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Abstract 14 

Internal variability creates a range of climate trajectories, which are superimposed upon the forced 15 

response. A single model realization may not represent forced climate change alone and may diverge 16 

from observations due to internal variability. We use an initial-condition large ensemble of simulations 17 

with the Community Earth System Model (CESM2) to show that internal variability produces a range of 18 

outcomes in the terrestrial carbon cycle. Trends in gross primary production (GPP) from 1991–2020 19 

differ among ensemble members due to disparate temporal sequences in temperature, precipitation, 20 

and other physical drivers. We develop a method to quantify internal variability and apply it to the 21 

observational record. Observed changes in GPP at two long-running eddy covariance flux towers are 22 

consistent with internal variability, challenging the understanding of forced changes in the carbon cycle 23 

at these locations. A probabilistic framework that accounts for internal variability is needed to interpret 24 

carbon cycle trends. 25 
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 26 

Introduction 27 

Climate change is evident in numerous disparate observations of the Earth system. The increase in 28 

atmospheric CO2 measured at Mauna Loa, Hawaii, since 1959 is one of the iconic records of global 29 

change1,2, as is the planetary warming seen in the time series of surface temperature measurements3,4,5 30 

and reflected in Arctic sea-ice loss6. Multidecadal changes in the biosphere, both greening and 31 

browning, are found in satellite-derived vegetation indices7,8,9. Further evidence for a changing 32 

biosphere is obtained from the worldwide network of eddy covariance flux towers, which measure 33 

energy, water, and CO2 exchange between the biosphere and atmosphere10,11,12. Analyses of flux tower 34 

measurements find temporal increases in terrestrial productivity at many locations13,14,15,16,17,18,19,20,21,22. 35 

The time period over which eddy covariance flux towers have operated is comparatively short, however, 36 

and the datasets typically span 10–20 years of data. Carbon cycle trends observed over 24 years at 37 

Harvard Forest (1992–2015) and 25 years at Howland Forest (1996–2020) are the longest analyses to 38 

date19,20. Although the trends have been interpreted in terms of changes in climate, CO2 concentration, 39 

and other forcings, the extent to which unforced variability in the climate system influences the trends is 40 

unknown. 41 

The chaotic behavior of the atmosphere and its coupling with the ocean generates unforced 42 

variability at timescales from several days to decades23,24,25,26. Unforced variability (also known as 43 

internal variability) is evident in climate simulations over the historical era and projections of future 44 

climate change over the twenty-first century. Small perturbations of the initial atmosphere and ocean 45 

states produce different climate trajectories over the simulation period due to internal variability that is 46 

largely unpredictable. Large ensembles (typically 30–100 members) performed with a single model, in 47 

which the ensemble members differ only in their initial conditions, quantify the range of outcomes due 48 
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to internal variability23,25,27,28,29. Each simulation is a unique expression of the random sequence of 49 

unforced variability, and each is equally plausible in its depiction of climate change.  50 

Internal variability is seen in the range among ensemble members in multidecadal temperature 51 

and precipitation trends at regional scales23–28,30,31,32. Internal variability is a large source of uncertainty 52 

in climate projections at regional spatial scales and decadal timescales26,28,33,34. Internal variability can 53 

mask anthropogenic influences on climate, seen in the concept of time of emergence of the forced 54 

signal35,36. The observational record, itself, is just one of many possible trajectories by which 55 

temperature and precipitation trends could have unfolded as a result of internal variability. Indeed, one 56 

can construct an observational large ensemble based on the general statistics of the single observed 57 

record32,37,38,39. 58 

Internal variability is evident in other components of the Earth system including sea ice40,41,42, 59 

snowmelt43,44, sea level rise45,46, and ocean biogeochemistry47,48,49. Less studied is the internal variability 60 

of the terrestrial carbon cycle. However, internal variability in temperature and precipitation can impart 61 

unforced variability in the terrestrial carbon cycle that can mask the forced signal50,51. 62 

Two analyses of annual gross primary production (GPP) at the Harvard Forest EMS eddy 63 

covariance flux tower (AmeriFlux US-Ha1; 42.5378°N, 72.1715°W) illustrate variability in GPP trends. 64 

Annual GPP increased over the period 1992–2004 at a rate of 36.3 g C m–2 yr–1 per year13. A longer time 65 

series that extends the observations to 2015 has a smaller annual trend equal to 23.3 g C m–2 yr–1 per 66 

year over the 24-year period19. One interpretation is that the post-2004 data evidence a change in the 67 

carbon cycle11. An alternative, but untested, interpretation is that the two trends differ as a result of 68 

internal variability. 69 

We use a 50-member initial-condition large ensemble for the Community Earth System Model 70 

version 2 (CESM2) driven with historical forcing for 1850–2014 and SSP3-7.0 forcing for 2015–2100 (ref. 71 

29) to examine how internal variability influences trends of annual GPP. We analyze the 30-year period 72 
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1991–2020. Thirty years is comparable to the longest observational records in the AmeriFlux network of 73 

eddy covariance flux towers12. We document the variability among ensemble members in GPP trends 74 

and show that the standard error of the linear regression trend obtained from the time series of a single 75 

ensemble member estimates the internal variability in trends across all 50 ensemble members. We 76 

apply this finding to estimate the internal variability of the AmeriFlux data for Harvard Forest over the 77 

period 1992–2020 (ref. 52) and calculate the probability of obtaining the different trends reported for 78 

1992–2004 and 1992–2015. We demonstrate that internal variability generates sampling differences 79 

over the two time periods consistent with the observed trends. We supplement this observational 80 

analysis with additional AmeriFlux data for Morgan-Monroe State Forest (US-MMS; 39.3232°N, 81 

86.4131°W) for 1999–2020 (ref. 53) and Howland Forest (US-Ho1; 45.2041°N, 68.7402°W) for 1996–82 

2020 (ref. 20). 83 

 84 

Results 85 

Simulated GPP trends 86 

Across much of North America, the CESM2 ensemble mean, which is indicative of the model’s response 87 

to anthropogenic emissions, has a statistically significant increase in annual GPP from 1991 to 2020 (Fig. 88 

1a). However, there is considerable variability among individual ensemble members. The ratio of the 89 

ensemble mean trend to the standard deviation of trends across ensemble members provides a 90 

measure of signal-to-noise (Fig. 1b). The forced signal (i.e., the ensemble mean) exceeds the noise (i.e., 91 

ensemble standard deviation) by a factor of four across portions of eastern Canada, Northeast US, and 92 

Southeast US. Elsewhere, the signal-to-noise ratio is less than two in Alaska and much of the contiguous 93 

US, and it is less than one in the Southwest extending into Mexico and in a broad region extending from 94 

the Canadian prairie to Midwest US. Two ensemble members with small and large continental mean 95 

trends illustrate the ensemble variability (Fig. 1c,d). Much of Canada has a statistically significant 96 
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positive GPP trend in both members, though the magnitude varies between members. In contrast, GPP 97 

trends across Alaska are small and not statistically significant in ensemble member 1281.015 but are 98 

large and significant in 1231.018. GPP trends are negative in portions of Midwest US extending into the 99 

Canadian prairie in 1281.015, but not in 1231.018. Supplementary Fig. 1 further highlights ensemble 100 

variability in trends for 18 members chosen at random. Large ensemble variability is evident in Alaska, 101 

Northwest Canada, and the US west of the Mississippi River, and not all members have a statistically 102 

significant GPP trend in these regions. 103 

 104 

 105 

Fig. 1. Trends in annual GPP for 1991–2020. (a) Mean trend for the 50-member ensemble obtained 106 

from the ensemble mean time series. The colored circles indicate the location of 8 grid cells analyzed in 107 



6 
 

Fig. 2 and Supplementary Fig. 2. (b) Signal-to-noise ratio defined as the ensemble mean trend (absolute 108 

value) divided by the standard deviation of trends across the 50 members. Also shown are trends for 109 

two members with small (c) and large (d) continental mean trends. Ensemble members 1281.015 and 110 

1231.018 are the members at the 3rd (6th percentile) and the 47th (94th percentile) ranks, respectively, 111 

based on continental mean trends. Stippling denotes statistical significance (n = 30 years; p ≤ 0.05) using 112 

the ensemble mean time series or the individual ensemble member time series. Trends are multiplied by 113 

10 to report the change in annual GPP per 10 years. 114 

 115 

Histograms of trends across the 50 ensemble members for individual grid cells illustrate the 116 

ensemble variability (Fig. 2). In the Northeast, all of the members have a statistically significant trend, 117 

but the 95% confidence interval ranges from 45 to 100 g C m–2 yr–1 per 10 years. Ensemble variability is 118 

larger at the Taiga location, where only half of the ensemble members (52%) have a statistically 119 

significant trend, and the 95% confidence interval is 12–109 g C m–2 yr–1 per 10 years. Only one-quarter 120 

(26%) of the members have a statistically significant trend at the Mid-Atlantic grid cell, where the trend 121 

varies from negative in two members to greater than 100 g C m–2 yr–1 per 10 years in two members. 122 

Only 10 ensemble members (20%) have a statistically significant trend at the Northern Plains grid cell, 123 

and the trend ranges from negative (8 members) to positive (2 members). Similar ensemble variability is 124 

seen at other locations (Supplementary Fig. 2).  125 

 126 
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 127 

Fig. 2. Histogram of annual GPP trends for 1991–2020 at four grid cells. Grid cells correspond to the 128 

location of core terrestrial sites for four domains in the National Ecological Observatory Network 129 

(NEON). See Fig. 1 for the location of the sites. Panels show (a) D01: Northeast, (b) D19: Taiga, (c) D02: 130 

Mid-Atlantic, and (d) D09: Northern Plains sites. The left axis is the frequency distribution for the n = 50 131 

ensemble members, and the black line is the cumulative distribution (right axis). Yellow shading shows 132 

members with a statistically significant trend (n = 30 years; p ≤ 0.05), and light blue shading shows non-133 

significant trends. The mean ± standard deviation and the percentage of members with a non-significant 134 

(n.s.) trend are provided in the upper left of each panel. Also shown is the 95% confidence interval (red 135 

circles) obtained as the range of trends (n = 48) after excluding the smallest and largest trends. 136 
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 137 

In British Columbia, eastern portions of Canada, Northeast US, and parts of Southeast US, more 138 

than 90% of the members have a statistically significant positive GPP trend (Fig. 3a). Other regions show 139 

large variability among ensemble members. In Alaska, the ensemble mean trend is statistically 140 

significant (Fig. 1a), but only about half of the members (40–60%) have a statistically significant trend 141 

across much of the region (Fig. 3a). A wide region of the interior continent has a significant positive 142 

trend in at least one but less than 10 (20%) of the members. The negative GPP trend in the Canadian 143 

prairie extending into Midwest US is statistically significant in only 10–30% of the members (Fig. 3b).  144 

 145 

 146 
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Fig. 3. Percentage of ensemble members with statistically significant trends in annual GPP for 1991–147 

2020. Percentages are given for (a) positive and (b) negative trends. Non-significant trends (n = 30 years; 148 

p > 0.05) are masked. 149 

 150 

The 95% confidence interval for annual GPP trends obtained directly from the 50-member 151 

ensemble shows a wide range of trends among members (Fig. 4a). The range exceeds 100 g C m–2 yr–1 152 

per 10 years across portions of Alaska, northern Canada, the Canadian prairie extending into Midwest 153 

US, the Mid-Atlantic region, and the Central Plains extending into Mexico. GPP trends range from 154 

negative to positive in some regions, most prominently in the Canadian prairie extending into Midwest 155 

US (Supplementary Fig. 3). 156 

The standard error of the linear regression trend (𝑠𝑏1, equation 3), which quantifies the 157 

interannual variability about the linear trend within a single ensemble member, is also an estimate of 158 

the variability in trends among ensemble members. That 𝑠𝑏1 samples internal variability has been shown 159 

previously for temperature and precipitation54, and a similar result pertains to GPP. The 95% confidence 160 

interval obtained using 𝑠𝑏1 for a single ensemble member (Fig. 4b) approximates the 95% confidence 161 

interval of the 50-member ensemble (Fig. 4a). This is also evident for other ensemble members 162 

(Supplementary Fig. 4). Differences between the two estimates are mostly within ± 25 g C m–2 yr–1 per 163 

10 years (Supplementary Fig. 5). A prominent exception is a region of Canada extending from the 164 

Northwest Territories into Saskatchewan, where the difference is larger. The magnitude of 𝑠𝑏1 varies 165 

among ensemble members. However, the statistical distribution of confidence intervals obtained from 166 

𝑠𝑏1 includes the 95% confidence interval of the 50-member ensemble. This is evident at the Northeast 167 

location, where all ensemble members have a statistically significant trend (Fig. 2a) and the variability 168 

among members in 𝑠𝑏1 (and therefore 95% confidence intervals) is small (Fig. 4c). Ensemble variability is 169 

larger at the Taiga location and only half of the ensemble members have a statistically significant trend 170 
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(Fig. 2b), but the 95% confidence intervals obtained from 𝑠𝑏1 still encompass that obtained from the 50-171 

member ensemble (Fig. 4d). Similar results are found at the other locations (Supplementary Fig. 6). 172 

 173 

 174 

 175 

Fig. 4. 95% confidence interval in annual GPP trends for 1991–2020. (a) The 95% confidence interval 176 

obtained directly from the 50-member ensemble. It is the range of trends (n = 48) after excluding the 177 

smallest and largest trends for each grid cell. (b) The 95% confidence interval obtained from the 178 

standard error of the regression trend (𝑠𝑏1). The confidence interval is 2 ∗ 2.048 ∗ 𝑠𝑏1, where 𝑡0.975,28 =179 

2.048  is the critical t-value for 𝑛 = 30 years of data. Shown is an ensemble member chosen at random. 180 

Stippling shows where the trend is statistically significant (n = 30 years; p ≤ 0.05). (c) Frequency 181 

distribution for the 50-member ensemble of the 95% confidence interval obtained from 𝑠𝑏1 at the grid 182 

cell corresponding to the D01: Northeast location. The confidence interval for each ensemble member is 183 
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calculated as in (b). The thick black line is the 95% confidence interval obtained directly from the 50-184 

member ensemble as in (a). (d) As in (c), but for D19: Taiga.  185 

 186 

Correlation of GPP with temperature and precipitation 187 

The CESM2 Large Ensemble also has internal variability in temperature and precipitation, which 188 

manifests in the GPP trends. Although all regions of North America have a statistically significant 189 

warming trend in the ensemble mean (i.e., the forced trend), the amount of warming varies across the 190 

50-member ensemble due to internal variability (Supplementary Fig. 7). Trends over the 30-year period 191 

1991–2020 are non-significant across Alaska and Northwest Canada in ensemble member 1301.013 but 192 

exceed 2°C warming across much of North America (and greater than 3°C in some regions) in ensemble 193 

member 1011.001. The signal-to-noise ratio exceeds two over much of North America. Annual 194 

precipitation increases in some regions of North America in the ensemble mean, but with considerable 195 

variability among ensemble members (Supplementary Fig. 8). Notably, precipitation in Southeast US, 196 

which increases significantly in the ensemble mean, decreases in some members and increases in 197 

others. The signal-to-noise ratio for precipitation is less than one over much of North America. 198 

The 30-year trends for GPP and temperature are positively correlated in seasonally cold climates and 199 

negatively correlated in the dry climates of the interior plains region (Fig. 5a). The GPP trends are 200 

positively correlated with precipitation trends across much of North America, with largest correlations in 201 

the interior region of the US (Fig. 5b). In this region, warm years tend to have low rainfall and vice versa 202 

(Fig. 5c). 203 

 204 
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 205 

 206 

Fig. 5. Correlation across the 50 ensemble members of the 30-year trends (1991–2020). (a) GPP and 207 

surface air temperature, (b) GPP and precipitation, and (c) temperature and precipitation. Stippling 208 

denotes statistically significant correlations (n = 50, p ≤ 0.05). 209 

 210 
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Internal variability of observed trends 211 

Annual GPP at the AmeriFlux Harvard Forest EMS eddy covariance flux tower (US-Ha1; 42.5378°N, 212 

72.1715°W) increased at a rate of 127.1 ± 41.3 g C m–2 yr–1 per 10 years for the period 1992–2020 (Fig. 213 

6a). The CESM2 Large Ensemble underestimates annual GPP at the grid cell corresponding to Harvard 214 

Forest over the 1992–2020 observational period (Fig. 6b). The trend across the 50 members is 73.0 ± 215 

14.1 g C m–2 yr–1 per 10 years (mean ± standard deviation), with a range of 48–114 g C m–2 yr–1 per 10 216 

years. Although the mean trend is less than the observations, the distribution of trends obtained from 217 

the ensemble falls within the observational uncertainty (Fig. 6c). However, the variability of CESM2 218 

trends (14.1 g C m–2 yr–1 per 10 years) is one-third the observed variability (41.3 g C m–2 yr–1 per 10 219 

years).  220 

 221 

 222 

Fig. 6. Observed and simulated annual gross primary production (GPP) at the AmeriFlux US-Ha1 223 

(Harvard Forest) flux tower. (a) Observed time series at Harvard Forest published by Urbankski et al. 224 

(ref. 13) for 1992–2004, Finzi et al. (ref. 19) for 1992–2015, and the AmeriFlux data (ref. 52) for 1992–225 

2020. The Urbanski et al. data are indistinguishable from the Finzi et al. data over the same time period. 226 

Shown are the linear regression slope ± standard error for the three datasets. See Supplementary Table 227 

1 for the data. (b) Simulated time series from the 50-member CESM2 Large Ensemble for the grid cell 228 

corresponding to the Harvard Forest tower location. The black line is the ensemble mean, the dark gray 229 
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shading shows ± one standard deviation across all ensemble members, and the light shading shows the 230 

ensemble range. Also shown are four ensemble members. The red line is the ensemble member with 231 

the largest trend, and the blue line is the ensemble member with the smallest trend. The dashed 232 

magenta and cyan lines are the ensemble members with high and low temporal correlation with the 233 

AmeriFlux data, respectively. (c) Statistical distribution of trends from the CESM2 Large Ensemble in 234 

comparison with the AmeriFlux data for 1992–2020. The model trends are normally distributed (mean ± 235 

standard deviation, 73.0 ± 14.1 g C m–2 yr–1 per 10 years).  Also shown is the trend estimated using the 236 

AmeriFlux data (127.1 ± 41.3 g C m–2 yr–1 per 10 years). 237 

 238 

Comparable analyses at Morgan-Monroe State Forest (US-MMS; 39.3232°N, 86.4131°W) show 239 

broad overlap between model and observed GPP trends (Fig. 7a), but not at Howland Forest (US-Ho1; 240 

45.2041°N, 68.7402°W) (Fig. 7b). At both locations, the variability of trends in the CESM2 Large 241 

Ensemble is comparable to the observed variability. 242 

 243 

 244 

Fig. 7. Observed and simulated annual GPP trends at two AmeriFlux sites. (a) Statistical distribution of 245 

trends at US-MMS (Morgan-Monroe State Forest) for 1999–2020. Trends from the CESM2 Large 246 

Ensemble are normally distributed (mean ± standard deviation, 11.6 ± 42.3 g C m–2 yr–1 per decade).  247 
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Also shown is the trend estimated using the AmeriFlux data (ref. 53). See Supplementary Table 2 for the 248 

data. (b) As in (a), but for US-Ho1 (Howland Forest) for 1996–2020 with observations from Hollinger et 249 

al. (ref. 20). See Supplementary Table 3 for the data. 250 

 251 

The Harvard Forest data show considerable variability in GPP trends depending on the time 252 

period sampled (Fig. 6a). Annual GPP increased over the period 1992–2004 at a rate of 362.1 ± 65.0 g C 253 

m–2 yr–1 per 10 years using data reported by Urbanski et al. (ref. 13). A subsequent dataset by Finzi et al. 254 

(ref. 19) that extends the observations to 2015 has a smaller trend for 1992–2015 (232.8 ± 46.9 g C m–2 255 

yr–1 per 10 years). We used Monte Carlo methods to determine the conditional probability of obtaining 256 

these two GPP trends given the long-term forced trend. We calculated the probability of obtaining a 257 

trend of 362.1 g C m–2 yr–1 per 10 years over the 13-year period 1992–2004 and a trend of 232.8 g C m–2 258 

yr–1 per 10 years over the 24-year period 1992–2015 if the long-term forced trend is 127.1 ± 41.3 g C m–2 259 

yr–1 per 10 years.  260 

Fig. 8a shows annual GPP from 1992 to 2004 in two time series that draw GPP for each year as a 261 

random deviate about the long-term forced trend. Both time series have a forced trend of 127.1 g C m–2 262 

yr–1 per 10 years, but annual GPP decreases by –143.7 g C m–2 yr–1 per 10 years in one time series and 263 

increases by 397.9 g C m–2 yr–1 per 10 years in the other. Fig. 8b shows the statistical distribution of 264 

trends obtained from Monte Carlo simulations with 100,000 randomly sampled time series. The mean 265 

(127.0 g C m–2 yr–1 per 10 years) is comparable to the forced trend, and the standard deviation is larger 266 

(138.2 vs. 41.3 g C m–2 yr–1 per 10 years) because of the smaller number of years sampled (see equation 267 

3). The 95% confidence interval spans –144 to 398 g C m–2 yr–1 per 10 years (the time series shown in Fig. 268 

8a are the 2.5 and 97.5 percentiles). The observed trend of 362.1 g C m–2 yr–1 per 10 years falls within 269 

the 95% confidence interval. There is a 4.4% chance of obtaining a trend equal to or greater than the 270 

observed trend if the forced trend is 127.1 g C m–2 yr–1 per 10 years. There is a 10% chance that the 271 
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trend equals or exceeds 304 g C m–2 yr–1 per 10 years and a 5% change of a value equal to or greater 272 

than 354 g C m–2 yr–1 per 10 years. With a longer time series spanning 1992–2015, the 95% confidence 273 

interval for trends is 20–235 g C m–2 yr–1 per 10 years (Fig. 8c). The observed trend of 232.8 g C m–2 yr–1 274 

per 10 years for this time period falls within the uncertainty range (Fig. 8d). There is a 2.7% chance of 275 

obtaining a trend equal to or greater than the observed trend. The 10% and 5% thresholds are 197 and 276 

217 g C m–2 yr–1 per 10 years, respectively. 277 

 278 

 279 

Fig. 8. Conditional probability of GPP trends at the AmeriFlux US-Ha1 (Harvard Forest) tower. (a) 280 

Annual GPP for 1992–2004 for two time series in which GPP for each year is chosen as a random deviate 281 
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about the 1992–2020 forced trend. The time series are the endpoints of the 95% confidence interval in 282 

the Monte Carlo simulations. The brown squares and dashed line show the 2.5th percentile, and the 283 

dark green open circles and solid line show the 97.5th percentile.  (b) Conditional probability distribution 284 

of trends. Shown is the cumulative distribution of trends for 1992–2004 obtained from 100,000 285 

randomly sampled time series. The trends are normally distributed with a mean and standard deviation 286 

of 127.0 ± 138.2 g C m–2 yr–1 per 10 years. The gray shading is the 95% confidence interval, and the two 287 

time series in panel (a) show the endpoints. The red line is the probability of a trend greater than that 288 

observed for 1992–2004. Dashed lines show the values for which there is a 20% (orange line), 10% 289 

(green line), and 5% (blue line) chance of a greater trend. (c)–(d) Same as (a) and (b), but for 1992–2015. 290 

 291 

Annual GPP observations at Morgan-Monroe also show variability in trend estimates. Dragoni et 292 

al. (ref. 14) found that carbon storage increased over the 10-year period 1999–2008. Our analysis of the 293 

AmeriFlux dataset for Morgan-Monroe (ref. 53) finds that annual GPP increased by 208.7 ± 89.9 g C m–2 294 

yr–1 per 10 years during 1999–2008, decreasing to 43.0 ± 35.3 g C m–2 yr–1 per 10 years for the full 22-295 

year time series spanning 1999–2020 (Fig. 9a). Monte Carlo analysis similar to those at Harvard Forest 296 

show that a forced trend of 43.0 ± 35.3 g C m–2 yr–1 per 10 years has a 95% confidence interval of –184 297 

to 270 g C m–2 yr–1 per 10 years when sampled over the 10-year period 1999–2008 (Fig. 9b). The 298 

observed trend for 1999–2008 falls within the 95% uncertainty range. There is a 7.6% chance of 299 

obtaining a trend equal to or greater than the observed trend if the forced trend is 43.0 g C m–2 yr–1 per 300 

10 years. There is a 10% chance that the trend exceeds 191 g C m–2 yr–1 per 10 years and a 5% chance of 301 

a value greater than 233 g C m–2 yr–1 per 10 years. 302 

 303 
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 304 

Fig. 9. Annual GPP trends at the AmeriFlux US-MMS (Morgan-Monroe State Forest) tower. (a) The full 305 

1999–2020 AmeriFlux time series (ref. 53). Open circles show the years 1999–2008 and closed circles 306 

extend the dataset to 2020. Shown are the linear regression (dashed lines) with the regression slope ± 307 

standard error for the two time periods. See Supplementary Table 2 for the data. (b) Conditional 308 

probability distribution of trends. Shown is the cumulative distribution of trends for 1999–2008 309 

obtained with Monte Carlo methods using a forced trend of 43.0 ± 35.3 g C m–2 yr–1 per 10 years. The 310 

trends are normally distributed with a mean and standard deviation of 42.9 ± 115.9 g C m–2 yr–1 per 10 311 

years. The gray shading is the 95% confidence interval. The red line is the probability of a trend greater 312 

than that observed for 1999–2008. Dashed lines show the values for which there is a 20% (orange line), 313 

10% (green line), and 5% (blue line) chance of a greater trend. 314 

 315 

Discussion 316 

Our analysis of the 50-member CESM2 Large Ensemble shows that internal variability creates ambiguity 317 

in the magnitude and sign of GPP trends when only a single model realization is analyzed. The ensemble 318 

mean, however, reflects the forced response. The key inference pertains to how to interpret carbon 319 

cycle trends, both in model simulations and in observations.  320 
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Internal variability necessitates caution when comparing a single model realization to the 321 

observational record. At the model grid cell corresponding to Harvard Forest, the ensemble average GPP 322 

trend over 1992–2020 is 73 g C m–2 yr–1 per 10 years and the range across ensemble members is 48–114 323 

g C m–2 yr–1 per 10 years (Fig. 6c). A single realization at the low end of the distribution would lead to a 324 

conclusion that the model is biased low compared with the observed trend of 127 g C m–2 yr–1 per 10 325 

years, whereas a simulation at the high end would suggest closer fidelity to the observations. In fact, the 326 

distribution of trends across the 50-member ensemble broadly overlaps with the observed trend and its 327 

uncertainty. Similar ambiguity arises in comparison with observations at Morgan-Monroe State Forest 328 

(Fig. 7a). The ensemble mean trend (12 g C m–2 yr–1 per 10 years) suggests the model is biased low 329 

compared with the observations (43 g C m–2 yr–1 per 10 years), but the statistical distribution of trends 330 

from the large ensemble broadly encompasses the observed trend. Conversely, the high bias at Howland 331 

Forest is robust across all ensemble members, and we can confidently conclude the model fails to 332 

capture the observed decline in GPP (Fig. 7b). 333 

CESM2 can, in some locations, produce a large positive GPP trend, no trend, and even a negative 334 

trend depending on the sequence of internal variability, which is superimposed on the forced response 335 

(Fig. 1, Supplementary Fig. 1). Improving the component land model’s process parameterizations or 336 

adjusting parameters so that a single realization better matches observations risks overfitting, with 337 

consequent spurious performance in another realization. Likewise, land models are commonly 338 

evaluated in uncoupled simulations forced with meteorological observations55,56, but alternative 339 

reconstructions of historical meteorology, which can be thought of as samples of observational 340 

uncertainty, produce different carbon cycle trends57,58. A probabilistic comparison of model simulations 341 

and observations is needed, with the goal of identifying whether a model is plausible rather than 342 

singularly right or wrong26. 343 
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Internal variability also complicates interpretation of the observational record. Harvard Forest is 344 

an aggrading forest that is accumulating carbon as it recovers from past agricultural land use, hurricane 345 

damage, and wood harvesting13,19. Warmer temperature, a longer growing season, and greater 346 

precipitation have contributed to increased productivity between 1992 and 2015 (ref. 19). Our analysis 347 

does not dispute this understanding of the carbon cycle at Harvard Forest. Rather, we simply interpret 348 

the changing carbon cycle in the context of internal variability superimposed upon a forced climate 349 

response to anthropogenic emissions. Care needs to be taken in attributing the changing carbon cycle to 350 

forced climate change, as indeed is evident in analysis of trends in the physical climate system59. The 351 

conclusion that forest productivity has increased at Harvard Forest is robust, but the magnitude is 352 

uncertain and is influenced by internal variability. Our results show that the large GPP trends for 1992–353 

2004 and 1992–2015 (Fig. 6a) are a manifestation of internal variability and are consistent with a smaller 354 

long-term forced trend (Fig. 8b,d). Likewise, there is a long-term positive trend in carbon accumulation 355 

at Morgan-Monroe, which can be attributed in part to longer growing seasons12,14, but which was 356 

reduced by severe drought in 2012 (ref. 60). Within this long-term trend, internal variability generates 357 

random variability, seen, for example, in a wide range of positive and negative GPP trends (Fig. 7a). The 358 

large positive trend found for 1999–2008 is consistent with a much smaller long-term forced trend (Fig. 359 

9b). 360 

The observational record of GPP is one sample from a distribution of possible trajectories. The 361 

standard error of the regression trend (𝑠𝑏1) provides an estimate of internal variability for temperature 362 

and precipitation54, and similarly for GPP (Fig. 4). Still unknown, however, is whether the observed trend 363 

at Harvard Forest and Morgan-Monroe is a central estimate for the forced response or if it is more 364 

representative of end-members of the statistical distribution of trends. Our calculations of conditional 365 

probabilities are predicated on the long-term observations as representative of the forced response (Fig. 366 

8, Fig. 9). Other more advanced statistical techniques are available to estimate the observational 367 
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internal variability for temperature and precipitation37,38,39. Similar methods have been used to create an 368 

observational ensemble of ocean chlorophyll, for which internal variability creates a wide range of 369 

possible trends49.  Whether the same methods can be applied to create an observational ensemble for 370 

the terrestrial carbon cycle is unclear. Nonetheless, our results demonstrate a need to emphasize the 371 

standard error, not just the trend, as a key metric of carbon cycle uncertainty. 372 

Interannual variability is one way in which internal variability manifests in the observational 373 

record. Interannual variability allows for empirical analysis of carbon cycle responses to temperature 374 

and precipitation anomalies, which provides a key constraint on carbon–climate feedbacks10,61,62. Our 375 

study provides further evidence of the importance of interannual variability for analyzing the carbon 376 

cycle. The interannual variability about the forced anthropogenic trend in GPP is a measure of the 377 

magnitude of internal variability. CESM2 underestimates interannual variability in GPP compared with 378 

observations63,64, meaning that the importance of internal variability for Earth system model simulations 379 

of the terrestrial carbon cycle may be greater than that identified in our study. Our analyses provide 380 

qualified findings as to whether CESM2 adequately samples the observational internal variability. The 381 

ensemble spread in GPP trends is one-third the observational uncertainty at Harvard Forest (Fig. 6c), but 382 

comparable to the observations at Morgan-Monroe and Howland Forest (Fig. 7). Greater effort must be 383 

given to quantifying the internal variability of the terrestrial carbon cycle in Earth system models and in 384 

estimating the internal variability of the observational record. 385 

The large range in simulated land carbon cycle trends in response to anthropogenic climate 386 

change, and the failure to reduce the spread across model generations, has led to focused efforts to 387 

reduce model uncertainty65,66. Internal variability in air temperature and precipitation trends has been 388 

interpreted as irreducible uncertainty in climate projections because of the limited memory in the 389 

atmosphere and surface ocean23,25,26,67. Similar internal variability, and consequently irreducible 390 

uncertainty, occurs in the terrestrial carbon cycle. Further studies are needed to quantify the internal 391 
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variability of the carbon cycle in both models and observations; to develop the necessary probabilistic 392 

framework to understand the changing carbon cycle; and to guide efforts to reduce model uncertainty.  393 

 394 

Methods 395 

CESM2 Large Ensemble 396 

We analyzed 50 members of the CESM2 Large Ensemble that differ only in initial conditions29. The 397 

simulations extend over the period 1850–2100 using historical forcings (1850–2014) and SSP3-7.0 CMIP6 398 

forcings (2015–2100). We used the BB_CMIP6_SM simulations (ensemble members 51–100), in which 399 

the prescribed biomass burning emissions were temporally smoothed over the years 1990–2020. The 400 

smoothing corrects a discontinuity in the magnitude of interannual variability of the biomass burning 401 

emissions used in ensemble members 1–50 that produces spurious warming in northern high 402 

latitudes29,68,69.  CESM2 has a nominal 1° horizontal resolution with active atmosphere, ocean, sea ice, 403 

and land component models. The model was initialized from particular years of a preindustrial control 404 

simulation and with macro- and micro-perturbations to the initial conditions. The 10-member macro-405 

initializations started from years 1011, 1031, 1051, 1071, 1091, 1111, 1131, 1151, 1171, and 1191. Four 406 

sets of 10-member micro-initializations started from years 1231, 1251, 1281, and 1301. Ten members 407 

were run for each micro-initialization start year in which spread among the 10 members was generated 408 

by a small random perturbation to the atmosphere temperature field at initialization. The start years for 409 

the micro-initializations were chosen to sample different states of the Atlantic Meridional Overturning 410 

Circulation (AMOC). Rodgers et al. (ref. 29) provide further details of the model configuration, 411 

initialization, and forcings. Evaluation of the terrestrial carbon cycle can be found elsewhere55. 412 

We analyzed the period 1991–2020 to discern trends in annual gross primary production (GPP), 413 

surface air temperature, and precipitation for each ensemble member. Memory of initial conditions is 414 

minimal at this time period in that the different initializations in 1850 generate similar ensemble 415 
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variability of GPP trends (Supplementary Fig. 9). Similar to studies of climate trends23–26,59, we estimated 416 

the trend as the linear fit to the 1991–2020 time series using ordinary least squares regression. 417 

Statistical significance was determined by regression slopes with p ≤ 0.05 (n = 30 years).  We further 418 

analyzed the statistical distribution of GPP trends across the 50-member ensemble at individual model 419 

grid cells corresponding to the location of core terrestrial sites in the National Ecological Observatory 420 

Network51. 421 

We quantified the effect of internal variability on the GPP trends using two metrics. The 422 

standard deviation of trends across the 50-member ensemble is a direct measure of ensemble 423 

variability. The standard error of the regression trend obtained for a single ensemble member, which 424 

depends on the interannual variability about the trend, also estimates interval variability, as shown 425 

previously for temperature and precipitation54. We likewise used the model simulations to assess 426 

whether the standard error of the trend obtained from the regression analysis provides an estimate of 427 

the internal variability in GPP trends. We compared the standard error of the trend (and the 95% 428 

confidence interval for the trend) obtained from individual ensemble members with the actual 429 

distribution of trends across the n = 50 ensemble members. 430 

 431 

Observational data 432 

We estimated the internal variability in the observational record using long-term annual GPP data 433 

obtained from eddy covariance flux towers in the AmeriFlux database. We analyzed GPP at the 434 

AmeriFlux US-Ha1 Harvard Forest EMS tower (42.5378°N, 72.1715°W) for the 29-year period 1992–2020 435 

(Supplementary Table 1). We used the AmeriFlux FLUXNET data product52, which was processed using 436 

the ONEFlux processing codes70 to derive GPP from the measured net ecosystem exchange (NEE). The 437 

processing includes friction velocity (ustar) threshold filtering, gap-filling of flux variables, and 438 

partitioning of NEE into GPP and ecosystem respiration. We used the GPP_NT_VUT_REF estimate, 439 
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calculated with nighttime flux partitioning (NT) of NEE to obtain GPP with variable ustar threshold (VUT) 440 

and using the most representative NEE after filtering with multiple ustar thresholds (REF). The product 441 

compares well to annual GPP data published by Finzi et al. (ref. 19) for 1992–2015 (Supplementary Fig. 442 

10). 443 

We fit a linear regression to the AmeriFlux data (1992–2020) to estimate the long-term annual 444 

trend: 445 

𝑥𝑖 = 𝑏0 + 𝑏1 ∗ 𝑡𝑖          (1) 446 

where 𝑥𝑖  is annual GPP (g C m–2 yr–1 ) and 𝑡𝑖  is year (1992, 1993, …, 2020). The fitted regression for the n 447 

= 29 year time series is:  𝑏0= –23954.19 g C m–2 yr–1, 𝑏1= 12.71 g C m–2 yr–2, F = 9.44, p = 0.0048, and R2 = 448 

0.259. The standard deviation of the residuals is: 449 

𝑠𝑒 = √
1

𝑛−2
∑ (𝑥𝑖 − 𝑥̂𝑖)2𝑛

𝑖=1 = 186.3 g C m–2 yr–1       (2) 450 

where 𝑥̂𝑖  is the predicted GPP for year 𝑖 using equation (1). The standard error of 𝑏1 is: 451 

𝑠𝑏1 =  𝑠𝑒 / √∑ (𝑡𝑖 − 𝑡)2𝑛
𝑖=1  =   𝑠𝑒 / √(𝑛3 − 𝑛)/12     (3) 452 

The right-most equation for 𝑠𝑏1 is the form given by Thompson et al. (ref. 54) when time (𝑡𝑖) is 453 

expressed as 𝑛 consecutive integers (1992, 1993, …, 2020). 454 

To assess the internal variability of the GPP trend, we used a Monte Carlo approach that 455 

statistically samples the observations assuming random interannual variability in GPP. Based on the 456 

statistical distribution of the residuals (𝑠𝑒; supplementary Fig. 11a), we sampled each of the 29 years of 457 

data from a random Gaussian deviation about the trend in which GPP for year 𝑖 is: 458 

𝑥𝑖
′  =  𝑥̂𝑖 + 𝜀𝑖 ∗ 𝑠𝑒                                                                                                                              (4) 459 

where 𝑥̂𝑖  is the predicted GPP for year 𝑖 using the the linear regression in equation (1), 𝜀𝑖 is a random 460 

Gaussian deviate with mean zero and standard deviation of one, and se is the standard deviation of the 461 

residuals (186.3 g C m–2 yr–1). The regression slope (𝑏1
′ ) of the randomly sampled 𝑥𝑖

′  time series is an 462 
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estimate of the random variability in the observed trend. We repeated this process 100,000 times to 463 

obtain the statistical distribution of  𝑏1
′ . The resulting probability density function provides the internal 464 

variability for the trend. The distribution of  𝑏1
′ , obtained with the assumption of random interannual 465 

variability, has a mean (127.0 g C m–2 yr–1 per 10 years) and standard deviation (41.3 g C m–2 yr–1 per 10 466 

years) comparable to  𝑏1 and its standard error (Supplementary Fig. 11b). 467 

We then used the statistical model to estimate the conditional probability of obtaining a trend 468 

of 362.1 g C m–2 yr–1 per 10 years for the time period 1992–2004 and 232.8 g C m–2 yr–1 per 10 years for 469 

1992–2015 (Fig. 6a). In this analysis, we used equation (4), but only sampled the years 1992–2004 and 470 

1992–2015 in the Monte Carlo simulations to obtain the probability density functions for the trend over 471 

these two time periods given the long-term trend of 127.1 ± 41.3 g C m–2 yr–1 per 10 years (Fig. 8b,d). 472 

The mean trend is comparable to the long-term trend, and the standard deviation is similar to that 473 

expected from equation (3) with 𝑛 = 13 and 𝑛 = 24 years. 474 

We performed the same analysis at the AmeriFlux US-MMS Morgan-Monroe State Forest tower 475 

(39.3232°N, 86.4131°W) for the 22-year period 1999–2020 using the AmeriFlux FLUXNET data product 476 

(Supplementary Table 2) (ref. 53). Here, we used the daytime flux partitioning product 477 

GPP_DT_VUT_REF as in Dragoni et al. (ref. 14). We obtained the linear regression from the observations 478 

for the n = 22 years (Fig. 9a; 𝑏0= –6976.29 g C m–2 yr–1, 𝑏1= 4.30 g C m–2 yr–2, F = 1.48, p = 0.237, R2 = 479 

0.069, 𝑠𝑒 = 105.1 g C m–2 yr–1) and used the regression model in the Monte Carlo simulations to sample 480 

the years 1999–2008 as in Dragoni et al. (ref. 14). We determined the probability that a trend of 208.7 g 481 

C m–2 yr–1 per 10 years can be found for the period 1999–2008 given the long-term trend of 43.0 ± 35.3 g 482 

C m–2 yr–1 per 10 years (Fig. 9b). The mean trend is comparable to the long-term trend, and the standard 483 

deviation is similar to that expected from equation (3) with 𝑛 = 10 years. 484 

We compared GPP trends from the CESM2 Large Ensemble for the grid cell corresponding to 485 

Harvard Forest and Morgan-Monroe with the observed trend (Fig. 6c, Fig. 7a). We supplemented this 486 
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model–observation comparison with GPP data for the AmeriFlux US-Ho1 Howland Forest tower 487 

(45.2041°N, 68.7402°W) for 1996–2020 (Supplementary Table 3) (ref. 20). We compared the model and 488 

observed trends (Fig. 7b), but did not sub-sample for specific years because only the full 25-year time 489 

series has been previously analyzed. 490 

 491 

Reporting Summary 492 

Further information on research design is available in the Nature Portfolio Reporting Summary linked to 493 

this article. 494 

 495 

Data Availability 496 

The CESM2 Large Ensemble data that support the findings of this study are available at 497 

https://www.cesm.ucar.edu/projects/community-projects/LENS2/data-sets.html. The GPP data for 498 

Harvard Forest, Morgan-Monroe State Forest, and Howland Forest are available in the supplement. 499 

 500 

Code Availability 501 

The NCAR Command Language (NCL) version 6.4.0 was used for plotting CESM2 data. The Monte Carlo 502 

simulations were created using Python version 3.9.12 using Python packages: pandas 1.4.2, numpy 503 

1.21.5, and statsmodels 0.13.2. The code is described in detail in Methods. 504 
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