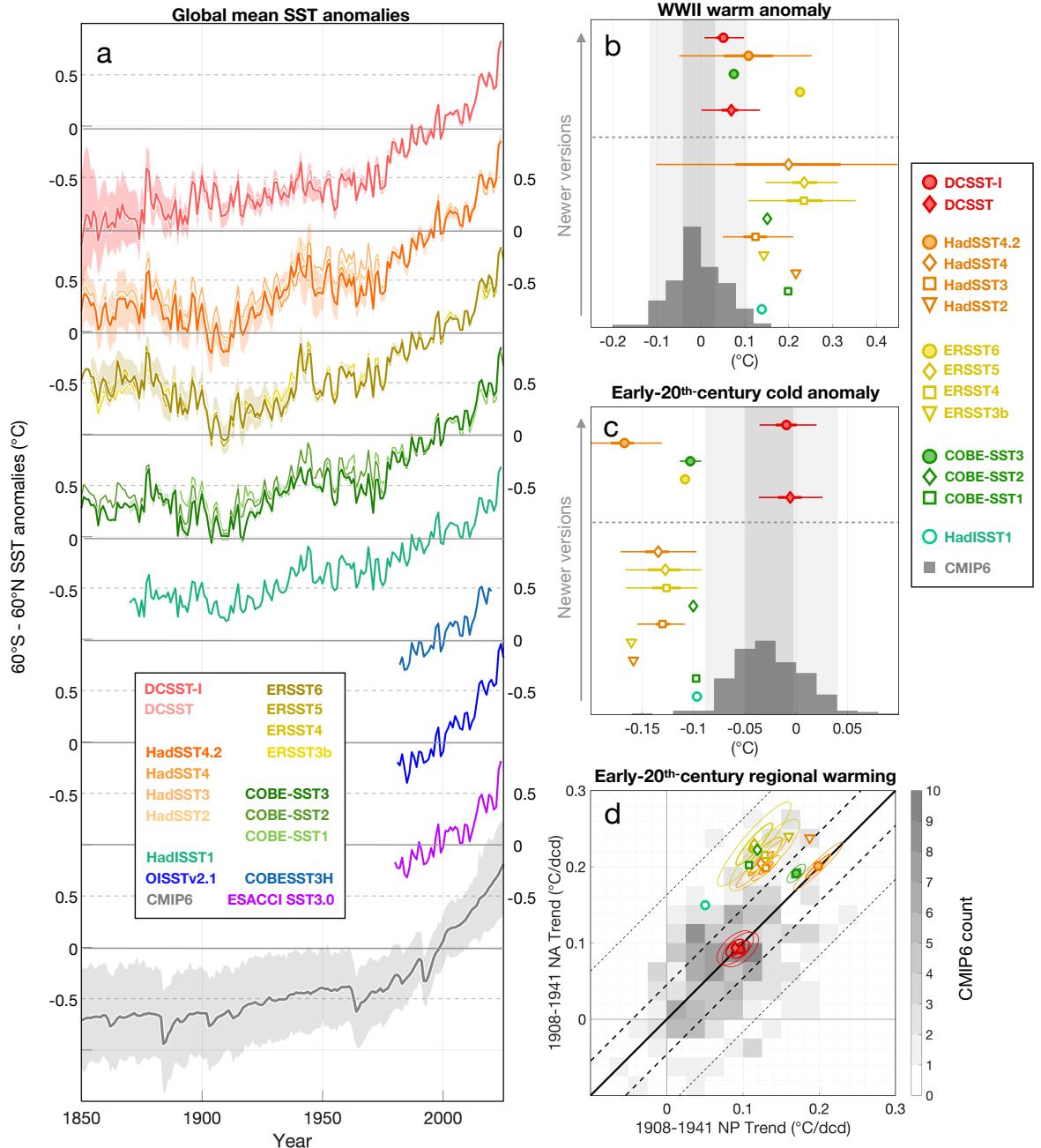


FIG. 2: Comparison of global mean SST and data artifacts. (a) global mean SST (60°S – 60°N) anomalies relative to 1982–2014 climatology. Datasets are grouped and offset by families. Within each family, thick lines show the central estimate of individual versions (color-coded), and the shading shows the 95% c.i. for the most recent release where an ensemble is available. Simulations from 229 CMIP6 runs, concatenating historical and SSP2-4.5 experiments, are shown at the bottom. (b) World War II warm anomaly, calculated as the global mean SST anomaly over 1941–1945, relative to the mean over 1936–1940 and 1946–1950. Markers, sorted by publication dates (descending) in the y-axis, denote the mean value of a dataset, while thick and thin lines, respectively, denote the interquartile range and 95% confidence interval (c.i.), where an ensemble is available. Dashed line separates state-of-the-art and legacy products. The histogram presents the CMIP6 distribution, and the dark and light shading denotes, respectively, the interquartile and 95% c.i. (2.5%–97.5%). (c) as (b) but for early-20th-century cold SST anomaly, defined as the global-mean SST over 1900–1930 minus a reference SST given by a linear trend fitted to the periods 1890–1899 and 1931–1940. (d) North Atlantic (y-axis) versus North Pacific (x-axis) SST trends over 1908–1941. Markers are as (b), and ellipses denote 1 s.d. and 2 s.d. uncertainty using a bi-variate Gaussian fit. The heat map squares represent the 2D histogram of CMIP6 historical simulations and the black line depicts the one-to-one relationship, and thick and thin dashed lines denote, respectively, the interquartile range and 95% c.i. of the simulated inter-basin trend difference.

TABLE 2: Definitions and calculation methods for metrics used in this study.

Metric Name	How to calculate?
Global SST	Area-weighted (cosine latitude) mean over 60°S–60°N oceans.
Early-20 th -Century Cold Bias	Global mean SST difference over 1900–1930 relative to a linear fit between 1890–1899 and 1931–1940, following Sippel et al. (2024).
WWII Warm Anomaly	Global mean SST anomaly averaged over 1941–1945 relative to the mean of 1936–1940 and 1946–1950, following Chan and Huybers (2021)
North Pacific SST	Area-weighted mean over 20°N–60°N, 100°E–100°W, following Chan et al. (2019).
North Atlantic SST	Area-weighted mean over 20°N–60°N, 100°W–10°E (excluding Mediterranean), following Chan et al. (2019).
Early-20 th -Century Warming	Linear trend of global mean SST over 1908–1941, following Chan et al. (2019).
Niño3.4 SST	Area-weighted mean over 5°S–5°N, 170°W–120°W.
West Equatorial Pacific SST	Area-weighted mean over 5°S–5°N, 120°E–170°E.
East Equatorial Pacific SST	Area-weighted mean over 5°S–5°N, 150°W–80°W.
Southern Ocean	Area-weighted mean over 50°S–70°S.
AMV Index	The difference between 20-year running smoothed monthly North Atlantic SST anomalies (0°–60°N, 80°W–0°E) and global SST, following Trenberth and Shea (2006).

269 anomaly to within the CMIP6 envelope, suggesting better physical consistency. HadSST4.2
 270 similarly improved estimates of engine-room-intake bias, reducing the anomaly from 0.18 (-0.10–
 271 0.45)°C in HadSST4.0 to 0.11 (-0.05–0.25)°C (95% c.i.), closer to the CMIP6 range. ERSSTv6 is
 272 now the only major product family in which a pronounced WWII warm anomaly persists.

273 Farther back in time, the evolution from 1850 to 1940 differs substantially across product
 274 families, but is relatively stable within each family. DCSST shows nearly continuous warming
 275 whereas ERSST exhibits the strongest cooling from 1850 to about 1910 before warming quickly.
 276 HadSST and COBE-SST lie between these endpoints (Fig. 2a). These four products differ due
 277 to the treatment of early bucket biases, modulating the magnitude of the early 20th-century cold
 278 anomaly (Sippel et al. 2024). In COBE-SST3, this cold anomaly is similar to earlier COBE-SST
 279 releases (~0.1°C, Fig. 2c). HadSST4.2 appears particularly cold by this measure because an
 280 adjustment applied to data after 1930 increases the SST in the period used as a reference (Table
 281 2). ERSSTv6, in contrast, produces cooler 1930s SSTs and thus a smaller anomaly relative to
 282 HadSST4.2. Nevertheless, most products remain outside the CMIP6 range with only DCSST and
 283 its infilled derivative exhibiting early 20th century SSTs consistent with model simulations.

284 On regional scales, correcting the Japanese truncation bias directly alters the contrast in early-
285 20th-century warming between the North Pacific and North Atlantic (Chan et al. 2019). In legacy
286 products, all families show the North Atlantic warming nearly twice as fast as the North Pacific over
287 1908–1941 (Fig. 2d), a phenomenon which would require an unusually large expression of internal
288 variability to explain (Delworth and Knutson 2000). In the latest versions, DCSST, HadSST4.2
289 and COBE-SST3 correct for this bias, bringing the inter-basin warming rates into much closer
290 agreement with each other and with the expected warming pattern under greenhouse-gas forcing.
291 ERSSTv6 still exhibits a pronounced contrast between basins, similar to earlier ERSST releases.
292 Fig. 2d also shows differences in the overall magnitude of early-20th-century warming: DCSST
293 estimates (~0.1°C per decade) fall within the CMIP6 range whereas HadSST4.2 and COBE-SST3
294 values (~0.2°C per decade) remain on the warm end of the model distribution and exceed observed
295 contemporary land warming (Sippel et al. 2024).

296 In general, incorporating adjustments for newly identified artifacts in data production has been
297 gradual. Yet, recent versions generally apply more complete corrections, are more internally
298 consistent, and better agree with CMIP simulations.

299 *b. Gridding and Infilling*

300 The different choices in the reconstruction of gridded products, including resolution and infilling,
301 are important to consider for specific applications. When studying historical events with sparse
302 observations, spatial infilling and smoothing can make analyses more convenient, but the resulting
303 fields are highly dependent on the assumptions used to generate complete fields. Taking the 1877
304 El Niño as an example, only a few ship tracks crossing the equator exist in the Pacific basin as
305 shown in the non-infilled product HadSST4.2 (Fig. 3a₁). Infilled products using isotropic, homo-
306 geneous covariance structures, e.g., Berkeley Earth surface temperature ¹ (Rohde and Hausfather
307 2020), produce patterns consistent with their round kernels (Fig. 3b). By contrast, state-of-the-
308 art approaches, including anisotropic kernels (DCSST-I, Fig. 3a₂), AI-based methods (ERSST6,
309 Fig. 3a₃), and EOF-based reconstructions (HadISST1, Fig. 3a₄; COBE-SST3, Fig. 3a₅), yield more
310 coherent El Niño structures resembling the canonical pattern seen in the satellite era. Fine-scaled
311 structure still differs between products as the fields are only tightly constrained by observations

¹Note that the Berkeley product SST is an infilled version of HadSST4.0 and is shown here to illustrate this effect. As a combined land-sea dataset, it is not used elsewhere in this SST-focused review.

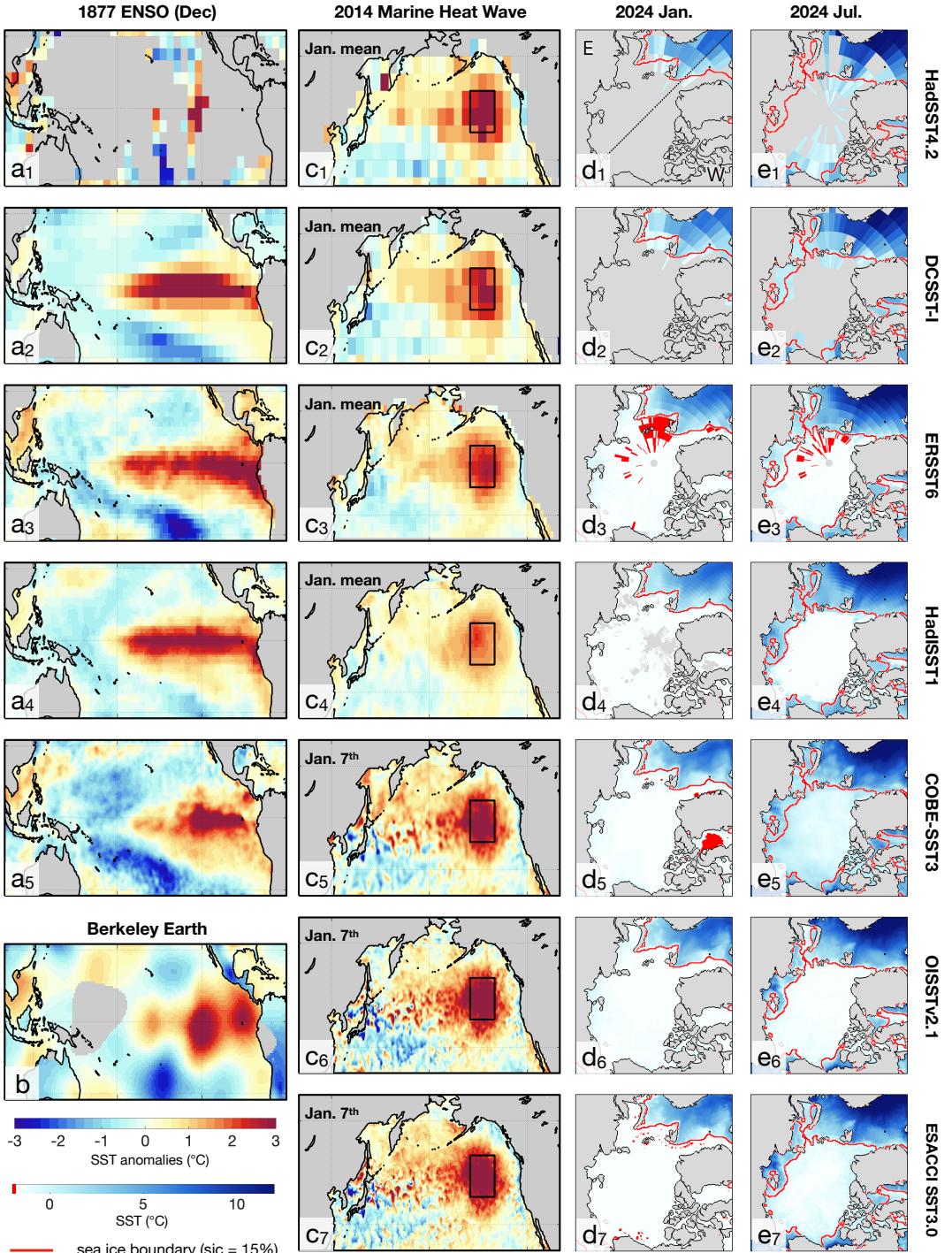


FIG. 3: Comparison of spatial patterns. Column (a) shows December 1877 SST anomalies relative to the 1982–2014 December climatology. Rows (top to bottom) show HadSST4.2, DCSST-I, ERSST6, and HadISST1, and COBE-SST3. (b) as (a) but for the Berkeley Earth surface temperature. Column (c) shows January 2014 SST anomalies relative to the January climatology over the same period, highlighting the marine heatwave termed "the Blob" in the North Pacific for datasets as in (a) but also including OISST and ESA CCI SSTv3. For datasets with daily resolution (COBE-SST3, OISSTv2.1, and ESA CCI SSTv3), the maps correspond to January 7, 2014, when the event peaked. The black box ($140\text{--}155^{\circ}\text{W}$, $38\text{--}50^{\circ}\text{N}$) marks the region used to calculate the intensity of this event. Columns (d) and (e) show actual SSTs over the Arctic in January and July 2024, respectively. Red curves mark the sea-ice edge ($\geq 15\%$ sea-ice concentration, Cavalieri et al. 2011), gray areas indicate missing values, and red regions denote SSTs below the -1.8°C freezing point. In panel d₁, the diagonal dashed line marks the 0° and 180° meridians. The Eastern and Western Hemispheres are labeled "E" and "W," respectively.

312 near to where they exist. For example, the positive anomaly extends further west in DCSST-I and
313 ERSST6 than in COBE-SST3, contributing to the structural uncertainty across the datasets.

314 For contemporary extreme events such as marine heatwaves, data availability is not the limiting
315 factor. Rather, the requirement is to resolve fine spatial and temporal scales. Taking the North
316 Pacific “Blob” of January 2014 as an example, all products — including the non-infilled monthly
317 5° HadSST4.2 — show a similar warm anomaly centered near 145°W, 45°N (Fig. 3c). However,
318 monthly fields blur the peak intensity evident in daily analyses. Over a box spanning 140–155°W,
319 38–50°N (black box in Fig. 3c), the mean SST anomaly in January is 2.5°C in DCSST-I, 2.4°C in
320 ERSST6, 2.9°C in HadSST4.2, and only 1.7°C in HadISST1, whereas on the peak date (January
321 7) in daily products the corresponding values are usually higher (3.0°C for COBE-SST3, and
322 3.1°C for OISSTv2.1 and ESA CCI SST). The daily high-resolution fields in Fig. 3 also reveal
323 eddy-scale variability and fine filaments, which may be important for understanding the evolution
324 and mechanisms of such events and their ecosystem impacts (Bian et al. 2023).

325 Another example of reconstruction differences arises in polar regions, where the open ocean
326 meets sea ice. Due to sparse *in situ* coverage in polar regions, some products (e.g., DCSST-I) omit
327 SST values in grid cells with no open ocean values (Chan et al. 2026). Others, such as the COBE-
328 SST family, use observationally-derived sea-ice concentration (SIC) with an empirical SIC–SST
329 relationship that anchors SST to a spatially varying freezing point under high SIC (Hirahara et al.
330 2014). Satellite products such as OISST (Huang et al. 2021) and ESA CCI SST (Embry et al.
331 2024) adopt similar concepts, using product-specific freezing-point constraints in ice-covered grid
332 cells.

333 Fig. 3d compares absolute Arctic SSTs in January 2024. Infilled products broadly follow the ob-
334 served ice edge, though ERSST6 and COBE-SST3 exhibit below freezing point temperatures within
335 ice-covered regions. Such behavior may not matter for climate analyses where sea-ice-covered
336 regions are masked. However, in AMIP simulations, the atmospheric model sees a weighted aver-
337 age of water and sea ice boundary conditions within each atmospheric grid cell. Hence, physically
338 incompatible SST and SIC fields should be used with caution for such applications. Arctic sum-
339 mertime SST estimates in July 2024 diverge even more (Fig. 3e) in both open-ocean regions such
340 as the Laptev–East Siberian Sea (at left of panels) and areas with partial ice cover, indicating that

341 model runs using summertime boundary conditions could be especially sensitive to dataset choice
342 in sea-ice-affected regions.

343 *c. Climate indicators of variability and change*

344 Beyond grid-level maps, widely used climate indicators such as global warming levels, regional
345 trends, and metrics of climate variability, could depend strongly on the choice of SST products.
346 Here, we examine several such indicators to demonstrate this sensitivity.

347 Estimates of long-term trends in the global mean SST (60°S–60°N) remain sensitive to product-
348 specific treatments of nineteenth- and early-20th-century biases (Fig. 4a, sections 2a and 3a); yet
349 excluding legacy datasets only narrows the estimated 2019–2023 warming level, relative to the
350 1850–1900 baseline, from 0.7–1.0 to 0.8–1.0°C. There is also evidence that the ERSST family,
351 which features pronounced cooling over 1850–1910 (Fig. 2a), is likely too warm in the late
352 nineteenth century (Sippel et al. 2024; Chan et al. 2025), providing scope for further narrowing of
353 the observational range.

354 During the well-sampled satellite era, observational products are expected to agree more closely.
355 Yet, when comparing legacy and modern datasets, Menemenlis et al. (2025) found a wide spread
356 in the 1982–2024 warming trend, reproduced here (Fig. 4b). Restricting this comparison to state-
357 of-the-art products tightens the range among central estimates from 0.39–0.63 to 0.49–0.63°C per
358 decade. Within this group, DCSST, ERSST6, COBE-SST3, and ESA CCI SST cluster near 0.51°C
359 per decade, with HadSST4.2 being slightly higher at 0.56°C per decade. NOAA’s daily OISSTv2.1
360 is the clear remaining outlier (0.63°C per decade), perhaps due to its fixed 0.14°C ship-to-buoy
361 correction from 1981–2015. Hence, the observational spread in satellite-era SST warming is
362 narrower than previous comparisons that included legacy datasets.

363 On regional scales, an important indicator is the Equatorial Pacific zonal SST gradient which
364 influences circulation, cloud, albedo, and climate sensitivity (Kang et al. 2023). Model–data
365 discrepancies in the sign of the satellite-era trend in this index have been widely noted (e.g.,
366 Lee et al. 2022) and the large influence of internal variability on trends over short time periods
367 motivates examination of century-long trends. Over 1900–2010, CMIP6 models simulate an
368 west-minus-east trend difference of –0.54 to 0.20°C per century (95%*c.i.*), which, on average,
369 weakens the gradient. However, legacy products such as HadISST1, HadSST2, and COBE-SST2

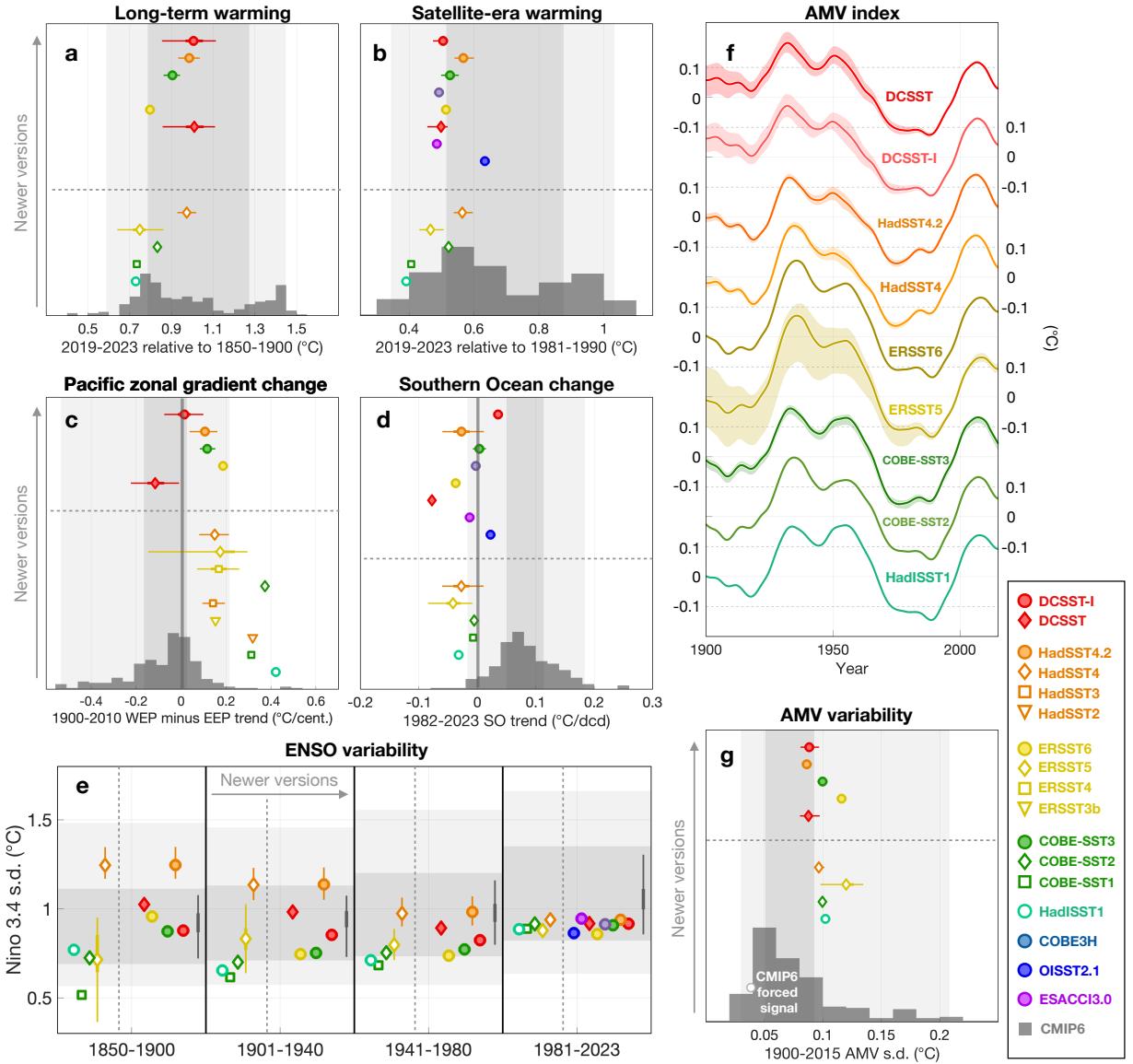


FIG. 4: Comparison of key climate indices. (a) Mean SST (60°S – 60°N) for 2019–2023 relative to the 1850–1900 baseline. Layout follows Fig. 2b and the dashed lines separate the legacy products from the most recent versions. Only products extending to 2023 are included. Error bars are shown where visible; in some cases they are smaller than the symbol size. (b) As in (a), but relative to the 1981–1990 mean; satellite products are also shown. (c) As in (a), but showing the 1900–2010 linear trend in Tropical Pacific zonal temperature gradient, defined as the difference between the west (5°S – 5°N , 120°E – 170°E) and the east (5°S – 5°N , 150°W – 80°W). All products covering 1900 to 2010 are shown; the zero line is also highlighted. (d) As in (c), but for the 1982–2023 linear trend of SSTs over the Southern Ocean (50°S – 70°S). (e) Standard deviation of monthly mean SST anomalies in the Niño 3.4 region (5°S – 5°N , 170°W – 120°W), computed after removing the seasonal cycle and linear trend, for four periods: 1850–1900, 1901–1940, 1941–1980, and 1981–2023. Products are sorted by publication year in the direction indicated by gray arrows. Dark and light shading show the interquartile and 95% confidence intervals across CMIP6 simulations. Gray bars in (e) indicate the spread after removing each model’s period mean, emphasizing internal variability (offset from zero for visualization purposes only). (f) Twenty-year smoothed monthly AMV index for recently-updated century-long products. Series are vertically offset for clarity. (g) Standard deviation of the smoothed AMV index in (f). The white dot marks the s.d. of the multi-model mean, indicating the amplitude of the forced signal.

370 suggests enhanced gradient (positive trends) falling outside the simulated range (Fig. 4c). Newer
371 SST versions indicate relatively weakened gradient than earlier releases; although observational
372 estimates still suggest at most a near-neutral trend, they now fall within the CMIP6 spread. Despite
373 better agreement in the west-minus-east trend difference in newer products, spatial patterns of
374 trends still differ (Fig. S1), underscoring the need to further understand how bias adjustments and
375 infilling choices affect observational estimates, as well as how model structure and configuration
376 shape simulated trends.

377 Average Southern Ocean SST is another key regional indicator, relevant to Antarctic sea-ice
378 melt (Dong et al. 2022) and heat uptake (Gregory et al. 2024). CMIP6 models generally suggest
379 warming (-0.02 to 0.18°C per decade) over 1982–2023, but observational products show trends
380 closer to zero (Fig. 4d). Spatial patterns also differ across products, particularly in the magnitude
381 and extent of the cooling band (Fig. S2). Given the sparse *in situ* sampling in this region, satellite-
382 based products are likely the most reliable for recent Southern Ocean assessments, which further
383 suggests that models may be warming too strongly in recent years.

384 It is also informative to consider modes of climate variability, particularly ENSO. During the
385 satellite era, observational products consistently show Niño-3.4 variability of 0.85 – 0.95°C (1
386 s.d.), well within the CMIP6 spread (Fig. 4e). Earlier in the record, however, observational
387 estimates diverge to a greater spread than model internal variability after removing model-specific
388 biases. This divergence could arise from increased sampling and measurement uncertainty, as
389 well as structural differences in interpolation methods. Combined with the intrinsic difficulty
390 of estimating ENSO variance reliably from 30–50-year windows (Wittenberg 2009; Deser et al.
391 2012), these factors suggest that current SST datasets are unlikely to provide a reliable estimate of
392 long-term changes in ENSO variability.

393 Finally, decadal modes of variability such as Atlantic Multidecadal Variability, show broad
394 consistency in phase among products (Fig. 4f), but differ slightly in amplitude (Fig. 4g). These
395 amplitude differences are mainly family-specific and vary little across versions within a family.
396 Compared with CMIP6 models, observational amplitudes tend to lie on the higher end of the model
397 spread, though they remain within the range sampled by individual simulation members.

398 Overall, state-of-the-art SST datasets now show better agreement with each other than their
399 predecessors across a range of metrics. Differences are larger in long-term trends and in data-

400 sparse regions, but they generally agree on global warming levels and major variability modes over
401 the satellite era. State-of-the-art SST datasets also suggest better agreement with known physical
402 process as presented in CMIP6 simulations. This improving agreement suggests that some model-
403 observation discrepancies in the literature reflect now-resolved data limitations. Together, these
404 results underscore the importance of being aware of how SST datasets have evolved and adopting
405 up-to-date, well-documented releases matched to the intended analysis.

406 4. How to Choose

407 a. *Principles underpinning dataset choice and usage*

408 We have shown that careful dataset choice is crucial for high quality and robust analyses. With
409 that in mind, there are practical considerations that may restrict dataset choice. These include
410 the length of record, whether fields are spatially complete, spatial and temporal resolution, the
411 availability and type of uncertainty estimates, and the immediacy of updates to include the most
412 recent data. All datasets are free to use for research, but some have restrictions for other purposes
413 such as commercial use that need to be checked and adhered to. The **web-based selector tool**
414 (similar to Figure 1) enables users to quickly view, subset, and access candidate datasets suitable
415 for specific applications. When several products exist, results will be more robust if all are used.

416 Typical dataset choices by application include:

- 417 • **Climate monitoring:** compare non-infilled and infilled datasets at monthly or higher resolution.
- 419 • **AMIP forcing:** use infilled datasets at monthly or higher resolution.
- 420 • **Attribution or model–data comparisons:** use ensemble datasets (either infilled or non-
421 infilled) with uncertainty estimates. For non-infilled products, apply the same observational
422 coverage mask to the model output to ensure a fair comparison.
- 423 • **Western boundary currents, mesoscale eddy signatures, marine heatwaves:** use infilled
424 high-resolution datasets (daily, finer than $1^\circ \times 1^\circ$).
- 425 • **Paleo proxy calibration:** use long records without known issues during the calibration period,
426 and compare non-infilled and infilled products for consistency.

427 Once candidates are thinned by practical considerations, it is necessary to assess data quality.

428 The analysis presented in section 3 shows the importance of choosing the most recent dataset

429 versions in any family. Typically, older, deprecated products should be used only alongside their
430 updated counterparts to aid interpretation of past analyses.

431 Moreover, even the most recent releases can retain period- or region-specific issues, as described
432 in section 2a and their impacts shown in section 3. If a dataset has known problems that could
433 affect the analysis, it should be excluded. However, if removing such datasets results in too few
434 candidates for a robust assessment, they should be used with caution, provided their limitations are
435 clearly acknowledged in the interpretation.

436 Another useful strategy to discriminate among SST products is to evaluate physical consistency
437 with other quantities such as air temperature, sea-level pressure, precipitation, and cloudiness
438 (Deser et al. 2010). Yet, this requires understanding how the datasets are constructed and the
439 assumptions involved. For example, ERSST family’s bias adjustment assumes a relatively stable
440 difference between SST and nighttime marine air temperatures (Smith and Reynolds 2002); so
441 agreement with those temperatures is not independent support. Similarly, DCSST is adjusted to
442 be dynamically consistent with its land counterpart DCLSAT (Chan et al. 2023, 2024a). Another
443 often neglected assumption concerns the spatial covariance embedded in infilling. When records,
444 especially in data-sparse periods, are infilled by projecting onto prescribed EOF patterns, sub-
445 sequent EOF analyses will largely recover the imposed covariance structure, rather than reveal
446 additional information about the underlying variability.

447 In addition to checking robustness across qualified datasets, results should also be tested against
448 the estimated uncertainty within each product. This can be done by perturbing the data using the
449 product’s uncertainty estimates or by analyzing the ensemble. If practical constraints require using
450 only a subset of an ensemble — such as when running high-resolution AMIP experiments (Chan
451 et al. 2021) — it is important to understand how the ensemble was constructed so the subset still
452 represents the intended uncertainty. In HadSST4, for example, the first and second sets of 100
453 members use different approaches to adjust early SST measurements Kennedy et al. (2019), so
454 drawing members from both sub-sets provides a more representative sample.

455 Finally, follow the data-citation instructions provided by journals, which typically require citing
456 both the dataset and its associated publication, and any additional information requested by dataset
457 producers. Accurate citation does more than acknowledge the source: it helps dataset providers
458 secure support for ongoing maintenance and understand how their products are being used, allowing

459 the datasets to evolve in ways aligned with scientific needs. In turn, this benefits users by increasing
460 the likelihood that high-quality, regularly updated SST datasets remain available.

461 *b. Where to find more detailed information and updated advice*

462 This paper provides a broad overview of how SST datasets have evolved and their suit-
463 ability for different climate applications. By design, it cannot cover the full details of in-
464 dividual products and will freeze at the time of publication. To support users beyond this
465 snapshot synthesis, we additionally provide a set of NSF NCAR Climate Data Guide pages
466 (<https://climatedataguide.ucar.edu/>, Schneider et al. 2013) that extend guidance in two
467 complementary ways.

468 First, dataset-specific pages provide summary information on dataset construction, strengths, and
469 known limitations, more detailed than this synthesis. Written by the developers or expert users and
470 reviewed by leading climate scientists, these resources, accessible through the web-based selector
471 tool, help users efficiently evaluate whether any features or issues are critical for their intended
472 analysis. Once candidate datasets have been identified, there is no substitute for a deep dive into
473 the linked dataset papers and product user guides for more detailed usage notes and guidance.

474 Second, an SST overview page will be updated to provide an evolving summary of the SST
475 dataset and evaluation landscape. By tracking newly released updates, methodological advances,
476 and emerging developments, this page helps ensure that choice and usage guidance remains accurate
477 and relevant as new and improved datasets become available.

478 *c. Anticipated improvements in SST datasets*

479 **Better input data and metadata:** ongoing efforts to rescue historical data (Teleti et al. 2024) and
480 metadata (Carella et al. 2017) are essential for extending coverage and clarifying bias structures in
481 the early record. Meanwhile, modern data infrastructure is needed to ensure that both rescued and
482 contemporary observations and metadata flow efficiently and transparently into permanent archives
483 and SST dataset production — a gap that currently prevents many recovered measurements from
484 being fully used. For satellite-era products, fundamental work on the calibration of early sensors
485 and SST retrieval methods will also reduce uncertainty and improve stability in the 1980s and
486 1990s particularly.

487 **Better coverage and finer resolution:** Advances in infilling methodology, including AI ap-
488 proaches, together with increased computational capacity will support higher spatial and temporal
489 resolution, with at least 1° monthly as a baseline and finer daily or sub-daily products where obser-
490 vations permit. As these developments progress, the hard boundaries between datasets designed
491 for different purposes are likely to soften, as already seen in COBE-SST3. Feature resolution of
492 satellite-era products pre-2000 should benefit from efforts (via international co-operation spear-
493 headed by ESA, <https://ceos.org/news/avhrr-data-recovery/>) to consolidate full-resolution data from
494 early sensors. These higher resolution observations have not been exploited in global SST analyses
495 before, and provide an opportunity for better understanding changes in ecologically-important shelf
496 sea regions.

497 **Better bias adjustments:** Beyond the pervasive global- and basin-scale biases discussed in section
498 2a, progress will require pushing bias estimation further toward ship-specific and hence regional
499 scales, to be enabled by improved metadata such as ship tracking and advanced physical and
500 statistical models. Meanwhile, broader evaluation using independent sources will be essential
501 for assessing and refining bias adjustments. Improved methods are also emerging to improve
502 observational stability in satellite SST records, by extending retrieval methods to be “bias aware”
503 (Merchant et al. 2020b) and by harmonizing irradiance between satellite platforms prior to retrieval
504 of SST.

505 **Better structural uncertainty estimates:** As discussed in section 2c, the current practice of esti-
506 mating structural uncertainty from an ad hoc ensemble of SST datasets is limited. As understanding
507 of data artifacts improves, clearly inconsistent products are recommended to be excluded from cer-
508 tain analyses. This strengthens confidence in the analysis and metrics of interest, but also narrows
509 the ensemble and reduces its potential to span the full space of uncertainties that arise across the
510 entire SST production workflow. A more complete characterization will require decomposing that
511 workflow into its major components — input selection, quality control, bias adjustment, gridding,
512 and infilling — and sampling alternative methods and parameter choices within each step. Such
513 a modular approach would help dataset providers explore the widest range of reasonable choices
514 across each component and ensure that all known errors and uncertainties are accounted for and fed
515 through to the infilling schemes. This approach would also lower the barrier for new contributions
516 as novel approaches could be developed for a single component. For satellite datasets, which

517 are constructed from many trillions of radiance measurements, modular exploration of structural
518 uncertainty is challenging in terms of scale and expense because of the large volume, and the
519 community continues to focus on metrological approaches to exposing, quantifying and correcting
520 effects leading to uncertainty in SST products (Mittaz et al. 2019).

521 **User-friendly access and data formats:** *In situ* SST datasets are currently dispersed across data
522 centers, which complicates comparison and analysis. Moving toward common conventions for both
523 input observations and products, CMIP-style access protocols, regridding and subsetting services
524 such as surftemp.net and cloud-native formats (for example, zarr) will further lower these barriers
525 and support more scalable, interoperable use of SST products. For satellite SSTs, products have
526 long been standardized in format, provided with tools, and catalogued through cooperative efforts
527 of the GHRSST international science team <https://www.ghrsst.org/>.

528 **Faster-paced innovation:** Delivering the improvements outlined above will require open, stan-
529 dardized, flexible, and streamlined systems that span data intake, processing, and distribution. Such
530 infrastructure would better connect data producers and users, broaden participation in development
531 and evaluation, and ultimately enable users to move from passive recipients of SST products to
532 active participants in improving both the data and the science derived from them.

533 5. Final words

534 This paper has shown how careful choice of SST datasets is essential for robust research. Over
535 time, SST datasets have improved in quality, and their estimates of important measures of variability
536 have become more consistent. Characterization of dataset uncertainty has also improved, enabling
537 users to understand the sensitivity of their results to uncertainty within each dataset as well as
538 between a selection of different datasets. A number of important indicators, including recent and
539 centennial global trends and the Tropical Pacific trend contrast, show that the most recent SST
540 dataset versions align more closely with one another and with the latest generation of climate
541 models, compared with legacy products. Observational constraints on future projected surface
542 temperature changes are therefore more robust when using state-of-the-art datasets than might be
543 inferred from the use of legacy products.

544 These considerations can be summarized in a set of practical steps to support effective SST
545 dataset selection and use:

546 1. **Use the data-selection tool to identify datasets appropriate for the intended application,**
547 taking into account record length, residual biases, spatial and temporal resolution, com-
548 pleteness, uncertainty information, update latency, and specific usage restrictions (e.g., for
549 commercial use).

550 2. **Use this paper and NSF NCAR Climate Data Guide pages to evaluate these candidates,**
551 gaining an understanding of their construction, strengths, and known limitations.

552 3. **Draw on the peer-reviewed dataset literature for the shortlisted products,** including user
553 guides and methodological papers, to identify issues that may be relevant for the specific
554 scientific question.

555 4. **Wherever possible, analyze the entire uncertainty ensemble and more than one suitable**
556 **dataset,** so that conclusions can be assessed for robustness to parametric and structural
557 uncertainty.

558 5. **Finally, cite all datasets in accordance with journal and producer guidelines,** including
559 both the dataset and its associated publications, which supports not only transparent scientific
560 reuse but also continued maintenance and improvements.

561 Taken together, these practices help ensure that present-day analyses make the best possible
562 use of available SST datasets. At the same time, continued progress in observational coverage,
563 data and metadata rescue, understanding of bias and uncertainty, and infrastructure capability will
564 enable increasingly rapid cycles of improvement. As these advances accelerate, the coexistence
565 of multiple approaches, each making different methodological choices, will help to better quantify
566 structural uncertainty, supporting a more robust understanding of past climate change as well as
567 improved constraints on future projections.

568 *Acknowledgments.* D.C. was supported by a UKRI Future Leaders Fellowship (UKRI2360).
569 E.K. and R.C. were supported by UKRI/NERC via grant NE/Y005589/1. C.D. and N.L. were
570 supported by the National Center for Atmospheric Research (NCAR), which is sponsored by the
571 National Science Foundation under Cooperative Agreement 1852977. C.J.M. was supported by
572 UKRI/NERC via the National Centre for Earth Observation, grant NE/RO16518/1. C.S. was
573 supported by the Met Office Hadley Centre Climate Programme, funded by DSIT. P.H. was
574 supported by NSF Grant 2123295. G.G. was supported by U.S. NSF OCE-2122805.

575 *Data availability statement.* All datasets and model output used in this paper are in the public
576 domain and citation and access information summarized in Table 1.

577 **Supplementary Figures**

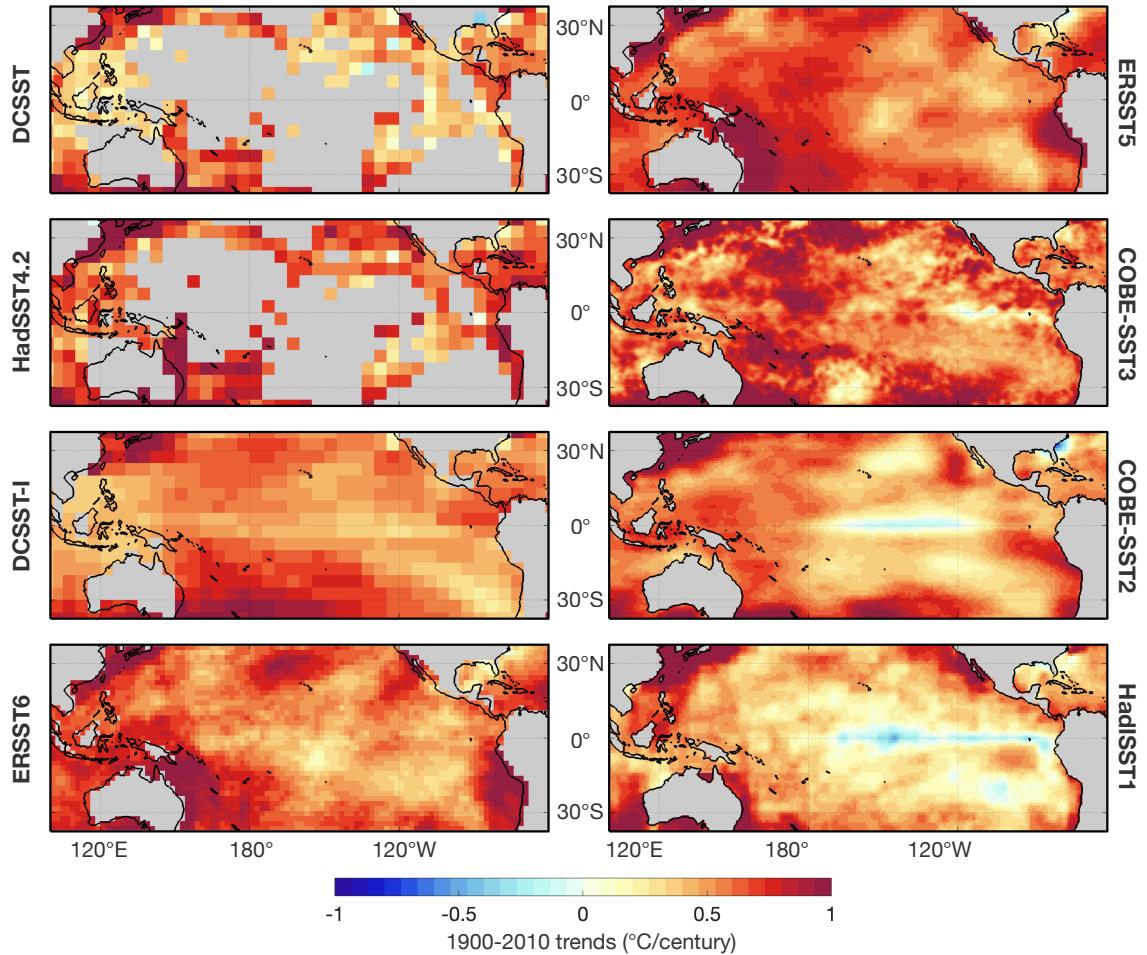


FIG. S1: **Patterns of 1900–2010 SST trends over the Tropical Pacific.** From top to bottom and left to right, the datasets shown are DCSST, HadSST4.2, DCSST-I, ERSST6, ERSST5, COBE-SST3, COBE-SST2, and HadISST1. For the non-infilled datasets (DCSST and HadSST4.2), a grid cell is considered to have a valid trend if it contains at least three valid years in each decade from the 1900s to the 2000s, where a valid year is defined as having at least three months of data.

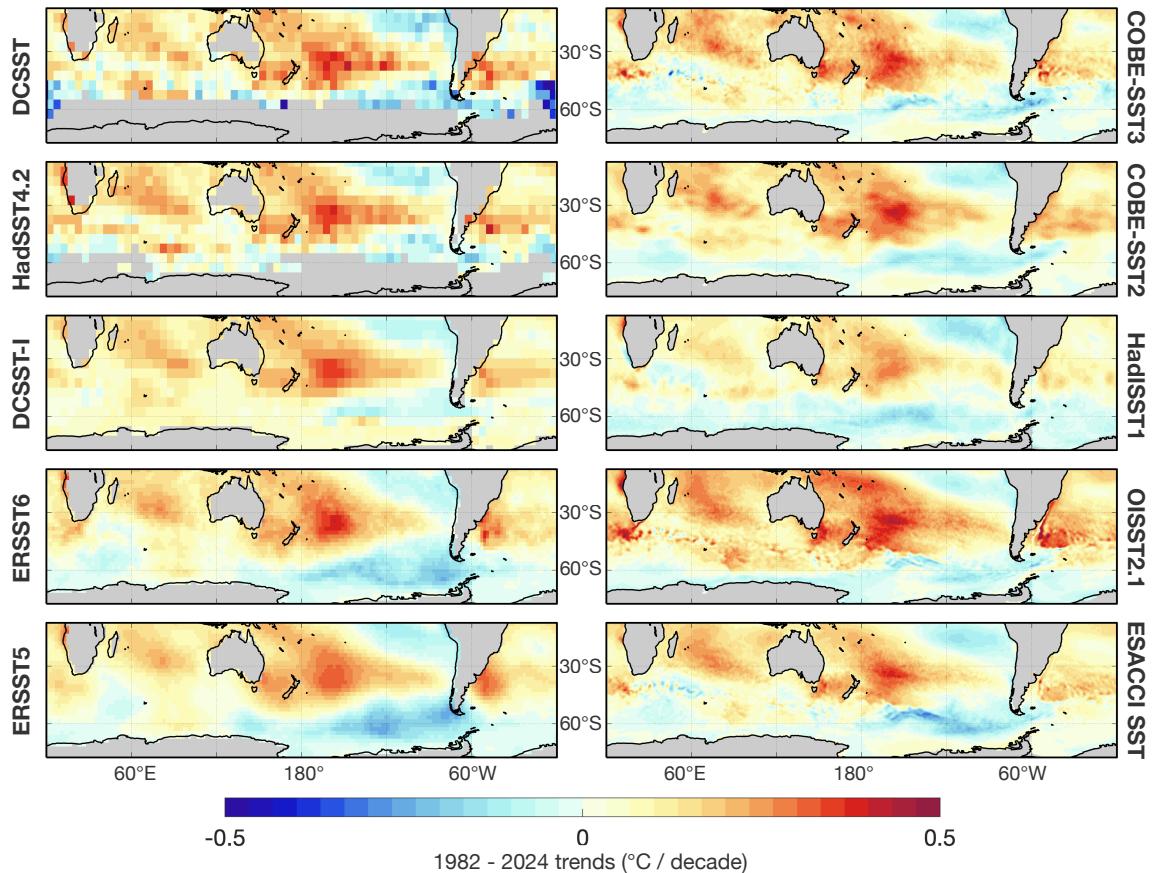


FIG. S2: **Patterns of 1982-2024 SST trends over the Southern Ocean.** From top to bottom and left to right, the datasets shown are DCSST, HadSST4.2, DCSST-I, ERSST6, ERSST5, COBE-SST3, COBE-SST2, HADISST1, OISSTv2.1, and ESA CCI SST3. Similar to Fig. S1, for the non-infilled datasets (DCSST and HadSST4.2), a grid cell is considered to have a valid trend if it contains at least three valid years in each decade from the 1980s to the 2010s, where a valid year is defined as having at least three months of data.

578 **References**

579 Abernathey, R. P., and Coauthors, 2021: Cloud-native repositories for big scientific data. *Computing in Science & Engineering*, **23** (2), 26–35.

580

581 Beadling, R. L., and Coauthors, 2026: Observational data for next generation climate model
582 evaluation: Requirements, considerations, and best practices. *BAMS (under review)*.

583

584 Bian, C., Z. Jing, H. Wang, L. Wu, Z. Chen, B. Gan, and H. Yang, 2023: Oceanic mesoscale eddies
585 as crucial drivers of global marine heatwaves. *Nature Communications*, **14** (1), 2970.

586

587 Bottomley, M., C. Folland, J. Hsiung, R. Newell, and D. Parker, 1990: Global ocean surface
588 temperature atlas (GOSTA). *Meteorological Office, Bracknell, UK*.

589

590 Brasnett, B., 2008: The impact of satellite retrievals in a global sea-surface-temperature analysis.
591 *Quarterly Journal of the Royal Meteorological Society*, **134** (636), 1745–1760.

592

593 Carella, G., E. C. Kent, and D. I. Berry, 2017: A probabilistic approach to ship voyage reconstruc-
594 tion in ICOADS. *International Journal of Climatology*, **37** (5), 2233–2247.

595

596 Cavalieri, D. J., C. L. Parkinson, N. DiGirolamo, and A. Ivanoff, 2011: Intersensor calibration
597 between F13 SSMI and F17 SSMIS for global sea ice data records. *IEEE Geoscience and Remote
598 Sensing Letters*, **9** (2), 233–236.

599

600 Chan, D., S. C. Chan, J. T. Siddons, A. Cable, R. C. Cornes, E. C. Kent, G. Gebbie, and P. Huybers,
601 2026: DCENT-I: A globally infilled extension of the Dynamically Consistent ENsemble of
602 Temperature dataset. *Geoscience Data Journal*, **In press**.

603

604 Chan, D., G. Gebbie, and P. Huybers, 2023: Global and regional discrepancies between early 20th
605 century coastal air and sea-surface temperature detected by a coupled energy-balance analysis.
606 *Journal of Climate*, **36** (7), 2205–2220.

607

608 Chan, D., G. Gebbie, and P. Huybers, 2025: Re-evaluating historical sea surface temperature
609 data sets: Insights from the diurnal cycle, coral proxy data, and radiative forcing. *Geophysical
610 Research Letters*, **52** (13), e2025GL116615.

611

603 Chan, D., G. Gebbie, P. Huybers, and E. C. Kent, 2024a: A Dynamically Consistent ENsemble of
604 Temperature at the Earth surface since 1850 from the DCENT dataset. *Scientific Data*, **11** (1),
605 953.

606 Chan, D., and P. Huybers, 2019: Systematic differences in bucket sea surface temperature measure-
607 ments among nations identified using a linear-mixed-effect method. *Journal of Climate*, **32** (9),
608 2569–2589.

609 Chan, D., and P. Huybers, 2021: Correcting observational biases in sea surface temperature
610 observations removes anomalous warmth during World War II. *Journal of Climate*, **34** (11),
611 4585–4602.

612 Chan, D., E. C. Kent, D. I. Berry, and P. Huybers, 2019: Correcting datasets leads to more
613 homogeneous early-twentieth-century sea surface warming. *Nature*, **571** (7765), 393.

614 Chan, D., G. A. Vecchi, W. Yang, and P. Huybers, 2021: Improved simulation of 19th-and 20th-
615 century North Atlantic hurricane frequency after correcting historical sea surface temperatures.
616 *Science Advances*, **7** (26), eabg6931.

617 Chin, T. M., J. Vazquez-Cuervo, and E. M. Armstrong, 2017: A multi-scale high-resolution
618 analysis of global sea surface temperature. *Remote sensing of environment*, **200**, 154–169.

619 Delworth, T. L., and T. R. Knutson, 2000: Simulation of early 20th century global warming.
620 *Science*, **287** (5461), 2246–2250.

621 Deser, C., A. S. Phillips, and M. A. Alexander, 2010: Twentieth century tropical sea surface
622 temperature trends revisited. *Geophysical Research Letters*, **37** (10).

623 Deser, C., and Coauthors, 2012: ENSO and Pacific decadal variability in the Community Climate
624 System Model version 4. *Journal of Climate*, **25** (8), 2622–2651.

625 Dong, Y., A. G. Pauling, S. Sadai, and K. C. Armour, 2022: Antarctic ice-sheet meltwater reduces
626 transient warming and climate sensitivity through the sea-surface temperature pattern effect.
627 *Geophysical Research Letters*, **49** (24), e2022GL101 249.

628 Embury, O., and C. J. Merchant, 2012: A reprocessing for climate of sea surface temperature from
629 the along-track scanning radiometers: A new retrieval scheme. *Remote Sensing of Environment*,
630 **116**, 47–61, doi:10.1016/j.rse.2010.11.020, URL <http://dx.doi.org/10.1016/j.rse.2010.11.020>.

631 Embury, O., and Coauthors, 2024: Satellite-based time-series of sea-surface temperature since
632 1980 for climate applications. *Scientific Data*, **11** (1), 326.

633 Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016:
634 Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design
635 and organization. *Geoscientific Model Development*, **9** (5), 1937–1958.

636 Eyring, V., and Coauthors, 2023: *Human influence on the climate system, Chapter 3 in Climate
637 Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth
638 Assessment Report of the Intergovernmental Panel on Climate Change* [Masson-Delmotte, V., P.
639 Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M.
640 Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu,
641 and B. Zhou (eds.)], 423–552. Cambridge University Press, doi:10.1017/9781009157896.005.

642 Fiedler, E. K., and Coauthors, 2019: Intercomparison of long-term sea surface temperature analyses
643 using the GHRSST Multi-Product Ensemble (GMPE) system. *Remote Sensing of Environment*,
644 **222**, 18–33, doi:10.1016/j.rse.2018.12.015, URL <http://dx.doi.org/10.1016/j.rse.2018.12.015>.

645 Folland, C., and D. Parker, 1995: Correction of instrumental biases in historical sea surface
646 temperature data. *Quarterly Journal of the Royal Meteorological Society*, **121** (522), 319–367.

647 Folland, C. K., D. Parker, and F. Kates, 1984: Worldwide marine temperature fluctuations 1856–
648 1981. *Nature*, **310** (5979), 670–673.

649 Freeman, E., and Coauthors, 2017: ICOADS Release 3.0: a major update to the historical marine
650 climate record. *International Journal of Climatology*, **37** (5), 2211–2232.

651 Gregory, J. M., and Coauthors, 2024: A new conceptual model of global ocean heat uptake.
652 *Climate Dynamics*, **62** (3), 1669–1713.

653 Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. *Quarterly Journal of the Royal
654 Meteorological Society*, **146** (730), 1999–2049, doi:10.1002/qj.3803, URL <http://dx.doi.org/10.1002/qj.3803>.

656 Hirahara, S., M. Ishii, and Y. Fukuda, 2014: Centennial-scale sea surface temperature analysis and
657 its uncertainty. *Journal of Climate*, **27** (1), 57–75.

658 Huang, B., C. Liu, V. Banzon, E. Freeman, G. Graham, B. Hankins, T. Smith, and H.-M. Zhang,
659 2021: Improvements of the daily optimum interpolation sea surface temperature (doisst) version
660 2.1. *Journal of Climate*, **34** (8), 2923–2939.

661 Huang, B., and Coauthors, 2015: Extended reconstructed sea surface temperature version 4
662 (ERSST. v4). Part I: Upgrades and intercomparisons. *Journal of Climate*, **28** (3), 911–930.

663 Huang, B., and Coauthors, 2017: Extended reconstructed sea surface temperature, version 5
664 (ERSSTv5): upgrades, validations, and intercomparisons. *Journal of Climate*, **30** (20), 8179–
665 8205.

666 Huang, B., and Coauthors, 2025: Extended reconstructed sea surface temperature, version 6
667 (ERSSTv6). part I: an artificial neural network approach. *Journal of Climate*, **38** (4), 1105–1121.

668 Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature
669 and sea ice boundary dataset for the community atmosphere model. *Journal of Climate*, **21** (19),
670 5145–5153, doi:10.1175/2008jcli2292.1, URL <http://dx.doi.org/10.1175/2008JCLI2292.1>.

671 Ishii, M., A. Nishimura, S. Yasui, and S. Hirahara, 2025: Historical high-resolution daily SST
672 analysis (COBE-SST3) with consistency to monthly land surface air temperature. *Journal of the*
673 *Meteorological Society of Japan. Ser. II*, **103** (1), 17–44.

674 Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of sea-surface
675 temperature and marine meteorological variables for the 20th century using ICOADS and the
676 Kobe collection. *International Journal of Climatology*, **25** (7), 865–879.

677 Jones, P. D., T. M. Wigley, and P. B. Wright, 1986: Global temperature variations between 1861
678 and 1984. *Nature*, **322** (6078), 430–434.

679 Kang, S. M., Y. Shin, H. Kim, S.-P. Xie, and S. Hu, 2023: Disentangling the mechanisms of
680 equatorial pacific climate change. *Science Advances*, **9** (19), eadf5059.

681 Kaplan, A., M. A. Cane, Y. Kushnir, A. C. Clement, M. B. Blumenthal, and B. Rajagopalan,
682 1998: Analyses of global sea surface temperature 1856–1991. *Journal of Geophysical Research: Oceans*, **103** (C9), 18 567–18 589.

684 Kaplan, A., Y. Kushnir, M. A. Cane, and M. B. Blumenthal, 1997: Reduced space optimal analysis
685 for historical data sets: 136 years of Atlantic sea surface temperatures. *Journal of Geophysical Research: Oceans*, **102** (C13), 27 835–27 860.

687 Karl, T. R., and Coauthors, 2015: Possible artifacts of data biases in the recent global surface
688 warming hiatus. *Science*, **348** (6242), 1469–1472.

689 Kennedy, J., N. Rayner, C. Atkinson, and R. Killick, 2019: An Ensemble Data Set of Sea Surface
690 Temperature Change From 1850: The Met Office Hadley Centre HadSST. 4.0.0.0 Data Set.
691 *Journal of Geophysical Research: Atmospheres*, **124** (14), 7719–7763.

692 Kennedy, J., N. Rayner, R. Smith, D. Parker, and M. Saunby, 2011a: Reassessing biases and other
693 uncertainties in sea surface temperature observations measured in situ since 1850: 1. measurement
694 and sampling uncertainties. *Journal of Geophysical Research: Atmospheres*, **116** (D14).

695 Kennedy, J., N. Rayner, R. Smith, D. Parker, and M. Saunby, 2011b: Reassessing biases and other
696 uncertainties in sea surface temperature observations measured in situ since 1850: 2. biases and
697 homogenization. *Journal of Geophysical Research: Atmospheres*, **116** (D14).

698 Kennedy, J. J., 2014: A review of uncertainty in in situ measurements and data sets of sea surface
699 temperature. *Reviews of Geophysics*, **52** (1), 1–32.

700 Kent, E. C., and J. J. Kennedy, 2021: Historical estimates of surface marine temperatures. *Annual Review of Marine Science*, **13**, 283–311.

702 Kent, E. C., N. A. Rayner, D. I. Berry, M. Saunby, B. I. Moat, J. J. Kennedy, and D. E. Parker, 2013:
703 Global analysis of night marine air temperature and its uncertainty since 1880: The HadNMAT2
704 data set. *Journal of Geophysical Research: Atmospheres*, **118** (3), 1281–1298.

705 Kent, E. C., and P. K. Taylor, 2006: Toward estimating climatic trends in SST. Part I: Methods of
706 measurement. *Journal of Atmospheric and Oceanic Technology*, **23** (3), 464–475.

707 Knight, J. R., C. K. Folland, and A. A. Scaife, 2006: Climate impacts of the Atlantic multidecadal
708 oscillation. *Geophysical Research Letters*, **33** (17).

709 Kosaka, Y., and Coauthors, 2024: The JRA-3Q Reanalysis. *Journal of the Meteorological Society*
710 *of Japan. Ser. II*, **102** (1), 49–109, doi:10.2151/jmsj.2024-004, URL <http://dx.doi.org/10.2151/jmsj.2024-004>.

712 Lee, S., M. L'Heureux, A. T. Wittenberg, R. Seager, P. A. O'Gorman, and N. C. John-
713 son, 2022: On the future zonal contrasts of equatorial Pacific climate: Perspectives from
714 observations, simulations, and theories. *npj Climate and Atmospheric Science*, **5** (1), doi:
715 10.1038/s41612-022-00301-2, URL <http://dx.doi.org/10.1038/s41612-022-00301-2>.

716 McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in earth
717 science. *Science*, **314** (5806), 1740–1745.

718 Menemenlis, S., G. A. Vecchi, W. Yang, and Coauthors, 2025: Consequential differences in
719 satellite-era sea surface temperature trends across datasets. *Nature Climate Change*, **15**, 897–
720 903, doi:10.1038/s41558-025-02362-6, URL <https://doi.org/10.1038/s41558-025-02362-6>.

721 Merchant, C., P. Le Borgne, A. Marsouin, and H. Roquet, 2008a: Optimal estimation of sea
722 surface temperature from split-window observations. *Remote Sensing of Environment*, **112** (5),
723 2469–2484, doi:10.1016/j.rse.2007.11.011, URL <http://dx.doi.org/10.1016/j.rse.2007.11.011>.

724 Merchant, C., and Coauthors, 2008b: Deriving a sea surface temperature record suitable for climate
725 change research from the along-track scanning radiometers. *Advances in Space Research*, **41** (1),
726 1–11.

727 Merchant, C. J., A. R. Harris, M. J. Murray, and A. M. Závody, 1999: Toward the elimination
728 of bias in satellite retrievals of sea surface temperature: 1. theory, modeling and interalgorithm
729 comparison. *Journal of Geophysical Research: Oceans*, **104** (C10), 23 565–23 578, doi:10.
730 1029/1999jc900105, URL <http://dx.doi.org/10.1029/1999JC900105>.

731 Merchant, C. J., S. Saux-Picart, and J. Waller, 2020a: Bias correction and covariance parameters
732 for optimal estimation by exploiting matched in-situ references. *Remote Sensing of Environ-
733 ment*, **237**, 111 590, doi:10.1016/j.rse.2019.111590, URL <http://dx.doi.org/10.1016/j.rse.2019.111590>.

735 Merchant, C. J., S. Saux-Picart, and J. Waller, 2020b: Bias correction and covariance parameters
736 for optimal estimation by exploiting matched in-situ references. *Remote Sensing of Environment*,
737 **237**, 111 590.

738 Mittaz, J., C. J. Merchant, and E. R. Woolliams, 2019: Applying principles of metrology to
739 historical earth observations from satellites. *Metrologia*, **56** (3), 032 002.

740 Oliver, E. C., J. A. Benthuysen, S. Darmaraki, M. G. Donat, A. J. Hobday, N. J. Holbrook, R. W.
741 Schlegel, and A. Sen Gupta, 2021: Marine heatwaves. *Annual Review of Marine Science*, **13** (1),
742 313–342.

743 Rayner, N., P. Brohan, D. Parker, C. Folland, J. Kennedy, M. Vanicek, T. Ansell, and S. Tett, 2006:
744 Improved analyses of changes and uncertainties in sea surface temperature measured in situ since
745 the mid-nineteenth century: the HadSST2 dataset. *Journal of Climate*, **19** (3), 446–469.

746 Rayner, N., D. E. Parker, E. Horton, C. Folland, L. Alexander, D. Rowell, E. Kent, and A. Kaplan,
747 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature
748 since the late nineteenth century. *Journal of Geophysical Research: Atmospheres*, **108** (D14).

749 Reynolds, R. W., 1993: Impact of Mount Pinatubo aerosols on satellite-derived sea surface
750 temperatures. *Journal of Climate*, **6** (4), 768–774.

751 Reynolds, R. W., D. B. Chelton, J. Roberts-Jones, M. J. Martin, D. Menemenlis, and C. J.
752 Merchant, 2013: Objective determination of feature resolution in two sea surface temperature
753 analyses. *Journal of Climate*, **26** (8), 2514–2533, doi:10.1175/jcli-d-12-00787.1, URL <http://dx.doi.org/10.1175/JCLI-D-12-00787.1>.

755 Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in
756 situ and satellite SST analysis for climate. *Journal of Climate*, **15** (13), 1609–1625.

757 Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007:
758 Daily high-resolution-blended analyses for sea surface temperature. *Journal of Climate*, **20** (22),
759 5473–5496.

760 Rohde, R. A., and Z. Hausfather, 2020: The Berkeley Earth land/ocean temperature record. *Earth*
761 *System Science Data*, **12** (4), 3469–3479.

762 Sandford, C., and N. Rayner, in review: Addressing the World War 2 Warm Anomaly in
763 HadSST.4.2.0.0 . *In review for International Journal of Climatology*.

764 Schneider, D. P., C. Deser, J. Fasullo, and K. E. Trenberth, 2013: Climate data guide spurs discovery
765 and understanding. *Eos, Transactions American Geophysical Union*, **94** (13), 121–122.

766 Sherwood, S. C., and Coauthors, 2020: An assessment of Earth’s climate sensitivity using multiple
767 lines of evidence. *Reviews of Geophysics*, **58** (4), e2019RG000678.

768 Sippel, S., and Coauthors, 2024: Early-twentieth-century cold bias in ocean surface temperature
769 observations. *Nature*, **635** (8039), 618–624.

770 Smith, T. M., R. E. Livezey, and S. S. Shen, 1998: An improved method for analyzing sparse
771 and irregularly distributed SST data on a regular grid: The tropical Pacific Ocean. *Journal of
772 Climate*, **11** (7), 1717–1729.

773 Smith, T. M., and R. W. Reynolds, 2002: Bias corrections for historical sea surface temperatures
774 based on marine air temperatures. *Journal of Climate*, **15** (1), 73–87.

775 Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s
776 historical merged land–ocean surface temperature analysis (1880–2006). *Journal of Climate*,
777 **21** (10), 2283–2296.

778 Teleti, P., E. Hawkins, and K. R. Wood, 2024: Digitizing weather observations from World War II
779 US naval ship logbooks. *Geoscience Data Journal*, **11** (3), 314–329.

780 Thompson, D. W., J. J. Kennedy, J. M. Wallace, and P. D. Jones, 2008: A large discontinuity in
781 the mid-twentieth century in observed global-mean surface temperature. *Nature*, **453** (7195),
782 646–649.

783 Thorne, P. W., D. E. Parker, J. R. Christy, and C. A. Mears, 2005: Uncertainties in climate trends:
784 Lessons from upper-air temperature records. *Bulletin of the American Meteorological Society*,
785 **86** (10), 1437–1442.

786 Trenberth, K. E., and D. J. Shea, 2006: Atlantic hurricanes and natural variability in 2005.
787 *Geophysical Research Letters*, **33** (12).

788 Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? *Geo-*
789 *physical Research Letters*, **36** (12).

790 Worsfold, M., S. Good, C. Atkinson, and O. Embury, 2024: Presenting a long-term, reprocessed
791 dataset of global sea surface temperature produced using the OSTIA system. *Remote Sensing*,
792 **16** (18), 3358.

793 Yang, C., and Coauthors, 2021: Sea surface temperature intercomparison in the framework of
794 the Copernicus Climate Change Service (C3S). *Journal of Climate*, **34** (13), 5257–5283, doi:
795 10.1175/jcli-d-20-0793.1, URL <http://dx.doi.org/10.1175/JCLI-D-20-0793.1>.