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ABSTRACT

Precipitation is often quantified by the amount that falls over a given period of time but not the rate at which

most of it falls or the rate associated with the most frequent events. Here, three metrics are introduced to

distill salient characteristics of typical daily precipitation accumulation based on the full distribution of

rainfall: rain amount peak (the rain rate at which the most rain falls), rain frequency peak (the most frequent

nonzero rain rate), and rain amount width (a measure of the variability of typical precipitation accumulation).

These metrics are applied to two observational datasets to describe the climatology of typical daily pre-

cipitation accumulation: GPCP 18 daily (October 1996–October 2015) and TMPA 3B42 (January 1998–

October 2015). Results show that the rain frequency peak is similar to total rainfall in terms of geographical

pattern and seasonal cycle and varies inversely with rain amount width. In contrast, the rain amount peak

varies distinctly, reaching maxima on the outer edges of the regions of high total precipitation, and with less

seasonal variation. Despite that GPCP and TMPA 3B42 are both merged satellite–gauge precipitation

products, they show substantial differences. In particular, the rain amount peak and rain amount width are

uniformly greater in TMPA 3B42 compared to GPCP, and there are large discrepancies in their rain fre-

quency distributions (peak andwidth). Issues relating tomodel evaluation are highlighted using CESM1 as an

illustrative example and underscore the need for observational datasets incorporating measurements of

light rain.

1. Introduction

How much rain falls on a typical rainy day? The most

common metric used to quantify precipitation is its av-

erage over a period of time—amonth, season, or longer.

This metric suffices to differentiate the wettest locations

from the driest ones; for example, the western Pacific

warm pool has higher mean rainfall than the Sahara.

Because rainfall varies within each year, season, and

month, total precipitation does not describe the pre-

cipitation of a typical rainy day.

Precipitation frequency quantifies how often it rains

(Englehart and Douglas 1985). The total frequency and

total intensity of rain (which is the total precipitation

divided by the frequency of precipitation) provide ag-

gregate measures of how often it rains and how heavy

this rain is. Some studies have examined total frequency

and intensity in observations (Chen et al. 1996; Sun et al.

2006; Dai et al. 2007; Biasutti and Yuter 2013). In-

tercomparison of observational datasets reveals large

uncertainty in precipitation products (Gehne et al. 2016;

Herold et al. 2016). Model evaluation in terms of total

frequency and intensity shows thatmodels rain too often

and not hard enough (Stephens et al. 2010).

Extreme precipitation metrics quantify how heavy the

heaviest rainfall events are. Some examples include

the heaviest day of precipitation in a season or year and

the precipitation rate at a particular (extreme) percen-

tile of the distribution. Because extreme precipitation

can cause floods, it is the focus of much literature (e.g.,

Ricko et al. 2016). However, extreme events are by

definition infrequent and atypical.

Analyzing the distribution of rain in terms of rain rate

enables a distinction to be made between light and

heavy precipitation events. The distribution of rain was

first characterized qualitatively (Petty 1995; Dai 2001) or

with categorical bins (e.g., Dai 2006). While much of this

earlier work focused on the rain frequency distribution,

Watterson and Dix (2003) calculated the amount of rain

falling in each bin, which we will refer to as the rain
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amount distribution (other studies refer to it as the rain

volume distribution; e.g., Behrangi et al. 2012). The rain

amount distribution sums to the total precipitation.

Sun et al. (2007) quantified the distribution of rain

using bins spaced linearly in rain rate, which provide a

basis for mathematical manipulation but have poor

sampling properties (since daily precipitation accumu-

lation spans orders of magnitude). Pendergrass and

Hartmann (2014a) calculated the rain frequency and

rain amount distributions with bins that are spaced

logarithmically.

Changes in precipitation have also been the focus of a

large body of work. Changes in precipitation have been

detected in observations (e.g., Wentz et al. 2007; Min

et al. 2011) and are projected by model simulations (e.g.,

Allen and Ingram 2002; Held and Soden 2006; Pall et al.

2007; Pendergrass and Hartmann 2014b).

Missing from the literature is a focus on typical pre-

cipitation events—events that occur most often and

contribute the most precipitation and latent heating.

Typical events do not have the sampling problem asso-

ciated with extreme precipitation, and they are more

often relevant. In contrast to total intensity and total

precipitation, which aggregate over the entire distribu-

tion of rain, metrics for typical precipitation would put

the focus on typical events. Here, we develop metrics to

quantify characteristics of typical daily precipitation

accumulation by distilling information from its distri-

bution. We document the global spatial patterns of each

metric, and compare them with the total rainfall. This is

the first comprehensive study describing metrics applied

to a global observational daily precipitation dataset,

examining the seasonal cycle, and defining a width

metric. Recent work by Kooperman et al. (2016) and

Venugopal and Wallace (2016) have defined metrics

similar to the rain amount peak (defined below) and

examined them using TMPA 3B42 (introduced in

section 2).

The rest of this study is organized as follows. Section 2

provides information on the datasets and methodology

for computing the rainfall distributions and an illustra-

tive example of how they are calculated. In section 3, we

define the rain amount peak, rain frequency peak, and

rain amount width metrics. In section 4, we apply the

metrics to a global observational product; zonal-mean

distributions are considered in section 4a, spatial pat-

terns of rain amount peak and rain frequency peak in

section 4b, and the rain amount width in section 4c.

Comparison against one alternative observational

product is included in section 5. Section 6 highlights is-

sues relating to model evaluation and concerns re-

garding rain frequency. Discussion is provided in section

7 and concluding remarks in section 8.

2. Datasets and rain distribution methodology

a. Observational datasets and model simulation

Two global-scale gridded precipitation products with

daily or higher temporal resolution based on satellite ob-

servations are available starting in the late 1990s: theGlobal

Precipitation Climatology Project (GPCP) 18 daily (1DD)

dataset (Huffman et al. 2001), and Tropical Rainfall

Measuring Mission (TRMM) Multisatellite Precipita-

tion Analysis (TMPA) 3B42 product, version 7 (here-

after TRMM 3B42; Huffman et al. 2007). Both datasets

incorporate satellite measurements over land and

ocean as well as gauge data over land to produce a grid-

ded product. We include the entire temporal record from

each product: October 1996–October 2015 for GPCP and

January 1998–October 2015 for TRMM. GPCP has

global coverage with 18 spatial resolution and daily tem-

poral resolution. TRMM covers the region 508N–508S,
with 0.258 spatial resolution and 3-hourly temporal res-

olution; we use the daily aggregated product and

coarsen the data from its native 0.258 grid to a 18 grid for

comparison with GPCP. Both datasets use IR satellite

measurements of cloud-top brightness temperature as a

proxy for rain rates when other data are unavailable.

The measurement inputs to both datasets vary with

latitude as a result of the satellite orbits, with infrared

brightness temperature becoming increasingly impor-

tant poleward of 408 [see Huffman and Bolvin (2013)

with regard to GPCP]. TRMM also makes use of

TRMM Precipitation Radar data. Both TRMM and

GPCP include microwave measurements of precipita-

tion, which require different treatments over land and

ocean resulting from their differing surface emissivities

(e.g., Kummerow and Giglio 1995).

We also use 10 years (1996–2005) of a twentieth-

century historical simulation from Community Earth

SystemModel, version 1 (CESM1; Hurrell et al. 2013), a

comprehensive fully coupled climate model. In partic-

ular, we use data from the first member of the CESM1

30-member initial-condition ensemble (Kay et al. 2015).

The resolution of this CESM1 simulation is approxi-

mately 18 in latitude and longitude, similar to GPCP’s 18
resolution.

b. Calculating the distribution of rain

We compute the distributions of rain frequency

and rain amount at each grid box using the full period

of record available for each dataset. Following

Pendergrass and Hartmann (2014a), we sort the daily

precipitation data into bins that scale logarithmically

with rain rate where each bin center is 7.67%bigger than

the last, for a total of 140 bins. The lower edge of the

first bin is set at 0.032mmday21, while its upper edge is
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0.035mmday21. Subsequent bins follow this same pat-

tern, where the upper edge of one bin is the lower edge

of the next. The rain frequency distribution is the

number of days in each bin normalized by the total

number of days. The rain amount distribution is the

sum of accumulated precipitation in each bin normal-

ized by the total number of days. More details of the

methodology and a mathematical treatment of how we

calculate the distributions of rain frequency and rain

amount can be found in Pendergrass and Hartmann

(2014a).

To obtain spatial averages of the distributions, we first

area-weight the distributions at each grid box and then

average the area-weighted distributions. To calculate

averages over land and ocean separately, we use a land

mask based on topographic data from Amante and

Eakins (2009); if a grid box contains both land and

ocean, we consider it to be land. The values of the rain

amount and rain frequency distributions depend on the

spatial and temporal resolution of the input data and on

the bin width. Our focus will be on drawing qualitative

conclusions from the datasets, which are not sensitive to

the resolution or the bin width.

To illustrate how the rain frequency and rain amount

distributions are constructed, we consider the time series

of daily precipitation accumulation for the months of

April and May of 2015 in Boulder, Colorado, obtained

from Global Historical Climatology Network’s daily

station data archive (Menne et al. 2012a,b). Throughout

the text, we refer to daily precipitation accumulation as

rain rate following Pendergrass and Hartmann (2014a)

or intensity following Stone et al. (2000). The time series

of rain rate in Boulder is shown in Fig. 1a. Days with no

precipitation are indicated with light blue circles on the

abscissa. Days with nonzero precipitation are marked

with vertical bars; bar length indicates rain rate. Boxes

along the top of Fig. 1a are color coded according to

discrete rain-rate bins to visualize rain frequency

(Fig. 1b), and bars are color coded to visualize rain

amount (Fig. 1c). Note that the data for 5 May are

missing. Over this two-month period, the total pre-

cipitation was 5.0mmday21, equivalent to a total of

300mm or approximately 12 in. (1 in.’ 25.4mm), which

is a wet spring for Boulder.

To quantify how often rain occurs at different rain

rates, we construct the rain frequency distribution

(Fig. 1b). Each bar of the rain frequency distribution is

the number of days falling within each logarithmically

spaced rain rate bin, divided by the total number of

nonmissing days (60) in the time series. Days with less

than 0.1mm of precipitation are recorded as trace and

considered dry for this example. The sum of the rain

frequency distribution is 100%. No measureable

precipitation occurs on 45% of days. Precipitation be-

tween 0.1 and 1mmday21 occurs on 13% of days, 27%

of days have between 1 and 10mmday21, and 15% of

days have between 10 and 100mmday21.

To quantify howmuch rain falls at different rain rates,

we construct the rain amount distribution (Fig. 1c). Each

bar of the rain amount distribution is the sum of all the

rain falling within each rain-rate bin, normalized by the

number of days in the time series, and can be visualized

as proportional to the sum of all the bars of the corre-

sponding color in Fig. 1a.While the smallest nonzero bin

contains over 10% of days, this bin contributes just 1.3%

of the total precipitation because the rain rates are

small. The moderate bin, with rain rates between 1 and

10mmday21, contributes 24% of the total precipitation.

While the heaviest bin has only 15% of days (10–

100mmday21), it includes 75% of the total pre-

cipitation. This example illustrates that days with heavy

precipitation contribute disproportionately to the total

precipitation, and the rain amount distribution empha-

sizes these heavy precipitation days.

3. Quantifying typical daily precipitation
accumulation

The rain amount and rain frequency distributions

describe how heavy rain is when it falls and how often it

falls at different rain rates. The global, annual-mean rain

amount and rain frequency distributions for GPCP are

shown in Fig. 2. The rain amount distribution is nega-

tively skewed, with a longer tail at lighter rain rates

compared to heavier rates (Fig. 2a). The rain frequency

distribution (Fig. 2b) falls off less rapidly toward lighter

rain rates than does the rain amount distribution, al-

though it is also negatively skewed. The frequency of dry

days (,0.1mmday21) is 54%. We distill the character-

istics of typical precipitation with three metrics that can

be calculated from the distributions. Because these

metrics focus on the peaks of the rain amount and rain

frequency distributions, they convey information about

the most common characteristics of rain; it is in this

sense that we use ‘‘typical’’ to describe them.

The first metric is the rain amount peak. The rain

amount peak is defined as the rain rate at which the

maximum value of the rain amount distribution occurs.

It is the rain rate at which the most rain falls. Returning

to our example of the distribution of rain in Boulder, the

rain amount peak would be on the order of 50mmday21

(the maximum rain amount occurs in the bin with rain

rates between 10 and 100mmday21, and the coarse bins

used for this illustrative example provide accuracy to

only an order of magnitude). For the global annual

mean GPCP rain amount distribution, this value is
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18mmday21 (marked by a red star in Fig. 2a), which

means that among all rain rates, the most rain falls at

18mmday21.

The second metric is the rain frequency peak. Simi-

larly to rain amount peak, rain frequency peak is defined

as the rain rate where the maximum nonzero rain fre-

quency occurs. It is the most frequent nonzero rain rate.

In the global annual mean, the rain frequency peak

is 5.5mmday21 (red star in Fig. 2b). Returning again

to our Boulder example, the rain frequency peak is

on the order of 5mmday21 (the bin between 1 and

10mmday21). The global annual mean GPCP rain

frequency distribution (Fig. 2b) has its peak at 5.5mmday21,

which is lower than the rain amount peak. The rain

frequency distribution is centered at a lower rain rate

than the rain amount distribution, reflecting the im-

portance of heavy rain rates for total precipitation as we

saw in the Boulder example (Fig. 1).

In addition to its peak, we can quantify the width of

the rain amount distribution. The rain amount width is

defined as the range of rain rates spanned by the portion

of the rain amount distribution where themost rain falls.

FIG. 1. Illustrative example of the calculation of the distributions of rain frequency and rain amount. (a) Time

series of daily rainfall during 1 Apr–31 May 2015 at a station located in Boulder, Colorado. Daily precipitation

accumulation (mmday21) indicated by bars, color coded by rain rate (dark green for values .10mmday21, light

green for values between 1 and 10mmday21, and dark blue for values ,1mmday21). Light blue circles on the x

axis indicate days when no measureable precipitation fell. The day with missing data is left blank. Colored boxes

across the top also indicate the rain rate values using the same color scheme as the vertical bars. (b) The rain

frequency and (c) rain amount histograms are calculated from the example time series.
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Specifically, the rain amount width is the ratio of the two

rain rates where a line of constant rain amount intersects

the rain amount distribution: it is expressed nondimen-

sionally as the ratio of the greater to the lesser of these

rain rates. We have chosen a width such that 10% of the

total precipitation occurs in this portion of the rain

amount distribution, as illustrated in Fig. 2a for the

global annual mean. In the event that the rain amount

distribution crosses the line of constant rain amount

more than twice, the first rain rate it intersects on each

side of the rain amount peak is chosen. The choice of

10% as a target fraction is arbitrary; we also tried 50%,

which resulted in a change in magnitude but did not

affect the geographical patterns or seasonal de-

pendence. The rain amount width describes the range of

rain rates where the most rain falls. The width of the

global mean rain amount distribution is 2.2, indicating

that 10% of the total precipitation falls between 9 and

30mmday21.

We expect that the rain amount peak, rain frequency

peak, and rain amount width will depend quantitatively

but not qualitatively on the spatial and temporal reso-

lution of the precipitation data from which they are

computed. However, they do not depend systematically

on the bin width, although the bin width does determine

how accurate themetrics are (smaller bin widths provide

finer granularity of the metrics, although they also re-

quiremore sampling).We provide quantitative values of

all three metrics, cognizant that they are specific to the

spatial and temporal resolution of the particular datasets

we examine.

4. The climatological distribution of rain in GPCP

a. The zonal-mean distribution of rain

We decompose the global mean rain amount distri-

bution from GPCP into contributions from different

latitudes in Fig. 3a. Note that the latitude axis is cosine

weighted, proportional to the areal contribution of each

latitude band. The peak of the rain amount distribution

at each latitude is delineated by the thin black curve.

Integration of the rain amount distribution at each

FIG. 2. The climatological distribution of global, annual mean

(a) rain amount and (b) rain frequency from GPCP 1DD from

October 1996 to October 2015. The red star denotes the rain

amount peak in (a) and the rain frequency peak in (b). In (a), the

horizontal blue line indicates the width of the rain amount distri-

bution: see text for details. In (b), the dry-day frequency is given in

the top left of the panel. This figure is updated from Pendergrass

and Hartmann (2014a).

FIG. 3. (a) Climatological zonal, annual-mean rain amount

(mmday21) distribution from GPCP 1DD based on data from

October 1996 to October 2015. The black curve shows the rain

amount peak at each latitude, smoothed with three successive ap-

plications of a 1–2–1 filter. (b) As in (a), but for total precipitation

(mmday21) from the same dataset.
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latitude over all rain rates yields the zonal-mean profile

of total precipitation shown in Fig. 3b. Alternatively,

integration over all latitudes at each rain rate produces

the global mean rain amount distribution shown in

Fig. 2a.

The rain amount distribution reaches a maximum at

22mmday21 and 6.58N, the same latitude where the

highest total precipitation occurs. A secondary maxi-

mum occurs at 22mmday21 and 3.58S. The subtropical

dry zones are characterized by both low total pre-

cipitation and low rain amount. However, the rain

amount peaks in the subtropics are remarkably similar

to those in the wetter tropics (24–26mmday21). Sec-

ondary maxima of the rain amount distribution occur in

the midlatitudes (308–608 in both hemispheres) associ-

ated with the storm tracks. At the equatorward side of

the storm tracks, the rain amount peak remains similar

to tropical and subtropical values. Equatorward of 408
latitude, the rain amount peak varies between 19 and

26mmday21, while the total precipitation spans a wider

range, from 1.7 to 6.1mmday21. Poleward of 408 lati-
tude, the rain amount peak decreases with increasing

latitude to about 10mmday21 at 608 latitude in both

hemispheres; however, the GPCP data are less reliable

here.

In summary, despite large variations in total rainfall

and rain amount with latitude, the rain amount peak

remains largely invariant equatorward of 408 and de-

creases by only a factor of 2 between 408 and 608 latitude.
This implies that the intensity of typical daily pre-

cipitation varies little equatorward of 408 latitude, al-
though belowwewill see that the rain amount peak has a

rich longitudinal structure. Thus, zonal-mean statistics

may be misleading in that they do not reveal the whole

picture. The near-constant rain amount peak could not

have been anticipated from total precipitation.

We might expect to find different rain amount distri-

butions over ocean and land, because of a variety of

physical factors including surface temperature, mois-

ture, surface roughness, and related differences in at-

mospheric circulation or because of differences in the

input data streams discussed in section 2. The zonal-

mean rain amount distribution separated into ocean and

land is shown in Fig. 4 (a gray line at 10mmday21 is

included as a visual point of reference). Since ocean

makes up two-thirds of Earth’s surface, the distribution

of rain amount over ocean (Fig. 4a) generally resembles

the global mean at most latitudes (Fig. 3a). Over land

(Fig. 4b), however, there are some notable differences

from the global and ocean-only distributions. For ex-

ample, the tropics show a single broad maximum cen-

tered near the equator, in contrast to the two separate

maxima on either side of the equator over ocean. The

highest tropical rain amount is only slightly lower over

land than ocean and occurs at a similar rain amount peak

of 20–30mmday21. Outside of the tropics, rain amounts

are generally lower, and the distribution spans a nar-

rower range of rain rates compared to ocean. Although

values in the SH must be interpreted with caution as a

result of the small amount of land at these latitudes, the

rain amount distribution shows a secondary maximum

in the SH midlatitudes. Overall, the bulk of the rain

amount distribution equatorward of 408 latitude spans a
similar range of rain rates (20–30mmday21) over ocean

and land.

Precipitation varies over the annual cycle, and we can

capture some of this variation by stratifying the zonal-

mean rain amount distributions by 3-month seasons

(Fig. 5). Over ocean, the tropical rainfall belts migrate

with the seasonal cycle, with maximum rain amount

values occurring in the ITCZ located around 58N in

winter (DJF) and spring (MAM) and around 98N in

summer (JJA) and fall (SON; Figs. 5a–d). The ITCZ

also has somewhat higher rain amount in boreal summer

and fall than in winter and spring. Like the NH, the

latitude of the SH tropical rain amount maximum also

varies by only a few degrees throughout the year and is

stronger in austral summer and fall than winter and

spring. The subtropical dry latitudes over ocean also

migrate with the seasons. These dry zones skip from the

NH in DJF and MAM to the SH in JJA (and to a lesser

extent SON). Local maxima in midlatitudes of each

hemisphere are associated with the storm tracks. As is

the case in the annual mean, most precipitation in the

storm tracks falls at rain rates characteristic of the

tropics.While the latitude of the storm tracks varies only

slightly with the seasons, their strength as measured by

the rain amount does change, particularly in the NH,

FIG. 4. As in Fig. 3a, but for (a) ocean and (b) land separately.
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which shows largest values in fall and winter compared

to spring and summer; the highest extratropical values in

the SH occur in autumn.

The seasonal variation in zonal-mean rain amount

over land (Figs. 5e–h) exhibits some general differences

with that over ocean: there is one sole tropical maxi-

mum, its latitude migrates between 4.58S in DJF and

11.58N in JJA, and its strength is greatest in boreal

spring. Other features are similar between ocean and

land: the subtropical dry zone is present in austral

summer, boreal winter, and boreal spring, and it

encompasses a wider latitude band over land than over

ocean; and midlatitude rain amount reaches a maximum

in summer. Across all of these features, there is little

variation in rain amount peak with the seasons, which is

around 10mmday21 at 408–608N and 408–608S and

20–30mmday21 in the tropics and subtropics.

In summary, the zonal-mean rain amount distribu-

tions over both land and ocean show that the rate at

which the most rain falls varies surprisingly little

through the seasonal cycle, over both land and ocean,

between about 10 and 25mmday21. In the next section,

we will apply the rain amount peak, rain frequency peak,

and rain amount width metrics to further explore the

seasonal cycle and spatial pattern of typical daily pre-

cipitation at individual grid points.

b. Seasonal cycle and spatial pattern of rain amount
peak and rain frequency peak

We can use the rain amount and rain frequency peak

metrics to further distill the characteristics of the annual

cycle of the zonal-mean rainfall distribution. Recall that

the rain amount peak is the rain rate where the maxi-

mum value of the rain amount distribution occurs, and

the rain frequency peak is the nonzero rain rate where

the maximum of the rain frequency distribution occurs

(see Fig. 2).

Figure 6 shows zonal-mean rain amount peak, rain

frequency peak, total rainfall, and rain amount width

as a function of latitude and month for ocean and land

FIG. 5. As in Fig. 4, but stratified by season.
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separately. Here we discuss the rain amount peak, rain

frequency peak, and total rainfall; rain amount width is

discussed in section 4c. The seasonal and latitudinal

variations of the rain frequency peak are very similar to

those of total precipitation, especially over land, and

differ substantially from those of the rain amount peak.

Rain amount peak has a weak seasonal cycle compared

to rain frequency peak and total precipitation. This im-

plies that the intensity of precipitation that contributes

the most rain varies little over the course of the year

compared to total precipitation and compared to the

intensity of the most frequent precipitation.

Over ocean, there is a small annual cycle of rain

amount peak (Fig. 6a) in the tropics (,5mmday21, with

mean values of 20–25mmday21). In contrast, the vari-

ations in the latitude and intensity of the ITCZ in the

NH dominate the annual cycle for the rain frequency

peak (Fig. 6b) and total precipitation (Fig. 6c), which

both have annual cycles similar in magnitude to their

annual mean values (10–15mmday21 for rain frequency

peak and 3–6mmday21 for total precipitation). In the

subtropics, the rain amount peak reaches a maximum in

summer and a minimum in winter in each hemisphere,

with an annual cycle of up to 15mmday21 compared to

an annual mean value of 20–25mmday21. For rain fre-

quency peak and total precipitation, there are minima in

spring, which are deeper in the NH compared to the SH.

Their annual cycles remain similar in magnitude to an-

nual mean values (around 10mmday21 for rain fre-

quency peak and 3mmday21 for total precipitation). In

mid-to-high latitudes, the annual cycle of rain amount

peak, rain frequency peak, and total precipitation are all

smaller than annual mean values by at least 50%. In the

NH, there is a rain amount peak minimum in spring and

summer and a maximum in fall and winter; the annual

cycle is approximately 7mmday21. Rain frequency

peak and total precipitation also reach maxima during

the winter months in each hemisphere, consistent with

the seasonality of the storm tracks. In the SH mid- and

high latitudes, the annual cycle is small for rain amount

peak (less than 5mmday21), rain frequency peak, and

total precipitation.

Over land, a small annual cycle of rain amount peak

(about 5mmday21; Fig. 6e) is present in the tropics, with

FIG. 6. Climatological zonal-mean distributions of (a),(e) rain amount peak, (b),(f) rain frequency peak, (c),(g) total precipitation, and

(d),(h) rain amount width over (top) ocean and (bottom) land based onGPCP 1DDdataset for October 1996–October 2015. Rain amount

peak, rain frequency peak, and rain amount width have been smoothed using a 3-point binomial filter, with three applications in latitude

and two in month. Total precipitation is smoothed with the same filter applied once in latitude and once in month.
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lower values from July through October and little mi-

gration in latitude. Meanwhile, rain frequency peak

(Fig. 6f) and total precipitation (Fig. 6g) go through a

substantial latitudinal migration over the course of the

year, and their annual cycles are as large as their annual

mean values (with magnitudes similar to those over

ocean). In the subtropics, the annual cycle of rain

amount peak is similar over land and ocean: present

but weak compared to annual mean values. Rain fre-

quency peak and total precipitation show large seasonal

variations in magnitude in the subtropics of both

hemispheres.

Maps of annual-mean rain amount peak and rain

frequency peak are shown in Fig. 7, with total rainfall

FIG. 7. Maps of climatological annual mean (a) rain amount peak and (b) rain frequency

peak from GPCP 1DD (color shading; mmday21), with total precipitation indicated in black

contours (1mmday21 is dashed, and 4 and 7mmday21 are solid).
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superimposed for context. The geographical pattern of

the rain amount peak differs considerably from that of

total precipitation (Fig. 7a), while the rain frequency

peak follows the total precipitation very closely

(Fig. 7b). The highest values of rain amount peak exceed

50mmday21; regions of the highest rain amount peak

values are found on the edges of regions with the highest

total precipitation, outlined by the 4mmday21 contour

(e.g., over India, Southeast Asia, and the Pacific coast of

Mexico in the NH and northern Australia, southeastern

South America, and the east coast of southern Africa in

the SH). Regions with the highest total precipitation

have only moderate rain amount peak values; for ex-

ample, no region with greater than 7mmday21 of total

precipitation has a rain amount peak of greater than

35mmday21. Some regions of low total precipitation

also have low rain amount peak values (,5mmday21),

such as the tropical and subtropical southeastern Pacific,

the subtropical South Atlantic, and the Himalayas.

However, other regions of low total precipitation have

high rain amount peak values (10–50mmday21), such

as western Australia and the adjacent subtropical

southeastern Indian Ocean, as well as the subtropical

northeastern Atlantic. Some of the driest regions

(,1mmday21 total rainfall) contain adjacent grid cells

of high and low rain amount peak values; this noisiness

is due to the fact that just a few rainfall events dominate

the record and is thus attributable to sampling. In

contrast to rain amount peak, the highest rain fre-

quency peak values (20–30mmday21) occur within the

tropics, particularly the Pacific ITCZ and the Indian

Ocean. Most of these occur within the 4mmday21

contour of total precipitation.

In summary, Fig. 7 shows contrasting geographical

patterns of rain amount peak and rain frequency peak.

In regions of high rain amount peak, rain is heavy when

it falls, but it falls infrequently enough that total pre-

cipitation is not particularly high. The regions of highest

total precipitation are characterized by more frequent

but moderate rainfall rates. This is consistent with

Venugopal and Wallace (2016), who examined similar

metrics for 3-hourly TRMM 3B42, and Dai et al. (2007),

who analyzed total frequency and total intensity of rain

as opposed to the metrics of the peaks of the distribu-

tions introduced here.

Another way to look at the relationships among rain

amount peak, rain frequency peak, and total pre-

cipitation is to form scatterplots among these quantities

(Fig. 8); we use annual-mean data for each grid box

equatorward of 408 latitude. There is little correlation

between rain frequency peak and rain amount peak,

although the rain amount peak is always at least as large

as rain frequency peak (Fig. 8a). The relationship

FIG. 8. Scatterplot density (%) of annual mean (a) rain amount

peak vs rain frequency peak, (b) rain amount peak vs total pre-

cipitation, and (c) rain frequency peak vs total precipitation, based

on GPCP 1DD data equatorward of 408 latitude. A contour line at

0.0125% is included.
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between rain amount peak and total precipitation is

nonlinear: for small values of total precipitation, rain

amount peak can be either high or low (ranging from 1

to 70mmday21 for total precipitation of,1mmday21),

while for the highest values of total precipitation, the

rain amount peak is moderate (rain amount peak of

20mmday21 for total precipitation of 10mmday21;

Fig. 8b). The relationship between rain frequency peak

and total precipitation is also nonlinear: rain frequency

peak increases rapidly with total precipitation for values

of total precipitation below 3mmday21 and then satu-

rates at 10–20mmday21 for total precipitation

of .3mmday21 (Fig. 8c).

To examine the seasonal cycle of the spatial patterns

of rain amount peak and rain frequency peak, we sub-

divide the year into two halves (December–May and

June–November; Fig. 9). These extended seasons em-

phasize the times of year when the total tropical rainfall

is greatest: December–May in the SH and June–

November in the NH. In austral summer and fall, the

highest values of rain amount peak are found in the

latitude band between 108 and 308 in both hemispheres,

particularly over Australia extending westward over the

Indian Ocean to the southern tip of South Africa and

near Uruguay in South America; these locations are

situated south of the regions with the greatest total

precipitation (Fig. 9a). In addition, high rain amount

peak values occur over the northern Indian Ocean, well

north of the region of high total rainfall. In contrast, the

largest values of rain frequency peak are contained

within the band of greatest total precipitation (Fig. 9b).

In boreal summer and fall, the highest values of rain

amount peak are found in theNHbetween 108 and 308N,

primarily over India and Southeast Asia (Fig. 9c). While

these areas occur within the region of high total pre-

cipitation, they are located north of the maximum total

precipitation, unlike the high values of rain frequency

peak, which are contained entirely within the contours

of maximum total precipitation (Fig. 9d).

In summary, the rain frequency peak varies in a sim-

ilar way to total precipitation both spatially and over the

seasonal cycle. The rain amount peak shows less corre-

spondence with total precipitation and exhibits maxi-

mum values in regions of infrequent precipitation.

c. Rain amount width

Figures 6d,h show the seasonal cycle of zonal-mean

rain amount width over ocean and land. The rain

amount width varies inversely with total precipitation

(cf. Figs. 6c,d, and Figs. 6g,h). It has a minimum in

the tropics and amaximum that varies with season in the

subtropics over both land and ocean. Over ocean, the

seasonal cycle is relatively muted. Maximum rain

amount width values (2.3–2.7) occur in the latitude band

108–308N and in the Arctic. Over land, rain amount

width varies between 2 and 3 and shows a pronounced

latitudinal migration with the seasonal cycle, reaching

the largest values in the subtropics.

FIG. 9. As in Fig. 7, but for two half-year seasons (a),(b) December–May and (c),(d) June–November.
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The map of annual-mean rain amount width is shown

in Fig. 10, along with the same contours of total pre-

cipitation as Figs. 7 and 9. The geographical pattern of

annual-mean rain amount width varies inversely with

total precipitation, consistent with the behavior of

zonal-mean rain amount width. That is, regions with low

total precipitation have wide rain amount distributions,

and vice versa. In regions of low total precipitation in-

cluding the subtropical dry zones, the Himalayas, and

Antarctica, rain amount width reaches maxima of over

3.5 (regions shown in white over the eastern Sahara are

grid points where there were too few days with rain to

reliably calculate the width). In tropical regions of high

total precipitation, the rain amount width reaches its

minimum values of 1.5–2.

The inverse relationship between total precipitation

and rain amount width is also evident in each half-year

season (Fig. 11). In the southeastern Pacific and Atlan-

tic, the region of high rain amount width is more con-

centrated in austral summer–fall (Fig. 11a) when the dry

zone is more contracted compared to austral winter–

spring (Fig. 11b). High rain amount width persists

through both seasons in the south Indian Ocean. Over

the NHmidlatitude continents (e.g., Siberia and western

North America), higher values of rain amount width are

found over the continental interiors in winter and spring

(up to 3.5) than in summer and fall (around 2).

5. Comparison with TRMM

To account for differences between observational

products, we examine data from TRMM 3B42 to com-

pare against our analysis of GPCP. The two pre-

cipitation datasets (GPCP 1DD and TRMM 3B42) are

FIG. 10. As in Fig. 7, but for rain amount width (unitless). See text for definition.

FIG. 11. As in Fig. 10, but for two half-year seasons (a) December–May and (b) June–November.
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both merged satellite-gauge gridded products, so their

comparison likely provides only a lower bound on ob-

servational uncertainty rather than a full accounting of

it. A more thorough assessment of observational un-

certainty associated with a wide range of precipitation

datasets can be found in Gehne et al. (2016) and Herold

et al. (2016). However, neither study examined the

metrics shown here: Gehne et al. (2016) focused pri-

marily on monthly mean precipitation over North

America, with a brief examination of the distribution of

rain in that region, while Herold et al. (2016) assessed

aggregated (total) intensity of precipitation over land.

Figure 12 shows the spatially averaged distributions of

annual-mean rain amount and rain frequency over

TRMM’s coverage area 508N–508S for both TRMM and

GPCP. TRMM’s rain amount distribution is centered at

heavier rain rates thanGPCP’s (Fig. 12a), and it is wider.

Our metrics quantify this: the rain amount peak is

28mmday21 for TRMM and only 21mmday21 for

GPCP, and the width of the rain amount distribution in

TRMM is 2.5 compared to 2.1 in GPCP. In addition, the

shape of the rain frequency distribution differs between

the two datasets. TRMM has more light rain days than

GPCP and accordingly has fewer dry days (47% com-

pared to 56%). TRMM also exhibits slightly larger rain

frequencies at the highest rain rates (.30mmday21)

than GPCP.

Figure 13 shows maps of annual-mean rain amount

peak, rain frequency peak, and rain amount width from

TRMM. Note that the color bar span is doubled for the

TRMM’s rain amount peak compared to GPCP’s

(reaching 100 rather than 50mmday21), to accommo-

date its larger values while preserving the spatial pat-

tern. While the magnitude of the rain amount peak

differs between the two datasets, the spatial patterns are

consistent in showing maximum values of the rain

amount peak at the margins of the regions of greatest

total precipitation (Fig. 13a). One important difference

between the two datasets is that in TRMM the highest

rain amount peak values occur over ocean, while inGPCP

they occur over both ocean and land. The rain frequency

peak has generally similar magnitudes in TRMM and

GPCP, and the geographical correspondence with total

precipitation remains (Fig. 13b). However, in regions of

moderate total precipitation in the subtropics, rain fre-

quency peak is generally ,2.5mmday21 in TRMM

compared to 2.5–15mmday21 inGPCP. As inGPCP, the

rain amount width in TRMM varies inversely with total

precipitation (Fig. 13c). Values of rain amount width are

larger for TRMM than for GPCP, consistent with spatial

annual-mean distribution (Fig. 12).

In summary, GPCP and TRMM datasets agree on the

general spatial pattern of the rain amount peak, many

aspects of the spatial pattern of rain frequency peak, and

the inverse relationship between rain amount and total

precipitation. On the other hand, the magnitude of rain

amount peak and rain amount width is much larger in

TRMM than in GPCP.

6. Rain frequency: Some concerns and comparison
with CESM1

In the previous section, we saw that GPCP and

TRMM agree more closely on the spatial annual-mean

rain amount distribution than on the rain frequency

FIG. 12. As in Fig. 2, but for data from TRMM 3B42 (solid

curves) and GPCP 1DD (dashed curves), averaged between 508N
and 508S.
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distribution. In this section we explore the rain fre-

quency width for GPCP and TRMM. In addition, we

analyze the CESM1 simulation introduced in section 2,

which indicates that the characteristics of the observa-

tional uncertainty of the GPCP and TRMM datasets at

light rain rates could lead to qualitative deficiencies in

the observed rain frequency distribution.

Maps of annual mean rain frequency width for

GPCP and TRMM are compared in Fig. 14. For GPCP

(Fig. 14a), the rain frequency width varies inversely with

total precipitation, similar to rain amount width (Fig. 10),

although with generally larger values. In contrast,

TRMM’s rain frequency width (Fig. 14b) behaves quite

differently from its rain amount width (cf. Fig. 13c). It

reaches localminima in regions of high total precipitation,

just as its rain amount width does, but other large regions

do not display the inverse relationship with total pre-

cipitation. For example, the subtropical dry zones have

FIG. 13. Maps of climatological annual mean (a) rain amount peak (mmday21), (b) rain

frequency peak (mmday21), and (c) rain amount width (unitless) from TRMM 3B42 data

during January 1998–October 2015. Contours of total precipitation follow Fig. 7.
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minima in rain frequency width. We speculate that these

differences arise from assumptions in the way the datasets

are constructed; as far as we are aware, it is not clear if one

is more correct than the other.

The fundamental differences in the spatial pattern of

rain frequency width between the two datasets decrease

our confidence in other aspects of the observed rain

frequency distribution. To adjudicate this discrepancy,

we consult the distribution of rain from CESM1. While

climate models are not reality, they have the advantage

over observations of perfect reporting in space and time.

Figures 15a,b shows the annual, zonal-mean rain

amount distributions for GPCPwith TRMM.Compared

to GPCP, TRMM’s rain amount distribution is wider,

shows a stronger latitudinal variation, and reaches is

maximum at a higher rain rate. However, their qualita-

tive features are similar. In contrast, the rain frequency

distribution differs more between the two datasets

(Figs. 15d,e). While GPCP’s rain frequency distribution

could be largely anticipated from its rain amount dis-

tribution, TRMM’s rain frequency distribution has

higher values at light rain rates (,1mmday21) in the

tropics and subtropics compared to GPCP than would

be anticipated from its rain amount distribution.

The annual, zonal-mean rain amount distribution for

CESM1 (Fig. 15c) has many characteristics in common

with GPCP and TRMM: a maximum in the tropics,

minima in the subtropics, local maxima in the mid-

latitudes, and a rain amount peak that is nearly invariant

with latitude. Its rain amount distribution maxima are

closer to GPCP than TRMM. However, the negative

skewness of the distribution is weaker in CESM1 com-

pared to either observational dataset. On the other

hand, the rain frequency distribution exhibits notable

differences from the observations (Fig. 15f). The most

striking discrepancy is frequency maxima at light rain

rates in the subtropics of both hemispheres in themodel,

which are absent in GPCP and muted in TRMM. These

local maxima at light rain rates correspond to stratocu-

mulus regions of the subtropical dry zones and are also

present in other climate models (not shown).

Figure 16 shows maps of annual-mean rain amount

peak, rain frequency peak, rain amount width, and rain

frequency width for CESM1. The rain amount peak

(Fig. 16a) is smaller in magnitude than either GPCP or

TRMM (recall Figs. 7a and 13a, respectively; note that

the color bar for CESM1 covers half of GPCP’s range

and a quarter of TRMM’s). Its highest values occur just

outside the 4mmday21 contour of the total pre-

cipitation, as in observations, but the geographical lo-

cation of these values differs. Specifically, the rain

amount peak reaches maxima poleward of the mid-

latitude storm tracks and south of the SPCZ and lacks

the local maxima over the tropical continents (including

India, Southeast Asia, and Australia). The rain fre-

quency peak (Fig. 16b; cf. Figs. 7b and 13b) also has a

smaller magnitude than observations (note that the

color bar covers half the range of that used for GPCP

and TRMM). Its spatial pattern has both similarities and

differences between the model and observations. As in

observations, the highest values of rain frequency peak

occur in the regions of high total precipitation. Unlike

observations (especially GPCP), the rain frequency

peak rapidly drops to very light values outside of the

regions of heavy total precipitation since the model has

many more light rain days than the observational

datasets (as we saw in Fig. 15). The rain amount width

(Fig. 16c; cf. Figs. 10 and 13a) reaches its highest values

in the subtropical oceans, the North Pacific and south

Indian Oceans, and has minima both in regions of high

total precipitation and in regions of low total pre-

cipitation; in this sense it is more similar to TRMM than

GPCP. The rain frequency width (Fig. 16d; cf. Fig. 14)

reaches higher values than either TRMM or GPCP,

FIG. 14. Maps of climatological annual mean rain frequency width (unitless) from (a) GPCP 1DD and (b) TRMM

3B42. Contours of total precipitation follow Fig. 7.
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consistent with its higher frequency of light rain days,

which play little role in the rain amount distribution

width. It also shares more characteristics with TRMM

than GPCP, including reaching minima rather than

maxima in dry zones and reaching maxima rather than

minima near the midlatitude storm tracks.

7. Discussion

As we have just shown, CESM1 has a much higher

frequency of light rain than either GPCP or TRMM and

correspondingly lower values of rain frequency peak,

especially over the subtropical oceans. While we know

that climate models disagree about some of the physical

processes controlling stratocumulus clouds in the east-

ern side of the subtropical ocean basins (e.g., Fasullo and

Trenberth 2012; Medeiros et al. 2012; Sherwood et al.

2014), we also know that the satellite measurements

incorporated into GPCP and TRMM are not sensitive

enough to light precipitation below about 1mmday21

(Behrangi et al. 2012, 2014), which are especially im-

portant for obtaining the correct rain frequency distri-

bution (Huffman et al. 2001, 2007). Other datasets such

as CloudSat radar and CALIPSO lidar measurements

accurately represent the frequency of occurrence of

rain, including very light rain (e.g., Lebsock and

L’Ecuyer 2011), but cannot accurately estimate the rain

rate for moderate to heavy precipitation. They also have

insufficient sampling to form the basis for high spatial

and temporal resolution gridded datasets likeGPCP and

TRMM. Even considering the frequency of light pre-

cipitation observed by CloudSat, it is still likely that

climate models overestimate the frequency of light

rainfall (Stephens et al. 2010). However, more and im-

proved observations of light precipitation are needed to

better understand this discrepancy. The new Global

FIG. 15. Comparison between climatological zonal annual-mean distributions of (top) rain amount (mm day21) and (bottom) rain

frequency (%) for (a),(d) GPCP 1DD, (b),(e) TRMM 3B42 (coarsened to 18 resolution), and (c),(f) CESM1.
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Precipitation Measurement (GPM; Hou et al. 2014) mis-

sion makes some optimistic claims about observing light

precipitation, but our brief comparison between IMERG

and TRMM over their common period of record (not

shown) indicates little difference between them.

The comparison between the precipitation distribu-

tions from GPCP and TRMM and the CESM1 model

simulation (which is representative of other compre-

hensive climate model simulations in the aspects we

have examined; not shown) indicates that there are im-

portant gaps in our knowledge of the distribution of rain

frequency, including the extent to which precipitation is

accurately represented in observational datasets. It also

shows that there is better agreement on the rain amount

distribution than on the rain frequency distribution. The

rain amount distribution focuses on the bulk of total

precipitation, which makes it an easy and thus conser-

vative target. That is, it is relatively easy to constrain

energetically in models and relatively hard to miss with

an observing system. For this reason, we have empha-

sized analysis of the rain amount distribution over the

rain frequency distribution. Our analysis shows that

agreement between the observational datasets is par-

ticularly high for spatial and seasonal variations in the

rain amount distribution, rather than for absolute mag-

nitudes of the various metrics. That said, improving the

state of our knowledge of the absolutemagnitude of rain

amount and also the rain frequency distribution in

general would be a worthy endeavor. For example, rain

frequency can play a more important role than total

precipitation for plants in theAmazon (Cook et al. 2012)

and for soil crusts in desert regions (Belnap et al. 2004).

8. Concluding remarks

We have introduced metrics to quantify typical daily

precipitation accumulation from the distribution of rain.

The metrics include the rain amount peak, which is the

rate where the most rain falls; the rain frequency peak,

which is the most frequent nonzero rain rate; and the

rain amount width, which is a measure of the variability

of typical precipitation accumulation. These metrics

portray characteristics associated with typical daily

precipitation. In this way, our study differs from pre-

vious investigations, which tend to emphasize charac-

teristics of extreme precipitation or aggregations over

the entire distribution of rainfall. We applied these three

metrics to the GPCP 18 daily dataset, which has global

coverage from October 1996 to October 2015. In addi-

tion to examining the zonal-mean distribution of rain

amount and rain frequency over land and ocean, we

showed the geographical patterns and seasonal varia-

tions of our three ‘‘typical’’ precipitation metrics and

compared them against total precipitation. We repeated

the analysis using TRMM 3B42, another merged

satellite-gauge product coarsened to a 18 resolution for

comparison, to provide a lower bound on the un-

certainty between datasets. Finally, we compared the

typical precipitationmetrics from observational datasets

with those from a climate model simulation (CESM1).

To the best of our knowledge, this is the first study that

provides a comprehensive description of the global

spatial pattern and seasonal cycle of typical pre-

cipitation accumulation at daily or subdaily time scales

from more than one observational dataset.

FIG. 16. Maps of climatological annual mean (a) rain amount peak, (b) rain frequency peak, (c) rain amount width,

and (d) rain frequency width from CESM1. Contours of total precipitation follow Fig. 7.
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In general, there is little variation in the rate at which

rain falls across latitudes, surface type and season.

However, this zonal-mean picture belies a rich longitu-

dinal structure. The geographical pattern and seasonal

variation of rain frequency peak largely follow those of

total precipitation, while rain amount peak reaches its

highest values on the poleward margins of the total

precipitation maxima in the tropics. The highest values

of rain amount peak are found over southern Asia, the

southeastern United States, the southwestern Indian

Ocean, northern Australia, and eastern-central South

America. Rain amount width exhibits an inverse re-

lationship to total precipitation in both its spatial pattern

and seasonal variation. Comparison with TRMM shows

that differences between precipitation datasets can be

large, even when they incorporate similar raw mea-

surements. While GPCP and TRMM show broadly

similar spatial patterns of rain amount peak, they have

large quantitative differences. Both datasets show an

inverse relationship between total precipitation and rain

amount width, but they show the inconsistent behavior

for rain frequency width. Comparison with the CESM1

simulation indicates that in order to validate models,

observational datasets incorporating measurements of

light rain are needed.

There remains much to learn from examining the

characteristics of typical daily rainfall. Beyond our focus

on characterizing their climatology in observations,

these metrics will also be useful for evaluating models

[see related work by Kooperman et al. (2016)]. They

could also be used to assess changes in the distribution of

precipitation with global warming in models and even-

tually in observational datasets, although we hesitate to

undertake this with the short records considered here.

Finally, while we have focused on distributions of daily

precipitation, these metrics can also be applied to

datasets with higher temporal frequency (e.g., Venugopal

and Wallace 2016).

Acknowledgments. We thank Drs. Dennis Hartmann

andMikeWallace for useful discussions during the course

of this work and the anonymous reviewers for their con-

structive comments and suggestions. AGP was funded by

NCAR’sAdvanced Studies Program and theUniversity of

Colorado CIRES Visiting Fellow postdoctoral research

fellowships and the Regional and Global Climate Model-

ing Program of the U.S. Department of Energy’s Office of

Science, Cooperative Agreement DE-FC0297ER62402.

Software to calculate the metrics is available at http://

github.com/apendergrass/rain-metrics-python. NASA gen-

erously provides GPCP 1DD data at ftp://meso.gsfc.

nasa.gov/pub/1dd-v1.2 and TRMM 3B42 data at https://

pmm.nasa.gov/data-access/downloads/trmm.

REFERENCES

Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in

climate and the hydrologic cycle.Nature, 419, 224–232, doi:10.1038/

nature01092; Corrigendum, 489, 590, doi:10.1038/nature11456.

Amante, C., and B. W. Eakins, 2009: ETOPO1 1 arc-minute global

relief model: Procedures, data sources and analysis. NOAA

Tech. Memo. NESDIS NGDC-24, 25 pp. [Available online

at https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/

docs/ETOPO1.pdf.]

Behrangi, A., M. Lebsock, S. Wong, and B. Lambrigtsen, 2012: On

the quantification of oceanic rainfall using spaceborne sensors.

J. Geophys. Res., 117, D20105, doi:10.1029/2012JD017979.

——,G. Stephens, R. F. Adler, G. J. Huffman, B. Lambrigtsen, and

M. Lebsock, 2014: An update on the oceanic precipitation

rate and its zonal distribution in light of advanced observa-

tions from space. J. Climate, 27, 3957–3965, doi:10.1175/

JCLI-D-13-00679.1.

Belnap, J., S. L. Phillips, andM. E.Miller, 2004: Response of desert

biological soil crusts to alterations in precipitation frequency.

Oecologia, 141, 306–316, doi:10.1007/s00442-003-1438-6.

Biasutti, M., and S. E. Yuter, 2013: Observed frequency and

intensity of tropical precipitation from instantaneous estimates.

J. Geophys. Res. Atmos., 118, 9534–9551, doi:10.1002/jgrd.50694.
Chen, M., R. E. Dickinson, X. Zeng, and A. N. Hahmann, 1996:

Comparison of precipitation observed over the continental

United States to that simulated by a climate model. J. Cli-

mate, 9, 2233–2249, doi:10.1175/1520-0442(1996)009,2233:

COPOOT.2.0.CO;2.

Cook, B., N. Zeng, and J. H. Yoon, 2012: Will Amazonia dry out?

Magnitude and causes of change from IPCC climate model

projections. Earth Interact., 16, doi:10.1175/2011EI398.1.

Dai,A., 2001:Global precipitation and thunderstorm frequencies. Part

I: Seasonal and interannual variations. J. Climate, 14, 1092–1111,

doi:10.1175/1520-0442(2001)014,1092:GPATFP.2.0.CO;2.

——, 2006: Precipitation characteristics in eighteen coupled cli-

mate models. J. Climate, 19, 4605–4630, doi:10.1175/

JCLI3884.1.

——, X. Lin, and K.-L. Hsu, 2007: The frequency, intensity, and

diurnal cycle of precipitation in surface and satellite obser-

vations over low- and mid-latitudes. Climate Dyn., 29, 727–

744, doi:10.1007/s00382-007-0260-y.

Englehart, P. J., and A. V. Douglas, 1985: A statistical analysis of

precipitation frequency in the conterminous United States,

including comparisons with precipitation totals. J. Climate

Appl.Meteor.,24, 350–362, doi:10.1175/1520-0450(1985)024,0350:

ASAOPF.2.0.CO;2.

Fasullo, J. T., and K. E. Trenberth, 2012: A less cloudy future: The

role of subtropical subsidence in climate sensitivity. Science,

338, 792–794, doi:10.1126/science.1227465.
Gehne, M., T. M. Hamill, G. N. Kiladis, and K. E. Trenberth, 2016:

Comparison of global precipitation estimates across a range

of temporal and spatial scales. J. Climate, 29, 7773–7795,

doi:10.1175/JCLI-D-15-0618.1.

Held, I. M., and B. J. Soden, 2006: Robust responses of the hy-

drologic cycle to global warming. J. Climate, 19, 5686–5699,

doi:10.1175/JCLI3990.1.

Herold, N., L. V. Alexander, M. G. Donat, S. Contractor, and

A. Becker, 2016: How much does it rain over land? Geophys.

Res. Lett., 43, 341–348, doi:10.1002/2015GL066615.

Hou, A. Y., and Coauthors, 2014: The Global Precipitation Mea-

surement mission. Bull. Amer. Meteor. Soc., 95, 701–722,

doi:10.1175/BAMS-D-13-00164.1.

6002 JOURNAL OF CL IMATE VOLUME 30

http://github.com/apendergrass/rain-metrics-python
http://github.com/apendergrass/rain-metrics-python
ftp://meso.gsfc.nasa.gov/pub/1dd-v1.2
ftp://meso.gsfc.nasa.gov/pub/1dd-v1.2
https://pmm.nasa.gov/data-access/downloads/trmm
https://pmm.nasa.gov/data-access/downloads/trmm
http://dx.doi.org/10.1038/nature01092
http://dx.doi.org/10.1038/nature01092
http://dx.doi.org/10.1038/nature11456
https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/docs/ETOPO1.pdf
https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/docs/ETOPO1.pdf
http://dx.doi.org/10.1029/2012JD017979
http://dx.doi.org/10.1175/JCLI-D-13-00679.1
http://dx.doi.org/10.1175/JCLI-D-13-00679.1
http://dx.doi.org/10.1007/s00442-003-1438-6
http://dx.doi.org/10.1002/jgrd.50694
http://dx.doi.org/10.1175/1520-0442(1996)009<2233:COPOOT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1996)009<2233:COPOOT>2.0.CO;2
http://dx.doi.org/10.1175/2011EI398.1
http://dx.doi.org/10.1175/1520-0442(2001)014<1092:GPATFP>2.0.CO;2
http://dx.doi.org/10.1175/JCLI3884.1
http://dx.doi.org/10.1175/JCLI3884.1
http://dx.doi.org/10.1007/s00382-007-0260-y
http://dx.doi.org/10.1175/1520-0450(1985)024<0350:ASAOPF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1985)024<0350:ASAOPF>2.0.CO;2
http://dx.doi.org/10.1126/science.1227465
http://dx.doi.org/10.1175/JCLI-D-15-0618.1
http://dx.doi.org/10.1175/JCLI3990.1
http://dx.doi.org/10.1002/2015GL066615
http://dx.doi.org/10.1175/BAMS-D-13-00164.1


Huffman, G. J., and D. T. Bolvin, 2013: Version 1.2 GPCP one-

degree daily precipitation data set documentation. NASA

Goddard Space Flight Center Rep., 27 pp. [Available online at

ftp://meso.gsfc.nasa.gov/pub/1dd-v1.2/1DD_v1.2_doc.pdf.]

——, R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis,

R. Joyce, B. McGavock, and J. Susskind, 2001: Global pre-

cipitation at one-degree daily resolution from multisatellite

observations. J. Hydrometeor., 2, 36–50, doi:10.1175/

1525-7541(2001)002,0036:GPAODD.2.0.CO;2.

——, and Coauthors, 2007: The TRMM Multisatellite Pre-

cipitation Analysis (TMPA): Quasi-global, multiyear,

combined-sensor precipitation estimates at fine scales.

J. Hydrometeor., 8, 38–55, doi:10.1175/JHM560.1.

Hurrell, J. W., and Coauthors, 2013: The Community Earth System

Model: A framework for collaborative research. Bull. Amer.

Meteor. Soc., 94, 1339–1360, doi:10.1175/BAMS-D-12-00121.1.

Kay, J. E., and Coauthors, 2015: The Community Earth System

Model (CESM) large ensemble project: A community re-

source for studying climate change in the presence of internal

climate variability. Bull. Amer. Meteor. Soc., 96, 1333–1349,

doi:10.1175/BAMS-D-13-00255.1.

Kooperman, G. J., M. S. Pritchard, M. A. Burt, M. D. Branson, and

D. A. Randall, 2016: Robust effects of cloud super-

parameterization on simulated daily rainfall intensity statistics

across multiple versions of the Community Earth System Model.

J. Adv.Model. Earth Syst., 8, 140–165, doi:10.1002/2015MS000574.

Kummerow, C., andL.Giglio, 1995:Amethod for combining passive

microwave and infrared rainfall observations. J. Atmos. Oceanic

Technol., 12, 33–45, doi:10.1175/1520-0426(1995)012,0033:

AMFCPM.2.0.CO;2.

Lebsock, M. D., and T. S. L’Ecuyer, 2011: The retrieval of warm

rain from CloudSat. J. Geophys. Res., 116, D20209,

doi:10.1029/2011JD016076.

Medeiros, B., D. L. Williamson, C. Hannay, and J. G. Olson, 2012:

Southeast Pacific stratocumulus in the Community Atmosphere

Model. J.Climate, 25, 6175–6192, doi:10.1175/JCLI-D-11-00503.1.

Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G.

Houston, 2012a: An overview of the Global Historical

Climatology Network-Daily Database. J. Atmos. Oceanic

Technol., 29, 897–910, doi:10.1175/JTECH-D-11-00103.1.

——, and Coauthors, 2012b: Global Historical Climatology

Network - daily (GHCN-Daily), version 3.21. NOAA National

Climatic Data Center, accessed 9 July 2015, doi:10.7289/

V5D21VHZ.

Min, S. K., X. Zhang, F.W. Zwiers, andG. C. Hegerl, 2011: Human

contribution to more-intense precipitation extremes. Nature,

470, 378–381, doi:10.1038/nature09763.

Pall, P., M. R. Allen, and D. A. Stone, 2007: Testing the Clausius–

Clapeyron constraint on changes in extreme precipitation

under CO2 warming. Climate Dyn., 28, 351–363, doi:10.1007/

s00382-006-0180-2.

Pendergrass, A. G., and D. L. Hartmann, 2014a: Two modes of

change of the distribution of rain. J. Climate, 27, 8357–8371,

doi:10.1175/JCLI-D-14-00182.1.

——, and ——, 2014b: Changes in the distribution of rain fre-

quency and intensity in response to global warming. J. Climate,

27, 8372–8383, doi:10.1175/JCLI-D-14-00183.1.

Petty, G. W., 1995: Frequencies and characteristics of global oce-

anic precipitation from shipboard present-weather reports.

Bull. Amer. Meteor. Soc., 76, 1593–1616, doi:10.1175/

1520-0477(1995)076,1593:FACOGO.2.0.CO;2.

Ricko, M., R. F. Adler, and G. J. Huffman, 2016: Climatology and

interannual variability of quasi-global intense precipitation

using satellite observations. J. Climate, 29, 5447–5468,

doi:10.1175/JCLI-D-15-0662.1.

Sherwood, S. C., S. Bony, and J. L.Dufresne, 2014: Spread inmodel

climate sensitivity traced to atmospheric convective mixing.

Nature, 505, 37–42, doi:10.1038/nature12829.

Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation

in global models. J. Geophys. Res., 115, D24211, doi:10.1029/

2010JD014532.

Stone, D. A., A. J. Weaver, and F. W. Zwiers, 2000: Trends in

Canadian precipitation intensity. Atmos.–Ocean, 38, 321–347,

doi:10.1080/07055900.2000.9649651.

Sun, Y., S. Solomon, A. Dai, and R.W. Portmann, 2006: How often

does it rain? J. Climate, 19, 916–934, doi:10.1175/JCLI3672.1.

——,——,——, and——, 2007: How often will it rain? J. Climate,

20, 4801–4818, doi:10.1175/JCLI4263.1.
Venugopal, V., andM. J.Wallace, 2016: Climatology of contribution-

weighted tropical rain rates based on TRMM 3B42. Geophys.

Res. Lett., 43, 10 439–10 447, doi:10.1002/2016GL069909.

Watterson, I. G., and M. R. Dix, 2003: Simulated changes due to

global warming in daily precipitation means and extremes and

their interpretation using the gamma distribution. J. Geophys.

Res., 108, 4379, doi:10.1029/2002JD002928.

Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How

much more rain will global warming bring? Science, 317, 233–

235, doi:10.1126/science.1140746.

1 AUGUST 2017 P ENDERGRAS S AND DESER 6003

ftp://meso.gsfc.nasa.gov/pub/1dd-v1.2/1DD_v1.2_doc.pdf
http://dx.doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2
http://dx.doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2
http://dx.doi.org/10.1175/JHM560.1
http://dx.doi.org/10.1175/BAMS-D-12-00121.1
http://dx.doi.org/10.1175/BAMS-D-13-00255.1
http://dx.doi.org/10.1002/2015MS000574
http://dx.doi.org/10.1175/1520-0426(1995)012<0033:AMFCPM>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(1995)012<0033:AMFCPM>2.0.CO;2
http://dx.doi.org/10.1029/2011JD016076
http://dx.doi.org/10.1175/JCLI-D-11-00503.1
http://dx.doi.org/10.1175/JTECH-D-11-00103.1
http://dx.doi.org/10.7289/V5D21VHZ
http://dx.doi.org/10.7289/V5D21VHZ
http://dx.doi.org/10.1038/nature09763
http://dx.doi.org/10.1007/s00382-006-0180-2
http://dx.doi.org/10.1007/s00382-006-0180-2
http://dx.doi.org/10.1175/JCLI-D-14-00182.1
http://dx.doi.org/10.1175/JCLI-D-14-00183.1
http://dx.doi.org/10.1175/1520-0477(1995)076<1593:FACOGO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1995)076<1593:FACOGO>2.0.CO;2
http://dx.doi.org/10.1175/JCLI-D-15-0662.1
http://dx.doi.org/10.1038/nature12829
http://dx.doi.org/10.1029/2010JD014532
http://dx.doi.org/10.1029/2010JD014532
http://dx.doi.org/10.1080/07055900.2000.9649651
http://dx.doi.org/10.1175/JCLI3672.1
http://dx.doi.org/10.1175/JCLI4263.1
http://dx.doi.org/10.1002/2016GL069909
http://dx.doi.org/10.1029/2002JD002928
http://dx.doi.org/10.1126/science.1140746

