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ABSTRACT: The approximately century-long instrumental record of precipitation over land reflects a single sampling of

internal variability. Thus, the spatiotemporal evolution of the observations is only one realization of ‘‘what could have

occurred’’ given the same climate system and boundary conditions but different initial conditions. While climate models

can be used to produce initial-condition large ensembles that explicitly sample different sequences of internal variability,

an analogous approach is not possible for the real world. Here, we explore the use of a statistical model for monthly

precipitation to generate synthetic ensembles based on a single record. When tested within the context of the NCAR

Community Earth System Model version 1 Large Ensemble (CESM1-LE), we find that the synthetic ensemble can

closely reproduce the spatiotemporal statistics of variability and trends in winter precipitation over the extended con-

tiguous United States and that it is difficult to infer the climate change signal in a single record given the magnitude of the

variability. We additionally create a synthetic ensemble based on the Global Precipitation Climatology Centre (GPCC)

dataset, termed the GPCC-synth-LE; comparison of the GPCC-synth-LE with the CESM1-based ensembles reveals

differences in the spatial structures and magnitudes of variability, highlighting the advantages of an observationally

based ensemble. We finally use the GPCC-synth-LE to analyze three water resource metrics in the upper Colorado River

basin: frequency of dry, wet, and whiplash years. Thirty-one-year ‘‘climatologies’’ in the GPCC-synth-LE can differ by

over 20% in these key water resource metrics due to sampling of internal variability, and individual ensemble members

in the GPCC-synth-LE can exhibit large near-monotonic trends over the course of the last century due to sampling of

internal variability alone.
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1. Introduction

Precipitation is highly variable both spatially and tempo-

rally. Understanding and preparing for this variability has

always been critical to human societies, which often rely on

consistent water supplies throughout and between years.

Given the importance of precipitation and water availability,

there has been substantial focus on understanding and pre-

dicting changes in precipitation in response to anthropogenic

radiative forcing (e.g., Held and Soden 2006; Trenberth 2011;

Durack et al. 2012; Sarojini et al. 2016; Kooperman et al. 2018).

However, the trajectory of the past and future climate system

is a function of not only anthropogenic radiative forcing, but

also a random sampling of internal variability. The internal

variability emerges from processes intrinsic to the coupled

climate system and is not generally predictable after any

memory of initial conditions is lost. Because of the highly

variable nature of precipitation, the ratio of the externally

forced trend in regional precipitation to internal variability is

small over the observational record (e.g., McKinnon andDeser

2018), and the ‘‘time of emergence’’—when the forced signal

exceeds the noise—is not likely to occur formultiple decades in

many regions (Giorgi and Bi 2009; Mahlstein et al. 2012). Thus,

in addition to understanding the forced trend, it is equally critical

to properly quantify and model the internal variability of pre-

cipitation, which can itself lead to unforcedmultidecadal trends.

A dominant source of internal variability is the random fluc-

tuations of the atmospheric circulation. Recent work (Deser

et al. 2018) demonstrated how different sampling of this un-

predictable component of circulation variability, using either

climate model ensembles or statistical resampling of the obser-

vations, led to different inferences about the influence of El

Niño–Southern Oscillation (ENSO) on North American pre-

cipitation. Indeed, most of the variability in winter U.S. West

Coast precipitation has been attributed to internal atmospheric

variability rather than tropical or extratropical sea surface

temperature (SST) forcing (Dong et al. 2018; Zhang et al. 2021).

On top of this atmospherically generated noise, which has a

large amplitude butminimal year-to-yearmemory, precipitation

can exhibit lower-frequency variations due to ocean influences.

These oceanic sources of internal variability, and the atmo-

spheric teleconnections that they induce, are often associated

with well-known modes of interannual-to-multidecadal climate

fluctuations, particularly ENSO (Ropelewski and Halpert 1987),
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the Pacific decadal oscillation (PDO; Deser et al. 2004; Wang

et al. 2014; Zhang and Delworth 2015; Newman et al. 2016),

and the Atlantic multidecadal variability (AMV;Martin et al.

2014; L’Heureux et al. 2015; Sun et al. 2015; Ruprich-Robert

et al. 2018; Simpson et al. 2019).

Cognizant of the important role of internal variability in

the climate system—including both atmospheric noise and

lower-frequency SST-driven modulations—climate modelers

have advanced the concept of ‘‘initial-condition large ensem-

bles’’ for assessing climate variability and change. Such large

ensembles consist of multiple simulations (typically 30–100)

with a single fully coupled climate model under a particular

radiative forcing scenario, but with perturbations to the initial

conditions. The resulting ensemble spread can be used to

characterize the uncertainty in any given climate parameter at

any point in time due to unpredictable sampling of internal

variability (e.g., Deser et al. 2012; Kay et al. 2015; Maher et al.

2019; Tél et al. 2020). These large ensembles have been used to

demonstrate the irreducible uncertainty in climate trends (see

Deser et al. 2020 for a recent review) and can be powerful tools

for decision-making (Mankin et al. 2020) but do suffer from

biases in their simulation of variability and the forced response

(McKinnon and Deser 2018; Suarez-Gutierrez et al. 2020; von

Trentini et al. 2020).

A complementary approach to the use of numerical climate

simulations is the formulation of statistical models based on the

observational record. A common tool used for the purposes of

water engineering and planning is the stochastic weather gen-

erator (e.g., Wilks and Wilby 1999), which can be used to

simulate time series of a quantity such as precipitation that

statistically resembles the observed values at a given location.

While these generators have historically focused on high-

frequency (daily or subdaily) variability at a single location,

they are increasingly designed to better capture decadal vari-

ability (Chen et al. 2010) and to incorporate the spatial cor-

relation structure of precipitation variability at multiple sites

within a single watershed or other entities of comparable size

(Kleiber et al. 2012; Steinschneider and Brown 2013; Verdin

et al. 2015; Chen et al. 2018). Nevertheless, these approaches

have typically focused on the spatial and temporal scales of

weather, rather than climate.

Here, we combine the philosophies of climate model large

ensembles and stochastic weather generators into a method-

ology that allows for the production of synthetic ensembles

from the information contained in a single climate record, such

as the observations. Our synthetic ensembles preserve both the

spatial and temporal correlation structure of precipitation

variability on seasonal to multidecadal time scales, in contrast

to methods that focus only on the temporal variability at each

location separately (e.g., Thompson et al. 2015; Castruccio

et al. 2019), and so cannot be used to explore variability in

large-scale precipitation patterns.

The current work advances the statistical methodology of

McKinnon et al. (2017) and McKinnon and Deser (2018) and

contains novel results based on the synthetic ensembles. The

updated statistical methodology focuses on monthly average

precipitation, improves the modeling of the coupled ocean–

atmosphere modes including retaining the seasonal cycle of

ENSO amplitudes, and contains an automated, rule-based

method to choose the block size used in the statistical resam-

pling process. Further, while our prior work focused solely on

50-yr trends as a metric for variability, in this work we validate

our synthetic ensembles using multiple metrics for internal

variability and use the validation process to explore the more

general topic of the challenges of inferring climate statistics

from limited data records. We additionally present an analysis

of precipitation and water resource metrics for the upper

Colorado River basin, a major source of water for the western

United States.

The remainder of the paper proceeds as follows. Section 2

provides an overview of the datasets and statistical model used

to create the synthetic climate ensembles. Section 3 examines

our ability to estimate certain statistical properties of precipi-

tation from a limited record, provides validation for our syn-

thetic ensemble methodology, and compares the variability in

the observations to that in a climate model. Section 4 applies

the synthetic ensemble methodology to precipitation in the

upper Colorado River basin, with a focus on three key water

resource metrics. We discuss the implications of our findings

and conclude in section 5.

2. Data sources and statistical model

We first provide details of the climate model output and

observational data used in our analysis, and then describe the

statistical model used to create the synthetic ensembles.

a. Climate model output and observational data

We use monthly output of precipitation and SST at a nom-

inal spatial resolution of 18 in latitude and longitude from the

NCAR Community Earth System Model version 1 Large

Ensemble (CESM1-LE). The CESM1-LE is composed of 40

simulations of CESM1 that that branch off a parent simulation

on 1 January 1920; the spread across the ensemble was intro-

duced by adding round-off level perturbations (of order

10214 K) to the initial atmospheric temperatures (Kay et al.

2015). The CESM1-LE was forced by the historical forcing

scenario from 1920 to 2005 (Lamarque et al. 2010) and the

RCP8.5 scenario for 2006–2100 (Meinshausen et al. 2011). We

limit our analysis of CESM1-LE to the 1921–2005 period,

where we exclude the first year of the simulations (1920) to

reduce any influence of land and atmosphere initial condition

memory, and do not extend beyond the historical period be-

cause of different variability in the forcing related to a lack of

episodic volcanic eruptions in the RCP scenarios.

Precipitation observations at 18 resolution are from the

Global Precipitation Climatology Centre (GPCC; Schneider

et al. 2008), which provides a gridded land-only record of

precipitation from 1891 to the near present based on in situ

measurements. SST observations used to calculate the time

series of ENSO, PDO, andAMV for the observations are from

HadISST (Rayner et al. 2003).

Precipitation for both CESM1-LE and GPCC includes solid

and liquid forms and is normalized to the daily accumulation

rate in millimeters (mm) in all of our analyses. For both the

CESM1-LE output and the observations, we use the Climate
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Variability Diagnostics Package (Phillips et al. 2014) to cal-

culate the time series of the modes.

We transform precipitation before estimating the parame-

ters of our statistical model using a Box–Cox power transform

(Box and Cox 1964), which both guarantees that the modeled

precipitation amounts remain nonnegative and increases the

symmetry and normality of the precipitation distribution.

The increased symmetry improves the estimation of the

model parameters by reducing the influence of outliers. The

parameter l that controls the specific form of the transform is

selected via maximization of the log likelihood function for

the Gaussian distribution for each grid box and month inde-

pendently and has a typical value of 0.34 in CESM1-LE and

0.37 in GPCC. To allow for intercomparison of model pa-

rameters between members of the CESM1-LE, l is estimated

using the first member and then used for all members. The

few monthly precipitation values that are exactly zero are

increased to a very small positive number so that the trans-

form is valid everywhere.

b. Statistical model

We first propose to describe monthly average precipitation

over land as a function of four different categories of terms: 1)

the mean state, including the annual cycle; 2) the response to

external forcing (forced component); 3) the response to large-

scale, coupled ocean–atmosphere modes as summarized by the

ENSO, PDO, and AMV indices; and 4) the residual ‘‘cli-

mate noise’’:

Pi,t 5b
i,m(t)
0 1b

i,m(t)
F Ft 1b

i,m(t)
ENSOENSOt 1b

i,m(t)
PDO?

PDOt
?

1b
i,m(t)
AMVAMVt 1 �i,t (1)

In our notation, t is time,m(t) is the month, and i is an index of

location (grid box). The b coefficients on the right-hand side

(except b0, the mean) describe the monthly varying spatial

pattern of sensitivity of P, the transformed monthly average

precipitation, to anthropogenic forcing, ENSO, PDO, and

AMV, respectively.

Following Dai et al. (2015), we initially define the time series

used for the estimation of the forced component, Ft, as the

global mean, ensemble mean time series of near-surface air

temperature from the CESM1-LE. By projecting P onto a

time series indicative of the evolution of the forced response,

the amount of unforced variability aliased onto the forced signal

can be reduced compared to assuming a linear trend, although

not eliminated. Nevertheless, as will be discussed in section 3a,

the forced signal in precipitation at a regional level is so small

compared to the noise that we find we cannot estimate b
i,m(t)
F

sufficiently well using a single record, so we remove the forced

term from our model, and instead use the simpler model,

Pi,t 5b
i,m(t)
0 1b

i,m(t)
ENSOENSOt1b

i,m(t)
PDO?

PDOt
? 1b

i,m(t)
AMVAMVt 1 �i,t

(2)

The time series ENSOt is the standardNiño-3.4 SST index. The

PDO time series is calculated as the principal component as-

sociated with the leading empirical orthogonal function of SST

anomalies in the North Pacific, poleward of 208N, where the

anomalies are calculated through removing both the climato-

logical annual cycle and global-average SST from each grid

box. The time series of ENSO and the PDO are highly corre-

lated, and components of the PDO have been suggested to be

midlatitude responses to ENSO (Newman et al. 2016). To

more clearly parse the two modes in a statistical sense, we

create a version of the PDO time series, PDOt
? that is or-

thogonal to the standard Niño-3.4 time series by removing the

projection of the PDO time series onto the Niño-3.4 time se-

ries. Like the orthogonalized versions of the PDO proposed by

Chen and Wallace (2016) and Wills et al. (2018), the SST

anomaly pattern associated with PDOt
? is dominated by the

classical PDO pattern in the midlatitudes with a negative re-

gion of SST anomalies extending from Japan into the central

Pacific and a positive region off the west coast of North

America, with a much weaker tropical component (supple-

mentary Fig. 1 in the online supplemental material). The dif-

ference between the SST anomaly pattern of the traditional

PDO and that associated with PDOt
? strongly resembles an El

Niño pattern and has a pattern correlation with the SST

anomaly pattern associated with ENSOt of 0.95 (not shown).

The AMV time series, AMVt, is calculated as the average of

SST anomalies in the NorthAtlantic (08–608N, 808W–08) minus

the near-global mean SST (608S–608N) (Trenberth and Shea

2006). The time series is smoothed with a low-pass Butterworth

filter using a forward and backward digital filter and a cutoff

frequency of 1/20 yr21 in order to isolate the component of the

AMV that is primarily ocean driven (Delworth et al. 2017) and

has been shown to have downstream impacts on precipitation

(Simpson et al. 2018). The forward–backward Butterworth filter

is maximally flat in the passband, does not introduce phase

shifts, and performs comparably to other low-pass filters (e.g.,

Roberts and Roberts 1978). The AMVt time series is not sig-

nificantly correlated at the 0.05 level with ENSOt or PDOt
? at

zero lag. At nonzero lags, there are greater correlations be-

tween AMVt and PDOt
?, peaking as high as 0.57 when leads

AMVt by 21 years. However, given the very few degrees of

freedom in the AMVt time series, it is difficult to assess

whether the relationships are statistically significant and

meaningful using the data alone. All three time series

(ENSOt, PDOt
?, and AMVt) are normalized to have unit

standard deviation.

The model is fit using ordinary least squares regression

separately for each month due to the known seasonal depen-

dence of the atmospheric teleconnections associated with the

modes. The initial estimates of each model parameter are then

projected onto the first two harmonics of the annual cycle to

enforce the expected smoothness in seasonality. The residual

�i,t is the ‘‘climate noise’’ that primarily arises from internal

atmospheric dynamics but could also reflect influences from

other modes of variability that are uncorrelated with those

explicitly considered here. In general, the interannual variance

in the residual is greater than that linked to the modes: the

fraction of variance in the residual exceeds 0.9 for December–

February (DJF) in many places across the domain, and still

generally exceeds 0.7 even in the regions with strong tele-

connections (Fig. 1). As a result, there is considerable scatter
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around a regression on the mode time series; however, there is

not clear evidence of nonlinearity (e.g., Figs. 1d,f).

c. Generating the synthetic ensemble

To move from Eq. (2), which simply describes the depen-

dence of precipitation on our chosen covariates, to the creation

of an ensemble, we must appropriately introduce stochasticity.

In the context of Eq. (2), we view all b terms as fixed and re-

flective of the physics of the climate system. In contrast, we

view the time series of each mode (ENSOt, PDOt
?, and AMVt)

as well as the residual (�i,t) as stochastic.

To produce alternative versions of the time series of ENSOt,

PDOt
?, andAMVt, we employ the IterativeAmplitudeAdjusted

Fourier Transform (IAAFT) method (Schreiber and Schmitz

1996), which produces synthetic time series that have the same

amplitude distributions and power spectra as the originals. We

additionally modify the algorithm to retain the seasonal cycle of

ENSO amplitudes. An unavoidable constraint of the IAAFT

approach is the reliance on the empirical amplitude distribution

and power spectra, which themselves are limited by what we

have observed. For example, a synthetic ENSO time series

would never contain an El Niño event that is larger than the

largest observed event, even if such an event could theoretically

be produced by the climate system. The resulting synthetic time

series of the three modes, by design, do not exhibit coherence

with each other, which is consistent with the lack of significant

synchronous coherence of themodes in the observational record

(supplementary Fig. 2).

To produce alternative realizations of �i,t, we perform a

moving block bootstrap in space and time, where the spatial

block size is the full domain and the temporal block size is

constrained to be an integer number of years to retain any

seasonality in the variability. To select the (temporal) block

size, we first use the methods of Wilks (1997) [see their

Eq. (19)], which were developed such that a moving block

bootstrap-based significance test on autocorrelated data would

FIG. 1. The relative importance of the residual vs the modes in precipitation variability. (a) The ratio of the

interannual variance in DJF precipitation in the residual term to that in the residual and modes for CESM1-LE.

Variances are calculated for each member and averaged. (b) As in (a), but for GPCC. (c) The time series of

transformed January precipitation (gray) from GPCC at a grid box in the upper Colorado River basin (38.58N,

109.58W), the estimated contribution of the modes (blue), a single synthetic time series (orange), and the contri-

bution to that time series from the modes (green). (d) The predicted (transformed) precipitation from the mean

value and modes (horizontal axis, blue line) vs the actual transformed precipitation (vertical axis). The scatter

around the line is the residual �. (e),(f) As in (c) and (d), but for a grid box in Georgia (31.58N, 83.58W) where the

relative contribution of themodes is greater. The spatial pattern of the precipitation anomalies in years indicated by

purple dots (1972 and 1991) in (c) and (e) are shown in Figs. 4a and 4c, respectively.
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reject the null hypothesis appropriately, to identify a block size

for each grid box i and month m. The selected block size for

each grid box is summarized in supplementary Fig. 3, which

shows the largest block size selected across months averaged

across the full CESM1-LE, for a single member of the CESM1-

LE, for the GPCC observations, and the average difference

between GPCC and individual members of the CESM1-LE.

In most regions outside of North America and Europe, the

GPCC-based block size is greater than that estimated using

individual members of the CESM1-LE. The block size for the

full spatial field is then chosen as the 97th percentile across grid

boxes and months of the selected block sizes, excluding the dry

subtropics (108–308 in both hemispheres) where it is common

to have no precipitation for certain months of the year, leading

to estimates of very high autocorrelation. We select a high

percentile rather than the maximum to avoid the undue influ-

ence of a small number of outliers. The block size identified for

CESM1-LE is 2 years, and that for the observed precipitation

from GPCC is 4 years. The use of a moving block bootstrap

in time allows us to easily retain the complex spatial corre-

lation structure in precipitation without having to rely on a

spatial model with strong parametric assumptions, such as

isotropy and spatial stationarity (e.g., Beusch et al. 2020 for

temperature).

Using the subscript ‘‘synth’’ to indicate synthetic data, we

can place our alternative versions of the mode time series and

climate noise back into Eq. (2) to produce new versions of the

precipitation data as follows:

Pi,t
synth 5bi,m

0 1bi,m
ENSOENSOt

synth 1bi,m
PDO?

PDOt
?synth

1bi,m
AMVAMVt

synth 1 �i,tsynth (3)

The approach has been applied across the global landmasses,

although we focus our subsequent discussion on a subset of

NorthAmerica centered on the contiguous United States (248–
608N, 2308–3008E) during DJF.

3. How well do we know the statistics of precipitation
from a limited data record?

Analysis of climate model large ensembles has highlighted

the challenge of estimating the precipitation response to hu-

man influence (Deser et al. 2014) and ENSO teleconnections

(Deser et al. 2018) from the observational record or a small

number of model simulations due to the influence of internal

variability independent of the desired signal. In the context of

the synthetic ensemble methodology, these topics surface in

two ways: first, in the variability of the model parameters of

Eqs. (1) and (2), and second, in any dependence of the statistics

of precipitation on the specific record on which a synthetic

ensemble is based.

We explore both of these questions using 85 years (1921–

2005) of model output from the CESM1-LE as our testbed (see

Fig. 4 in Deser et al. 2020); this record length is comparable to

that of many in situ–based climate datasets. We fit Eqs. (1) and

(2) to each of the 40 members of the CESM1-LE, and then use

Eq. (3) to produce 40 synthetic ensemble members from each

original member of the CESM1-LE, producing a total of 1600

ensemble members that make up the CESM1-synth-LE. We

then compare the parameters and statistical characteristics of

the synthetic ensemble those of the actual CESM1-LE, which

is viewed as the truth for the purposes of validation.

Since our ultimate goal is to apply the synthetic methodol-

ogy to the observations, we also fit Eq. (2) to the GPCC

dataset, using the mode time series based on observed SSTs.

The mode time series and residual are randomized 1000 times

to produce the GPCC-synth-LE.

We do not account for observational uncertainty (e.g., sen-

sitivity to the choice of dataset) in our mode time series, or in

the precipitation dataset, in order to focus on uncertainty due

to sampling internal variability alone. Similarly, we estimate a

single set of regression coefficients based on the mode time

series and a fixed period of record, and therefore do not

propagate uncertainty in the regression coefficients through

the model, although it would be straightforward to do so by

performing a bootstrap in time, and repeatedly reestimating

the parameter values.

a. Uncertainty in parameter estimation

Through the process of creating the CESM1-synth-LE, we

have 40 estimates—one from each original member of the

CESM1-LE—of each b parameter in the statistical model. The

‘‘true’’ values of the b parameters—uncontaminated by sam-

pling of internal variability—should be the same in each en-

semble member; we can therefore use the spread across the 40

estimates as a metric for the uncertainty in each parameter due

to sampling of internal variability. Figure 2 shows the average

estimate of each parameter across the CESM1-LE, the stan-

dard deviation of the parameter estimates, and the signal-to-

noise ratio (SNR), defined as the absolute value of average

divided by standard deviation.

We first demonstrate the challenge of inferring the forced

component using Eq. (1). The SNR of bF is less than one ev-

erywhere and is often close to zero (Fig. 2c). Even regions with

seemingly large amplitudes for the forced response such as

northern Mexico and the U.S. Southwest have a SNR less than

one due to the large spread across the ensemble. To more

completely visualize the variability in the bF estimates, we plot

the map of the parameter estimate for each member of the

CESM1-LE (supplementary Fig. 4). The large-scale spatial

structures in each panel differ dramatically from each other,

with no clear and consistent behavior across the members.

Given that the forcing is the same in each model, these dif-

ferences indicate that it is not possible to accurately estimate

the forced component using regression methods for precipi-

tation; rather, the estimates of bF are strongly contaminated by

sampling of internal variability. We thus choose to omit the

forced component term from our model. This omission does

not mean that there is no climate change signal in precipitation,

but rather that it is too small compared to the noise to be es-

timated in the regression model given a single record. All

subsequent results do not include estimation of the forced

component, that is, are based on Eq. (2). Using an alternative

method, low-frequency component analysis (Wills et al. 2018),

to estimate the forced response does not increase the SNR

(supplementary Fig. 5).
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In contrast to the forced component, the across-ensemble

spread in estimating the b coefficients for each coupled ocean–

atmosphere mode is small. For ENSO, the SNR exceeds two

across the western and southern parts of the domain where

ENSO influences precipitation and is less than one only

in regions with a weak ENSO teleconnection (Figs. 2d–f).

Similarly, the SNR for the precipitation response to PDO? is

greater than one in most regions where there is a signal, with

the exception of interior California (Figs. 2g–i). The SNR for

the AMV is below one in most places, which reflects the small

magnitude of the signal everywhere (Figs. 2j–l). The small

signal identified for the AMV, and to some extent PDO?, at
least within CESM1, is encouraging for our ability to estimate

the statistics of precipitation from the observational record,

since we have limited samples of these lower-frequency modes

of variability.

The high SNR for the b coefficients (apart from the forced

response) suggests that we can estimate these coefficients

within the single observational record. The GPCC-based

bmaps (Fig. 3) share many of the same features as CESM1,

with a dipole of wetting/drying along the West Coast and

wetting in the Southeast in response to ENSO; a similar but

weaker dipole as well as drying in theMidwest in response to

PDO?, and a weak response to the AMV.

b. Spatiotemporal structures in the synthetic ensembles

Having established that the parameters of the statistical

model in Eq. (2) can be well estimated using a single record,

FIG. 2. The (left) mean value, (center) standard deviation, and (right) SNR (absolute value of the mean divided by standard deviation)

of the DJF model parameters from Eq. (1) estimated using each member of the CESM1-LE. Parameters are (from top to bottom) bi,DJF
F ,

bi,DJF
ENSO, b

i,DJF
PDO? , and bi,DJF

AMV. Recall that precipitation is transformed via a Box–Cox power transformation before model fitting, so the

parameters cannot be interpreted in terms of standard precipitation units.Model parameters are estimated for eachmonth separately, and

then averaged to produce the seasonal-average maps.

FIG. 3. The DJF-average b coefficient maps from fitting Eq. (2) to the GPCC data.
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we turn to analysis of the synthetic ensembles. To build in-

tuition for the synthetic ensemble approach, we first show two

example fields of January precipitation anomalies from the

GPCC dataset and GPCC-synth-LE (Fig. 4). The Januarys

were arbitrarily chosen to align with low and high January

precipitation in the upper Colorado River basin and Georgia,

respectively, from Figs. 1c and 1e. As can be seen in these

examples, the synthetic ensemble approach produces spa-

tially coherent precipitation fields that qualitatively repro-

duce the spatial correlation structures of the original data.

The spatial correlation structures are generally retained in

the synthetic ensemble due to the spatial structure of the

teleconnection maps (Fig. 3) and the use of the block boot-

strap approach, which retains the spatial correlation in the

residual �i,t.

To generalize this evaluation to the full spatiotemporal

variability in DJF precipitation, we perform an empirical

orthogonal function (EOF) analysis on DJF-average precipita-

tion in the CESM1-LE, the CESM1-synth-LE, and the GPCC-

synth-LE, where the EOFs are calculated in each ensemble by

appending themembers in time (Fig. 5). For the EOF analysis of

the synthetic ensembles, we use the 40-member CESM1-synth-

LE constructed from the first member of the CESM1-LE, and

similarly only select the first 40 members of the GPCC-synth-

LE, to match the sample size of the original CESM1-LE. We

also present maps of the total variance in each ensemble for

comparison.

The total variance in DJF-precipitation in the CESM1-synth-

LE is nearly identical to that in the CESM1-LE (Figs. 5a,b).

Further, the first four EOFs in the CESM1-LE and the CESM1-

synth-LE are very similar in both their spatial patterns and

variance explained, indicating both that the synthetic ensemble

methodology retains the spatiotemporal structure of the original

data, and that fitting the synthetic ensemble with only a single

member is sufficient to capture these structures.

Comparing the GPCC-synth-LE to the CESM1-based en-

sembles, the total variance in the GPCC-synth-LE is smaller

almost everywhere, although the general structure of high var-

iance along the West Coast and a secondary maximum in the

Southeast is present in bothGPCCandCESM1.TheEOFs from

the GPCC-synth-LE share many of the large-scale spatial pat-

terns of those from theCESM1-based ensembles, although some

differences are evident, including a different sign of precipitation

anomalies in Texas for EOF1, a different location of the eastern

negative anomalies in EOF 2, and an opposite phasing of the

West Coast precipitation anomalies in EOF 3. Further, the

amplitudes of the GPCC-synth-LE EOFs over the western

half of the continent tend to be weaker than those of CESM1,

consistent with the smaller total variance. The variance

explained by the first four EOFs is greater in the CESM1-

based ensembles compared to the GPCC-synth-LE (60% vs

53%), and the CESM1-based ensembles have substantially

more variance in the first two EOFs than their GPCC-synth-

LE counterparts (46%–47% vs 32%).

c. Characteristics of temporal variance in the synthetic

ensembles

The large-scale spatiotemporal variability in precipitation

appears to be well captured by the synthetic ensembles, even

when the synthetic ensemble is based on a single record. We

now turn to other common metrics of precipitation variability

to continue to evaluate the synthetic ensemble approach and

assess the limits of what we can learn from a single record.

While there are innumerable metrics to summarize the statis-

tics of precipitation, here we focus on three: high-frequency

(,10 years) and low-frequency (.10 years) variability, and the

FIG. 4. Example precipitation fields from the GPCC dataset and the GPCC-synth-LE. (a) The observed pre-

cipitation anomaly in January 1972, which was relatively dry in the upper Colorado River basin. (b) The precipi-

tation anomaly from the first member of the GPCC-synth-LE in January 1972. (c) The observed precipitation

anomaly in January 1991, which was relatively wet in Georgia. (d) The precipitation anomaly from the first member

of the GPCC-synth-LE in January 1991. The color bar is nonlinear.
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magnitude of extreme (low probability) events. We discuss our

findings about low-frequency variability in detail below and

refer the reader to the supplement for the other metrics.

Low-frequency variability is calculated as the interannual

variance in DJF-average precipitation after using a low-pass

forward and backward digital Butterworth filter with a fre-

quency cutoff of 1/10 yr21; the interannual variance calculation

excludes the first and last 5 years to avoid edge effects. Within

the context of the CESM1-LE, the best estimate of the low-

frequency variability is the average across the low-pass inter-

annual variance calculated for each ensemble member; the

spread across the ensemble indicates the uncertainty in this

quantity given an 85-yr record. Low-frequency variability is

maximized along the West Coast and has a secondary maxi-

mum spanning from the Southeast up the Eastern Seaboard

(Fig. 6a). By definition, the average difference between the

estimate of high-frequency variability in any given ensemble

member and the ensemble mean estimate is zero (Fig. 6b); the

spread across ensemble members as measured by the standard

deviation has a similar pattern but about a quarter of the magni-

tude of the ensemble mean estimate (Fig. 6c; note the different

color bar scale compared to Fig. 6a). To assess how well the esti-

mate of variability from a single ensemblemember—analogous to

having a single observational record—matches the ensemblemean

estimate of variability, we show the difference between the low-

frequency variability estimated using a single representative en-

semble member and the ensemble mean in Fig. 6d. This single

ensemble member shows regions of both over- and underestima-

tion of the low-frequency variability as expected, with the largest

differences along the West Coast, a region of high variability.

The above analysis was focused on the CESM1-LE alone,

but a similar approach can be used to validate our synthetic

FIG. 5. The total variance and first fourEOFs ofDJFprecipitation in each ensemble:CESM1-LE,CESM1-synth-LE, andGPCC-synth-LE.

(a)–(c) The total variance across years and members for each ensemble. (d)–(o) The spatial pattern associated with the first four EOFs from

each ensemble, whereEOFs are taken across years andmembers. The ensemble name,EOFnumber, and variance explained by theEOF is in

the associated subtitle. The CESM1-synth-LEEOFs are based on the 40 synthetic ensemble members produced from the first member of the

CESM1-LEalone, and theGPCC-synth-LEEOFs are similarly based on the first 40members of that ensemble.All color scales are nonlinear.
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ensemble methodology by asking whether the statistics in the

CESM1-synth-LE are comparable to those from the original

CESM1-LE. For each of the 40 members of the CESM1-synth-

LE based on a single member of the CESM1-LE, we estimate

the low-frequency variability as the average across the inter-

annual low-pass variance of the 40 members, giving us 40

estimates—each one based on single member of the CESM1-

LE—of the variability. We benchmark the variability in the

CESM1-synth-LE against the ensemble mean of the CESM1-

LE, which is viewed as the ‘‘truth.’’ Encouragingly, the

CESM1-synth-LE has similar low-frequency variability to the

original CESM1-LE (Fig. 6e). While it does exhibit a small

positive bias along the West Coast, the spread across the

ensemble is smaller than for the CESM1-LE. Further, the

difference between the low-frequency variability estimated

using a single ensemble member from CESM1-LE and the

true low-frequency variability is reduced by creating the

synthetic ensemble (Figs. 6f–h). In other words, the synthetic

ensemble produces a slightly biased simulation of low-

frequency variability but reduces the variance in the esti-

mates when given a single record.

The same conclusions—the synthetic ensemble successfully

captures the spatial structures of variability with a small bias

but decreased variance—hold for other metrics, including the

FIG. 6. Low-frequency variability (frequency , 1/10 yr21) of DJF precipitation in the CESM1-LE and the

CESM1-synth-LE. (a) The ensemble mean of the CESM1-LE; (b) the mean bias across ensemble members, cal-

culated as the mean difference between each ensemble member and the CESM1-LE ensemble mean; (c) the

standard deviation across ensemble members of the difference between each ensemble member and the CESM1-

LE ensemble mean; and (d) the difference between the ensemble member with the average bias and the ensemble

mean. (e)–(h) As in (a)–(d), but for the CESM1-synth-LE; bias is still assessed against the CESM1-LE ensemble

mean shown in (a). In all panels, the number in the lower-right-hand corner is the median value across the grid

boxes shown. Note that the color scale in all panels is nonlinear, and that the range in the bottom three rows is one

quarter of that in the top row.

15 DECEMBER 2021 MCK INNON AND DESER 9613

Brought to you by UNIVERSITY OF CALIFORNIA Los Angeles | Unauthenticated | Downloaded 11/10/21 10:28 PM UTC



high-frequency variability and the magnitude of the 150-yr

event (supplementary Figs. 6 and 7).

Since the synthetic ensemble approach allows us to simulate

many ‘‘years’’ of data, we also estimate the magnitude of the

500-yr event across the full CESM1-LE, which contains 3400

member-years of data, and compare it to estimates from the

CESM1-synth-LE (Fig. 7). While the bias and variance of the esti-

mates from the CESM1-synth-LE are, as expected, higher than

those for the othermetrics, the synthetic ensemble estimate is nearly

unbiased in themajority of the domain, indicating that the approach

can be used to estimate the probability of very extreme events.

Having validated our estimates of the high- and low-frequency

variability, and the 150- and 500-yr events, for DJF precipitation

in the CESM1-synth-LE, we present each metric based on the

GPCC-synth-LE (Fig. 8). In general, the GPCC-synth-LE ex-

hibits substantially less variance and smaller extremes in most of

the domain, with the exception of the Southeast, where it shows

larger variance and extremes than the CESM1-based en-

sembles (cf. the panels in Fig. 8 to supplementary Fig. 6a,

Fig. 6a, supplementary Fig. 7a, and Fig. 7a, respectively).

Using the 500-yr event and the grid box containing Sacramento,

California, as a specific example, the CESM1-LE simulates a

value of 14.9 mm day21, and the CESM1-synth-LE simulates a

95% range of 12.5–17.9mmday21, depending on whichmember

of the CESM1-LE it was constructed from. In contrast, the

GPCC-synth-LE suggests that the truemagnitude of the event is

much smaller, at 7.2 mm day21.

d. The relative contribution of the climate noise

All of the results thus far have been based on Eq. (3), in

which precipitation variability is a function of the dependence

on the three coupled ocean–atmosphere modes, ENSO, PDO,

andAMV, as well as the climate noise.What is the relative role

of the climate noise versus the large-scale coupled ocean–

atmosphere modes?

To answer this question, we produce ‘‘noise only’’ versions

of the CESM1-synth-LE and GPCC-synth-LE, in which the

residual climate noise �i,t is bootstrapped as before, but the

mode time series are not randomized. Thus, the spread across

the ensemble reflects different samples of the climate noise

alone. We then calculate the ratio of high- and low-frequency

variance in the noise only ensemble to that in the full ensemble,

where the ensemble mean is first removed from both ensembles.

This has the effect of removing the influence of the modes from

the noise only ensemble, since their time series are identical in

all of the synthetic ensemble members. In both ensembles, over

90% of the high-frequency variability and over 80% of the low-

frequency variability is due to residual climate noise atmost grid

boxes (Fig. 9).While this result may seem counterintuitive given

the minimal year-to-year memory in the climate noise, it results

from the fact that white noise has power across all frequencies,

and the contribution of the unpredictable atmospheric circula-

tion to precipitation variance is large (see alsoDong et al. 2018).

e. Validation of 50-yr trends

The prior analyses have demonstrated that the variability in

the CESM1-synth-LE closely matches the original CESM1-

LE. Our final validation focuses on the across-ensemble ranges

of 50-yr (1956–2005) trends in DJF precipitation in each en-

semble. Given that the synthetic ensembles have, by design, a

forced trend of zero, how do their trends compare to the

CESM1-LE, which does contain a forced component?

FIG. 7. Themagnitude of the 500-yr event inDJF precipitation. (a) The ‘‘true’’ estimate from the full CESM1-LE;

(b) the mean bias across ensemble members in the CESM1-synth-LE; (c) the standard deviation of the bias across

ensemble members in the CESM1-synth-LE; and (d) the difference between the CESM1-synth-LE ensemble

member with the average bias and the ‘‘truth’’ from the CESM1-LE. In all panels, the number in the lower-right-

hand corner is the median value across the grid boxes shown. Note that the color scale in all panels is nonlinear, and

that the range in (b)–(d) is one quarter of that in (a).
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That the influence of random sampling of internal vari-

ability dominates the forced climate signal for recent 50-yr

trends is confirmed by comparing the 5th and 95th percentiles

of 50-yr trends in DJF precipitation (calculated indepen-

dently at each grid box) in the CESM1-LE (Figs. 10a,b) to

those in the CESM1-synth-LE (Figs. 10c–f). At all locations,

the 5th percentile of trends is negative, while the 95th per-

centile is positive and of roughly equal magnitude, demon-

strating the small contribution of the forced component

compared to the random sampling of internal variability.

Thus, not surprisingly, the 5th and 95th percentile trends in

the CESM1-synth-LE are very similar in polarity, spatial

structure, and magnitude, as those in the CESM1-LE. The

slightly larger amplitude in the synthetic ensemble compared

to the original ensemble (Figs. 10g,h) is due to the small, but

nonzero, forced trend, which is deterministic, being mapped

onto the random internal variability in the synthetic ensem-

ble. The 5th and 95th percentiles of the trends in the GPCC-

synth-LE tend to have smaller magnitudes (Figs. 10i,j) than

those in the CESM1-synth-LE, consistent with CESM1’s

FIG. 8. Maps of (a) high-frequency variability (frequency. 1/10 yr21), (b) low-frequency variability (frequency,
1/10 yr21), (c) the magnitude of the 150-yr event, and (d) the magnitude of the 500-yr event in DJF precipitation from

theGPCC-synth-LE. In all panels, the number in the lower-right-hand corner is themedian value across the grid boxes

shown, and the color scales are nonlinear.

FIG. 9. The fraction of variance from the climate noise term. (a) The ratio of the high-frequency (.1/10 yr21)

variance in the ‘‘noise only’’ CESM1-synth-LE to the high-frequency variance in the full CESM1-synth-LE. (b) As

in (a), but for low-frequency (,1/10 yr21) variance. (c),(d) As in (a),(b), but for the GPCC-synth-LE. The variance

is calculated after the ensemble mean of each ensemble is removed, since the ‘‘noise only’’ ensembles share the

same temporal evolution of the modes.
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FIG. 10. Maps of the 5th and 95th percentiles (at each grid box) in 50-yr trends in DJF precipitation during 1956–

2005 for (a),(b) the CESM1-LE; (c),(d) the CESM1-synth-LE based on the first member of the CESM1-LE; (e),(f)

the full CESM1-synth-LE; (g),(h) the difference between the CESM1-synth-LE and CESM1-LE; and (i),(j) the

GPCC-synth-LE. The black outline shows the upper Colorado River basin, whose areal-average precipitation

statistics are shown in Fig. 11.
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overestimation of variance in most regions overall (recall

section 3b).

f. Challenges and opportunities of a synthetic ensemble
approach

In sum, the evaluation of the CESM1-synth-LE and creation

of the GPCC-synth-LE highlight both challenges and oppor-

tunities in using a synthetic ensemble approach. The signal-to-

noise maps in Fig. 2 demonstrate that, with an 85-yr record, the

impact of the coupled ocean–atmosphere modes on precipi-

tation can be estimated well in regions where their influences

are relatively large, but weaker teleconnections may be diffi-

cult to ascertain due to the sampling effects of independent

internal variability. In contrast, it remains challenging to esti-

mate the forced component of precipitation through standard

methods, because it is small compared to the variability.

Despite these estimation challenges, the CESM1-synth-LE

produces variability that is very similar to that of the original

CESM1-LE for two reasons. First, signals that are harder to

estimate—the response to the AMV or climate change—are

also smaller, so contribute less to estimations of variability.

Second, a large fraction of both high- and low-frequency pre-

cipitation variability is contained in the climate noise term,

whose structure remains largely intact through our block

bootstrap resampling methodology. The GPCC-synth-LE ex-

hibits spatiotemporal variability that is distinct from the

CESM1-based ensembles, with generally less variance overall,

particularly in the western United States. These differences

underscore the utility and importance of producing observa-

tionally based ensembles. Like CESM1-synth-LE, DJF pre-

cipitation variance in GPCC-synth-LE is dominated by the

climate noise term across a broad range of time scales, with

implications for predictability.

4. Application to western U.S. water resources

Precipitation in the upper Colorado River basin (see outline

in Fig. 10) supplies water to Arizona, California, Colorado,

Nevada, New Mexico, Utah, and Wyoming, and can vary

substantially from year-to-year based on the particular sam-

pling of internal variability (e.g., Harding et al. 2012). Here, we

use the GPCC-synth-LE to examine the effects of sampling

uncertainty on the characteristics of precipitation variability in

the upper Colorado River basin; a validation of the synthetic

ensemble approach for this region using the CESM1-LE as a

testbed is given in supplementary Fig. 8.

The distribution of DJF precipitation in the upper Colorado

River basin in the GPCC-synth-LE is similar to that of

the actual GPCC record (Fig. 11a), although it is clear that the

96-yr time series provides incomplete sampling of the distri-

bution, especially at the upper tail. This can be seen clearly in

Fig. 11b, which shows the 1st to 99th percentiles in actual ob-

servedGPCCDJF precipitation against the same percentiles in

different members of the GPCC-synth-LE. For the highest

quantiles, the GPCC-synth-LE suggests that the range ap-

proaches of 0.5 mm day21, meaning that the wettest winter

seasons could range in their total precipitation by around 5 cm

due to sampling of internal variability alone.

Motivated by prior work on western water resources (Swain

et al. 2018; Persad et al. 2020), we focus on three metrics for the

interannual variability in DJF precipitation: the frequency of

dry years, the frequency of wet years, and the frequency of

pairs of ‘‘whiplash’’ years that alternate fromwet-to-dry or dry-

to-wet. Wet years are defined as those with precipitation

greater than the 80th percentile across the full GPCC record,

and dry years are defined as those with precipitation less than

the 20th percentile. Frequency is calculated empirically for

moving 31-yr periods, the standard period used to calculate

climate normals. The cutoff for dry (20th percentile) and wet

(80th percentile) years are 0.51 and 0.85 mm day21. By design,

the ensemble mean and ensemble spread of each metric over

time is constant, reflective of the assumption of no forced trend

and stationary variability. The observed dry, wet, and whiplash

frequencies all fall well within the GPCC-synth-LE ensemble

during all 31-yr periods (Figs. 11c,e,g). However, it is clear

from comparison to individual members of the GPCC-synth-

LE that the variability and secular change in the water resource

metrics over the last century could have been substantially

greater than what actually occurred (e.g., member 1 shown in

Figs. 11c–h). In general, the 95% range across the ensemble

shows that a given 31-yr period could have a frequency of dry

or wet years ranging from less than 10% tomore than 35%, and

whiplash years from 0% to nearly 20%. As a result, the change

in dry, wet, and whiplash year frequency from the beginning to

the end of the record ranges from decreases in excess of 20% to

increases in excess of 20%. Even without any climate change

signal, upper Colorado River basin precipitation has the po-

tential to vary dramatically from one 31-yr period to the next,

and proper quantification of this variability is necessary for

water resource planning.

5. Discussion and conclusions

Understanding regional precipitation variability and trends

is critical for the purposes of planning for stable water supplies

and floodwater infrastructure. However, precipitation exhibits

substantial internal variability that impacts our ability to esti-

mate its statistics and infer the significance and attribution of

trends even given an approximately century-long record. In

this work, we presented a statistical model that can be used to

create a synthetic ensemble of precipitation fields whose spa-

tial and temporal characteristics are consistent with those in

the actual observational record in a statistical sense, but whose

chronologies differ due to random sampling of internal vari-

ability. Such a synthetic ‘‘observational large ensemble’’ can be

analyzed in a manner analogous to that of climate model large

ensembles to quantify uncertainties related to sampling of in-

ternal variability. An effectively unlimited number of ensem-

ble members can be produced with minimal computation time,

although there are finite meaningfully different combinations

of internal variability.

Testing of the synthetic ensemble methodology using a cli-

mate model large ensemble, the CESM1-LE, highlighted the

challenge of inferring a forced component in DJF regional

precipitation over the last century using a single climate model

simulation or observational record, because it remains small
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compared to themagnitude of internal variability. In the context

of the synthetic ensembles, we thus chose to remove the forced

component from the statistical model and produce synthetic

ensembles whose variability is a function only of the precipita-

tion response to three large-scale coupled ocean–atmosphere

modes (ENSO, PDO, and AMV), and the residual atmospher-

ically driven climate noise. Nevertheless, the dominant spatio-

temporal patterns of variability and the temporal statistics of

precipitation in the CESM1-based synthetic ensemble, the

CESM1-synth-LE, remained nearly identical to those in the

original CESM1-LE. Further, the CESM1-synth-LE closely re-

produces the 5th and 95th percentiles of 50-yr trends in DJF

precipitation simulated by the CESM1-LE, despite the synthetic

ensemble having no forced component, due to the much greater

importance of internal variability over the forced component at

the gridbox scale for historical multidecadal trends.

FIG. 11. Changes in water resourcemetrics in theGPCC-synth-LE due to sampling of internal variability. (a) The

distribution of upper Colorado River basin (see outline in Fig. 11) DJF precipitation in the GPCC observational

record (blue) and the GPCC-synth-LE (gray). (b) A quantile–quantile plot showing the GPCC observations vs the

GPCC-synth-LE. The gray dots show the quantiles in each member of the GPCC-synth-LE, and the blue dots are

the average across members. The diagonal line is the one-to-one line. (c) The time series of the frequency of dry

years in the GPCC observations (light blue line), the first member of the GPCC-synth-LE (gray line), and the

ensemblemean of theGPCC-synth-LE (dark blue line). The light blue shading shows the 5%–95% range across the

GPCC-synth-LE. (d) The change in the frequency of dry years from the first (1921–51) to the last (1988–2018) 31-yr

period. The vertical lines show the change in the ensemble mean (dark blue), the observations (light blue), and the

first member of the GPCC-synth-LE (gray). (e),(f) As in (c) and (d), but for wet years. (g),(h) As in (c) and (d), but

for whiplash years.
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The relative contribution of the ocean–atmosphere modes

versus the climate noise was also explored using ‘‘noise only’’

versions of the synthetic ensemble, within which all across-

ensemble variability was due to resampling of the climate noise

only. The large majority of both high- and low-frequency

variability was shown to be contained in the climate noise

term, rather than linked to one of the three modes.

While our creation of the CESM1-synth-LEwas primarily for

the purposes of validating the synthetic ensemble methodology,

synthetic ensembles could also be produced in order to expand

the number ofmembers in a climate model large ensemble. This

hybrid approach of expansion of climate model large ensembles

with statistical methods may be particularly useful for analyses

of extreme events, which may be undersampled even in an en-

semble with tens or hundreds of members. Importantly, the

synthetic ensembles are primarily focused on emulation of in-

ternal variability; the original climate model large ensembles

remain necessary for estimating the forced trend.

When applied to the observations, the synthetic ensemble

offers the benefit of more closely capturing the observed

structures of variability than may be possible in a global cli-

mate model. For example, the CESM1-based ensembles tend

to be overly variable in the western half of the domain as

compared to the GPCC-synth-LE, resulting in simulation of

extremes that are substantially larger than is realistic (e.g., cf.

Figs. 7a and 8d).

Motivated by this finding, we analyzed additional metrics of

precipitation variability for the upper Colorado River basin, a

region of considerable importance to western U.S. water re-

sources. Despite the smaller variability in GPCC compared to

CESM1, there is still a wide range of uncertainty in 31-yr

‘‘climatologies’’ of dry, wet and whiplash years due to random

sampling of internal variability alone. Any given 31-yr period

could have a dry or wet year frequency ranging from 10% to

35% (95% range), and a frequency of whiplash years from 0%

to 20%, with the shifts between 31-yr averages being largely

unpredictable. Further, individual ensemblemembers can show

nearly monotonic trends in any of the water resource metrics

(e.g., Figs. 11c,e) due to sampling of internal variability alone.

We next turn to discussion of key assumptions and limita-

tions that should be considered.

First, we validated our methodology using CESM1 alone. If

CESM1 were to exhibit a vastly different structure of vari-

ability than the observations, or a substantially different divi-

sion between the climate change signal and the internal

variability (cf. the signal-to-noise paradox in climate models;

Scaife and Smith 2018), the validation reported here might not

apply to the observational record. In particular, the synthetic

ensemble approach will tend to perform less well when there is

more low-frequency variability, since it is challenging to esti-

mate this variability from a short record. While there is some

evidence that precipitation in the observations has a longer

memory than in CESM1—for example, we identify a longer

block length for our GPCC-synth-LE than for the CESM1-

synth-LE (4 years vs 2 years)—precipitation variability is

dominated by high-frequency variations in both the observa-

tions and CESM1, so we expect that the CESM1 validation

should be sufficiently accurate. To perform a more complete

validation, one could also produce synthetic ensembles for all

existing large ensembles, as well as validate the observationally

based ensemble against the single observational record using

ensemble forecast verification metrics such as rank histograms

(Suarez-Gutierrez et al. 2020). In addition, it is important to

recognize that there are inherent and unavoidable limitations

in validating the methodology as applied to the observations,

because there is no true ensemble of observations to compare

with. Specifically, the estimation of our model parameters

themselves will be influenced by the particular sampling of

internal variability that we have observed, and the variability

produced by the synthetic ensemble will not perfectly repro-

duce the ‘‘true’’ (but unobserved) variability in the climate

system because it is based on a limited record (see Fig. 6 and

supplementary Figs. 6 and 7). Nevertheless, our validation of

the approach within the CESM1-LE suggests that, even when

the synthetic ensemble is based on a single record, it still per-

forms well in simulating the full ensemble spread.

Second, we have assumed ergodicity, that is, that informa-

tion about the temporal evolution of the climate system can be

used to create an ensemble, as well as stationarity of the

variability and teleconnections over the historical record.

Due to the magnitude of interannual precipitation vari-

ability, changes in its variance (Pendergrass et al. 2017) or in

the structure of teleconnections (Van Oldenborgh and

Burgers 2005) are typically not detectable within the ob-

servational record. However, inasmuch as there is reason to

believe that precipitation variability and/or teleconnections

will change in a future climate, it would be necessary to

modify the approach before applying it to future projec-

tions. For example, multiple climate model large ensembles

project an increase in upper Colorado River basin precipi-

tation variability over the twenty-first century, despite a lack

of agreement about any change in the mean (see Fig. 2 in

Deser et al. 2020).

Third, we have assumed that the low-frequency variability in

precipitation can be summarized by a linear relationship with

the three dominant modes of the climate system, ENSO, PDO,

and AMV, and that the modes behave independently of each

other (after orthogonalizing the PDO time series with respect

to the ENSO time series). Further, we have assumed that the

statistics of the modes are stationary in the observational re-

cord. Similar to our discussion of precipitation variability and

teleconnections above, changes in the modes are not yet de-

tectable in the observational record, and models differ on how

they may change in the future (Maher et al. 2018; Beobide-

Arsuaga et al. 2021). Nevertheless, inasmuch as it is supported

by the observations and/or theory, it would be advantageous to

create a more sophisticated model for the coupled ocean–

atmospheremodes, including the potential for a change in their

statistics in the future. While future modeling work, especially

focused on specific regions, may want to incorporate additional

predictors, increases in complexity should be justified by sig-

nificant increases in skill.

In sum, we have expanded upon prior work building ‘‘ob-

servational large ensembles’’ to focus on winter precipitation

variability in North America. We have found that, given an

approximately century-long record, the synthetic ensemble can
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reproduce the variability in important precipitation statistics,

including those related to water resources. While our analysis

in this and prior work has focused only on temperature, pre-

cipitation, and sea level pressure, most physical quantities in

the climate system also exhibit substantial spatiotemporal

variability that challenges our ability to completely charac-

terize the internal variability in a short observational record.

This characterization is key for not only the water resource

applications we focused on here, but also for detection and

attribution of trends (e.g., Hegerl et al. 1996) and validation of

climate models (Deser et al. 2020).
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