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ABSTRACT

Estimates of the climate response to anthropogenic forcing contain irreducible uncertainty due to the presence of

internal variability.Accurate quantification of this uncertainty is critical for both contextualizing historical trends and

determining the spread of climate projections. The contribution of internal variability to uncertainty in trends can be

estimated in models as the spread across an initial condition ensemble. However, internal variability simulated by a

modelmaybe inconsistentwithobservations due tomodel biases.Here, statistical resamplingmethods are applied to

observations in order to quantify uncertainty in historical 50-yr (1966–2015) winter near-surface air temperature

trends overNorthAmerica related to incomplete sampling of internal variability. This estimate is comparedwith the

simulated trend uncertainty in the NCAR CESM1 Large Ensemble (LENS). The comparison suggests that un-

certainty in trends due to internal variability is largely overestimated in LENS,which has an average amplification of

variability of 32%acrossNorthAmerica. The amplification of variability is greatest in thewesternUnited States and

Alaska. The observationally derived estimate of trend uncertainty is combined with the forced signal fromLENS to

produce an ‘‘Observational Large Ensemble’’ (OLENS). The members of OLENS indicate the range of observa-

tionally constrained, spatially consistent temperature trends that could have been observed over the past 50 years if a

different sequence of internal variability had unfolded. The smaller trend uncertainty in OLENS suggests that is

easier to detect the historical climate change signal in observations than in any given member of LENS.

1. Introduction

Anthropogenic radiative forcing is associated with a

range of observed climatic changes including increased

near-surface air temperature. Observed temperatures,

however, are a combination of a forced climate change

signal and random sampling of internal variability

(Hawkins and Sutton 2009; Solomon et al. 2011; Deser

et al. 2012b, 2014; Screen et al. 2014). Evaluating the

relative contribution of each is challenging using

observations alone.

The forced and internal components of temperature

trends can be more easily separated within ‘‘initial

condition’’ ensembles of climate model simulations

(Rowell 1998; Collins andAllen 2002; Deser et al. 2012b;

Fischer et al. 2013; Kay et al. 2015; Sanderson et al. 2017;

Hawkins et al. 2015). Such an ensemble is constructed
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using a single climate model and estimate of external

forcing; however, the initial conditions of each ensemble

member are perturbed randomly at the start of their

integration. The resulting differences in behavior of the

ensemble members can be interpreted as due to simu-

lated internal variability alone. Similarly, the average

across ensemble members provides an estimate of the

forced response of the model.

In such model ensembles, the range of multidecadal

global average temperature trends across the individual

members is small compared to the trend induced by

external forcing over the recent past (Dai et al. 2015)

and in future projections (Deser et al. 2012a). In con-

trast, regional-scale temperature trends can be highly

variable, primarily due to the influence of atmospheric

circulation on temperature (e.g., Hurrell 1996; Deser

et al. 2012b; Holmes et al. 2016). For example, Deser

et al. (2016) showed that recent 50-yr linear trends in

winter [December–February (DJF)] North American

temperature across members of the NCAR CESM1

Large Ensemble (LENS) had a large spread around the

ensemble mean. While the ensemble mean suggested a

forced signal of warming primarily between 18 and 28C
(50 yr)21 across North America, individual members

could exhibit large regions of cooling of the same mag-

nitude, or warming greater than 48C (50 yr)21.

How should observed trends be interpreted given the

presence of internal variability? If an observed trend is

found to be within the model spread simulated by an

initial-condition ensemble such as LENS, one might

conclude that the two are consistent with each other, and

that any other member of the ensemble could have also

been observed given a different sampling of internal

variability. However, the spread in modeled trends due

to the internal variability must be assessed in the context

of model biases and uncertainties in external forcing

(Hawkins and Sutton 2009; Collins et al. 2012; Forster

et al. 2013). In particular, internal variability in the

model and its influence on uncertainty in trends may be

biased (Thompson et al. 2015), complicating the in-

terpretation of spread across ensemble members.

A complementary approach to using initial condition

ensembles is to rely on historical observations to simu-

late fields consistent with the covariance structure of the

observations. This idea has been applied previously in

stochastic weather generation (e.g., Wilks and Wilby

1999) and statistical downscaling of climate model out-

put (e.g., Teutschbein and Seibert 2012).With respect to

multidecadal trends, Thompson et al. (2015) suggested

that the observations provide a strong constraint on

uncertainty due to internal variability for temperature

and precipitation over land. Here, we extend upon their

work by using statistical resamplingmethods that largely

preserve the spatial and temporal correlation structure

of the observations in order to create a synthetic en-

semble of winter temperatures in North America. Un-

like an initial condition ensemble from a climate model,

the synthetic ensemble cannot be used to estimate the

forced response. Instead, the synthetic ensemble is used

to provide an observationally derived estimate of the

magnitude of uncertainty in surface temperature trends

due to internal variability. The synthetic ensemble is

also compared to LENS to identify model biases. Fi-

nally, the synthetic ensemble is combined with the

forced response fromLENS to create an ‘‘Observational

Large Ensemble’’ (OLENS) with spatially consistent

estimates of the range of temperature trends that could

have been observed in the past 50 years due to internal

variability alone.

2. Datasets and model output

Model output is from the NCAR Large Ensemble

(LENS; Kay et al. 2015), which, at the time of writing,

comprises 40 simulations of CESM1 spanning at least

1920–2100. The initial condition ensemble was con-

structed by adding randomperturbations of order 10214K

to the air temperature fields of a single parent simula-

tion. The simulations are driven by historical forcing

from 1920 to 2005 (Lamarque et al. 2010) and by the

RCP8.5 scenario for the subsequent years (Meinshausen

et al. 2011). The atmosphere in the simulations has a

horizontal resolution of approximately 18. We use both

near-surface air temperature and sea level pressure

(SLP) from the model.

Three different observational temperature datasets

are used for comparison to LENS: Berkeley Earth

Surface Temperature (BEST), available at 18 resolution
(Rohde et al. 2013), NASA GISTEMP, available at 28
resolution (Hansen et al. 2010), and HadCRUT4,

available at 58 resolution (Morice et al. 2012). Each

dataset is produced from in situ temperature data

through different methods of averaging and in-

terpolation. The primary results in the manuscript rely

on the BEST dataset, but results using all other datasets

are similar and can be found in the online supplemental

material (Figs. S1–S4).

We link regional-scale variability in temperature with

circulation through analysis of SLP. Two reanalysis

datasets are used as estimates of observational SLP: the

NCEP–NCAR reanalysis, available at 2.58 resolution

(Kalnay et al. 1996) and the Twentieth Century Re-

analysis, version 2c (20CRv2c), available at 28 resolution
(Compo et al. 2011).

For each model–observation comparison, either the

model output or the observations are regridded to the
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coarser of the two grids using bilinear interpolation.

Analysis focuses on average wintertime (DJF) temper-

atures over the 50-yr period spanning 1966–2015.

3. Trend model

The primary goal of our analysis is to quantify the

uncertainty in observed trends due to internal variabil-

ity, and compare the result to what is suggested by

LENS. Such a task requires choosing an appropriate

trend model. Uncertainty in the character of, and dy-

namical response to, regional radiative forcing pre-

cludes modeling the regional trends as a function of past

radiative forcing (Shindell and Faluvegi 2009; Wang

et al. 2016). Instead, consistent with previous work

(Thompson et al. 2015; Deser et al. 2016), we use a

linear-in-time model reflecting the fact that global ra-

diative forcing increased approximately linearly be-

tween 1966 and 2015 (Prather et al. 2013). However,

results are very similar when the forced trend is instead

assumed to scale with the ensemble-mean global-mean

temperature from LENS [methodology from Dai et al.

(2015); see Figs. S5 and S6]. The use of a longer, or

future, time period would likely require a more so-

phisticated trend model. The methods for uncertainty

quantification described in the remainder of the paper

remain applicable to other choices for modeling the

forced trend.

The linear model is written as

T
y
5a1by1 «

y
, (1)

where Ty is the seasonal mean temperature in year y at a

given grid box. The term «y represents the internal

variability around the linear trend, b. In particular, «y is

assumed to be ‘‘unforced’’—that is, independent of an-

thropogenic radiative forcing, with a mean of zero and

constant variance, s2. Because the true forced trend, b,

and the character of the variability, «y, are not known,

the ordinary least squares (OLS) empirical estimate of

the trend, denoted by b̂, will typically be influenced by

both. This has minimal effect on our ability to properly

characterize the effect of «y, as demonstrated by the

sensitivity tests discussed in section 5b. Our primary

focus is on the uncertainty in the true value of b, the

forced 50-yr time trend.

Uncertainty in b emerges due to the presence of in-

ternal variability, represented by «y, combined with the

limited data record. For a given trend length (50 years in

our case), uncertainty grows with larger internal vari-

ability and greater autocorrelation. Note that non-

negligible uncertainty in a 50-yr trend can emerge from

even minimally autocorrelated data (e.g., Fig. 2 in

Thompson et al. 2015). Information about both internal

variability and autocorrelation are contained within the

covariancematrix of «y. Given perfect knowledge of that

covariance matrix,S, the variance in the trend estimator

can be calculated exactly as [also see line 2 of Eq. (A.23)

in Weisberg (2005)]

var(b̂)5 [(XTX)21XTSX(XTX)21]
2,2
, (2)

where the indices (2,2) indicate the lower right-hand

corner of the resulting matrix. The matrix X is a 50 3 2

matrix containing a column of ones and a column of the

index of the years. In reality, we do not have perfect

knowledge of S, so we resort to other approaches to

estimate var(b̂).

4. Internal variability and autocorrelation in
observations and the CESM1 Large Ensemble

a. Internal variability

We first examine the internal variability of DJF tem-

peratures across NorthAmerica during 1966–2015 in the

observations and LENS. The internal variability in the

observations is estimated as the standard deviation of

the detrended time series (ŝobs; Fig. 1a). The internal

variability in LENS is estimated by the pooled standard

deviation across ensemble members (ŝLENS; Fig. 1b).

Both the observations and LENS exhibit larger DJF

temperature variability at higher latitudes, with a band

of high variability stretching from the Great Lakes to

coastal Alaska. The most variable 10% of grid boxes in

the observations exhibit time series with standard de-

viations ranging from 2.78 to 3.58C, whereas those in

LENS are larger at 3.38 to 4.38C. The differences are

smaller in less variable regions, with the least variable

10% of grid boxes in the observations having standard

deviations of 0.348–1.08C versus 0.318–1.48C in LENS.

Nevertheless, CESM1 still simulates greater spatial

contrasts of the temporal standard deviations in DJF

temperature. The spatial pattern of internal variabil-

ity in LENS is also distinct from the observations, with

local maxima in the interior west of the United States

and in southwestern Alaska that are not present in the

observations.

The larger internal variability in LENS is most easily

seen by examining the ratio of the standard deviations

of internal variability, ŝLENS to ŝobs (Fig. 1c). Internal

variability in LENS is larger than that in the observa-

tions across the majority of North America, with 90%

of grid boxes exhibiting a ratio greater than one. On

average, LENS has a standard deviation 26% larger

than the observations, with the amplification reaching
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greater than 80% in the interior West, along the western

coast of Canada and Alaska, and adjacent to the

Great Lakes.

The internal variability in LENS is estimated by

pooling across ensemble members, in contrast to the use

of a single 50-yr time series for the observational esti-

mate. As such, it is necessary to determine whether the

differences between ŝobs and ŝLENS are distinguishable

from those that could occur solely due to the comparison

between an ensemble and a single time series. To do so,

we compare the internal variability from each member

of the ensemble to that from the observations, where ŝ is

estimated in both cases as the standard deviation of a

detrended 50-yr time series. In particular, we compare

the ratio ŝLENS/ŝobs to the distribution of the ratios

ŝLENS/ŝmemberi, where ŝmemberi is the standard deviation

estimated using a single member of LENS. If each

member of LENS had identical behavior to the ensem-

ble as a whole, the ratio of ŝLENS to ŝmemberi would be

unity at each grid box. As expected, the ratio has de-

viations from unity due to imperfect estimation of the

variance of a short time series. The distribution of these

deviations indicates the range of ratios that could result

from estimation uncertainties alone rather than sys-

tematic differences in the representation of variability.

The values of ŝLENS/ŝobs can then be compared to the 40

sets of values of ŝLENS/ŝmemberi to determine the extent

to which the observations are truly inconsistent with the

model. A rough estimate of a p value at each grid box is

calculated as the proportion of the ŝLENS/ŝmemberi values

that are at least as large as ŝLENS/ŝobs. Since each grid

box then has a separate p value, significance is assessed

through controlling the false discovery rate across

grid boxes (Wilks 2006, 2016). We use an FDR of

10%. Based on this metric, the larger internal vari-

ability in LENS than in the observations is found to

be significant across most of North America (un-

stippled regions in Fig. 1c), with the exception of

the southeastern United States, eastern Canada, and

a swath of western Canada roughly aligning with the

Canadian Rockies.

A complete assessment of the source of biases in

internal temperature variability is beyond the scope of

this work. However, cognizant of the influence of at-

mospheric circulation on temperature (e.g., Hurrell

1996; Deser et al. 2012b; Holmes et al. 2016; Deser et al.

2016), we briefly assess the simulation of internal SLP

variability in LENS by comparing to NCEP–NCAR

(Fig. 2) and 20CRv2c (Fig. S7) reanalyses. Both re-

analyses suggest that the simulated SLP variability is

too large in the North Pacific, extending into western

Canada, Alaska, and the western United States, which

could lead to augmented temperature variability in

these areas as a result of enhanced zonal and meridi-

onal temperature advection. In contrast, model biases

in temperature variability in central and eastern Can-

ada are not obviously related to biases in SLP vari-

ability, and there is enhanced SLP variability in the

southeastern United States where temperature vari-

ability appears unbiased. The comparison suggests that

an overly variable circulation likely plays an important

but incomplete role in the modeled internal tempera-

ture variability.

b. Autocorrelation

In addition to the magnitude of internal variability,

the uncertainty in the forced trend is controlled by the

FIG. 1. Internal variability of detrendedDJF temperatures in the

NCAR CESM1 Large Ensemble (LENS) and observations.

(a) The standard deviation of detrended DJF temperatures in the

BEST dataset. (b) The pooled standard deviation of detrended

DJF temperatures across the members of LENS. (c) The ratio of

variability in LENS to that in the observations [i.e., (b)/(a)]. Stip-

pling indicates grid boxes that are not significant based on use of

a false discovery rate of 10% (see main text).
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autocorrelation structure of the variability (or ‘‘noise’’).

Noise that is positively correlated in time will contribute

to more variability in trends and therefore greater un-

certainty, and noise that is negatively correlated in time

will lead to smaller uncertainty in the trends. Empirical

estimates of the autocorrelation function using short

time series tend to be highly variable (Fig. S8; Property

3.10 in Shumway and Stoffer 2015; Deser et al. 2017a), so

comparing LENS and the observations is less straight-

forward than for the magnitude of the internal vari-

ability. As an approximation, we summarize the

autocorrelation functionwith the empirical lag–one year

autocorrelation coefficient for DJF temperatures. When

pooling across space, the observations tend to show

larger autocorrelation coefficients than LENS (Fig. 3a);

however, the differences are not generally found to be

significant at the gridbox scale due to the high variance

of the empirical estimator (Fig. S9). The smaller em-

pirical autocorrelations in LENS will reduce the

variability in the modeled trend estimates, potentially

compensating for the enhanced internal variability.

5. Bootstrapping

How do model biases in internal variability and au-

tocorrelation map onto biases in trend uncertainty? At

the gridbox level, the link can be calculated analytically

if a parametric time series model for the noise is as-

sumed (e.g., Thompson et al. 2015). This approach,

however, neglects the spatial covariance structure

present in the data. Here, we instead rely on boot-

strapping methods to produce a synthetic ensemble that

retains both the spatial and temporal structures of the

observations. Trend uncertainty can be assessed in the

synthetic ensemble by calculating the standard deviation

of the trends acrossmembers, analogous to the approach

used for LENS.Unlike a true initial condition ensemble,

however, the bootstrap trends will be centered around

the empirical trend obtained from the actual observa-

tions, b̂, rather than the ‘‘true’’ forced trend, b.

a. Overview of approach

A typical bootstrapping method for atmospheric time

series is the so-called block bootstrap (Kunsch 1989;

Politis and Romano 1992; Wilks 1997). In this method,

synthetic observations are created by detrending a time

series, resampling the residuals in time blocks, and then

adding these resampled residuals back to the estimated

trend. A new trend is estimated for each synthetic time

series, and the uncertainty in the original trend estimate

is assessed using a metric such as the standard deviation

across the bootstrap estimates. Block bootstrapping is

meant to create new synthetic time series that retain

most of the correlation structure of the original data. In

our setting, residuals are resampled in time only, thereby

entirely preserving their spatial structure in any

given year.

The assumptions underlying block bootstrapping are

1) the residuals are stationary in time; 2) the time blocks

are suitably large compared to the scale of temporal

autocorrelation; and 3) the number of separate time

blocks is also large enough to generate sufficient vari-

ability between bootstrap samples. If these conditions

are met, the block bootstrap produces variability across

bootstrap samples that is comparable to the variability

that would be seen in, for example, an initial condition

ensemble.

The assumptions of the block bootstrap appear to be

reasonable for gridbox-level DJF temperatures over the

past 50 years for the following reasons. Although there is

evidence of changes in subseasonal winter temperature

variability in some regions such as northern North

FIG. 2. As in Fig. 1, but for SLP. Observations are from the

NCEP–NCAR reanalysis.
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America, perhaps due to Arctic amplification (Screen

2014; Rhines et al. 2016), evidence of significant,

forced changes in interannual variability over the

same period has not been demonstrated to the best of

our knowledge, supporting the assumption of statio-

narity in the residuals. Gridbox-scale DJF tempera-

tures over North America appear only weakly

autocorrelated (Fig. 3a) so that a reasonable block

length can be chosen that achieves the competing

goals of assumptions 2 and 3 above. We use a 2-yr

block that best achieved this balance. The validity of

this choice of block size is further discussed in the next

subsection.

After generating many bootstrap samples of trend

estimates, trend uncertainty in the observations can be

compared to trend uncertainty in LENS by comparing

the variability in trends across the model ensemble and

the observationally based synthetic ensemble.

b. Sensitivity tests

Before proceeding with our results, we consider the

effects of two known issues with the bootstrap meth-

odology. First, estimates of temporal autocorrelation

are spatially variable across North America (Figs. S8

and S9), but we use a single block size for the region in

order to easily preserve the spatial relationships in the

data. Second, block bootstrapping tends to give esti-

mates of trend variability that are biased low when the

data are positively correlated and the data record is

short. This can lead to an underestimation of the spread

across trends [see example 8.4 in Davison and Hinkley

(1997), for a similar illustration about the standard error

of the mean] because 1) the bootstrapped time series

will be more weakly correlated than the original time

series because correlation between blocks is destroyed

and 2) the finite nature of the data leads to greater

similarity among the resampled time series than would

occur if they were newly generated from the original

underlying system.

To quantify the estimation biases that result from both

of these issues, we first perform bootstrapping on a set of

synthetic data whose properties are known. We create

random Gaussian time series of length 50 with pre-

specified noise variances and autocorrelation co-

efficients using an order-1 autoregressive model [AR(1)

process]. The true trend, b, of each time series is zero,

although they will tend to have a nonzero empirical

trend, b̂. Regardless, the choice of zero trend is arbitrary

because the uncertainty in trends due to internal vari-

ability is independent of the true value of the trend [see

Eq. (2)]. A single random time series can be viewed as

analogous to a 50-yr temperature time series at a single

grid box.

The uncertainty in the trend for each time series due

to its variability and autocorrelation is estimated

through bootstrapping in the manner described in sec-

tion 5a. To acquire a more stable estimate of the

bootstrap-based estimates of trend uncertainty, the full

bootstrap process is repeated with 1000 random time

series for each variance–autocorrelation coefficient pair.

The final estimate of the bootstrap-based trend variance

is calculated by pooling across the 1000 times series.

These estimates can be compared to the true trend un-

certainty because, for the AR(1) time series considered

in the synthetic analysis, the entries ofS in Eq. (2) can be

calculated exactly as [also see Eqs. (9.19) and (9.21) in

Wilks (2011)]

S
i,j
5s2fji2jj , (3)

where f is the first-order autocorrelation and s2 is the

noise variance.

FIG. 3. Lag–1 year autocorrelation in the NCAR CESM1 LENS and observations. (a) Cumulative distribution functions for the em-

pirical lag–1 year autocorrelations in each member of LENS (gray lines) and the observations (red) for all grid boxes over land in the

domain. (b)As in (a), but for the grid boxes that are identified as significant in Fig. 5c. (c)As in (a), but for the grid boxes that are identified

as not significant in Fig. 5c.
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To assess the bias introduced by the bootstrapping

methodology, we calculate the ratio of the true trend

uncertainty to the bootstrap-based estimates of trend

uncertainty, where both are measured in standard de-

viations. We consider the ratio rather than the differ-

ence so the reader can compare the magnitude of the

effect to the differences between LENS and the obser-

vations (shown in Fig. 5c). In the case of no bias, the

ratio would be exactly one. As expected, the bootstrap is

generally a conservative estimator, leading to an un-

derestimation of the spread of trends due to internal

variability (and a ratio value greater than one) when the

AR(1) coefficient is greater than 20.05 (Fig. 4a). For a

reasonable set of f̂ and ŝ values estimated from the

observations and model simulations, the range of ratios

that could emerge due to the use of a 2-yr block boot-

strap would primarily be between 0.95 and 1.1.

Since temperature may not behave as a Gaussian

AR(1) process, we also quantify biases produced by our

methodology through the use of the 1800-yr pre-

industrial control simulation conducted with the same

model as was used to create LENS, but with constant

external forcing. Like our prior example with synthetic

data, the ‘‘true’’ forced trend, b, is zero; any nonzero

empirical estimates of the trend, b̂, are due sampling of

internal variability.

We divide the control simulation into 1000 50-yr

segments, and calculate the empirical linear trend at

each grid box in each segment. The spread of empirical

trends across the 1000 segments, quantified using the

standard deviation, indicates the uncertainty in 50-yr

trends based on the model-simulated internal variabil-

ity. We next apply the bootstrapping procedure 1000

times for each segment; the average bootstrap-based

estimate of trend uncertainty is calculated by pooling

across the 1000 50-yr segments. The two estimates of

uncertainty in the linear trend are similar, with the ratio

of their values having a one standard deviation range

around the mean of 0.94–1.1 (Fig. 4b), comparable to

what was inferred using the Gaussian AR(1) time series

above. This test demonstrates that most of the internal

variability relevant for 50-yr DJF temperature trends in

this region is preserved in the 2-yr blocks used for

bootstrapping. Furthermore, the test shows that this

variability can be accounted for through removing the

empirical, rather than true, forced trend from a given

time series.

6. Spread in trends due to sampling of internal
variability

Encouraged by the results of our sensitivity tests, we

now return to our analysis of uncertainty in DJF

temperature trends. Observed DJF temperatures over

North America are bootstrapped 1000 times using a

block size of two years to produce the synthetic en-

semble as described in section 5a. The spread across the

synthetic ensemble indicates the uncertainty in the

forced trend due to internal variability as estimated

from observations, which can also be compared to that

in LENS to identify model biases.

FIG. 4. Validationmetrics for the bootstrapping methodology. In

all subpanels, color indicates the ratio of the ‘‘true’’ standard de-

viation of trends due to internal variability to that inferred using

block bootstrapping with a 2-yr block. Themagnitude of the values

can be compared to those in Fig. 5c. Values close to unity indicate

that the bootstrap is nearly unbiased. (a) The ratio of trend vari-

ability calculated from synthetic AR(1) time series with specified

variability and lag–1 year autocorrelations to that inferred from

applying the 2-yr block bootstrapping procedure. The black box

outlines the typical range (61 standard deviation around themean)

of autocorrelations and noise variances that we estimate for DJF

temperatures across the observations and all members of the

NCAR CESM1 Large Ensemble. (b) The ratio of trend variability

calculated from 1000 50-yr segments of the NCARCESM1 1800-yr

control simulation to that inferred from applying the 2-yr block

bootstrapping procedure to each segment. (c) The ratio of trend

variability calculated from the 40 members of the NCAR CESM1

LENS to that inferred from applying the 2-yr block bootstrapping

procedure to each member of LENS.
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As expected based upon the analysis of internal var-

iability, the spread in trends across the synthetic obser-

vational ensemble (Fig. 5a) tends to be less than that

across LENS (Fig. 5b). In both cases, the spread is cal-

culated as the standard deviation of the trends at each

grid box across the members of the ensemble. The ratio

of the standard deviation in LENS to that from the

synthetic ensemble is greater than one at 78% of grid

boxes (Fig. 5c), with an average amplification across grid

boxes of 32%. The regions where trends from LENS are

more variable than those from the synthetic ensemble

align with the regions where LENS exhibits more

internal variability than in the observations (cf. Figs. 1c

and 5c).

To assess the significance of differences in trend var-

iability between the synthetic ensemble and the model

simulations, each member of LENS is bootstrapped in

the same way as was done for the observations to ac-

count for uncertainty and biases emerging from the

bootstrap process itself. As in section 4a, significance is

assessed by calculating the proportion of individual

LENS members that have a greater trend variance than

the observations, and limiting the false discovery rate

across grid boxes to 10%.

The trend variability inferred from bootstrapping in-

dividual members of LENS can also be compared to the

spread across the actual members of LENS for an

additional validation of the methodology. If the two

estimates are similar, we can conclude that the boot-

strapping methodology reproduces the behavior of a

true initial conditional ensemble. The ratios of the two

estimates across grid boxes have a one standard de-

viation range around the mean of 0.92–1.1 (Fig. 4c),

consistent with our two other prior estimates of poten-

tial bias (see section 5b).

Returning to Fig. 5, fewer grid boxes are identified as

exhibiting a significant difference in trend variability

between LENS and the observations compared to the

analysis of internal variability, suggesting the presence

of a compensating factor. Recalling that the autocorre-

lation structure of the data also influences the variability

in trends, we again compare the distributions of empir-

ical lag–one year autocorrelation coefficients in LENS

to the observations after subdividing the domain into

grid boxes identified as having significant versus not

significant differences in trend variability (Figs. 3b,c).

We find that for the grid boxes where no significant

difference is identified between LENS and the obser-

vations with respect to variability in trends, the empiri-

cal lag-one autocorrelation in LENS tends to be less

than that of the observations. Conversely, in the regions

where there are significant differences between LENS

and the observations, the empirical autocorrelations are

relatively consistent between the model and observa-

tions. This result suggests that the regions of consistency

in trend variance between LENS and the observations

may be due, in part, to compensating errors: higher in-

ternal variability but reduced autocorrelation in

the model.

Finally, we repeat our trend uncertainty analysis using

the analytical model of Thompson et al. (2015), which

assumed an AR(1) model for temperature at each grid

box independently (Fig. S10). The enhancement of

trend variability across the western United States and

Canada is also identified using the analytical model, with

FIG. 5. Spread across 50-yr trends (1966–2015) in the NCAR

CESM1 LENS and bootstrapped observations. (a) The standard

deviation of 50-yr trends in DJF temperature based on 1000

bootstrap samples of the observations. (b) The standard deviation

of 50-yr trends inDJF temperature across all 40members of LENS.

(c) The ratio of the spread of trends in LENS to that in the ob-

servations [i.e., (b)/(a)]. Stippling indicates grid boxes that are not

significant based on use of a false discovery rate of 10% (see

main text).
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69% of grid boxes showing a ratio greater than one of

the spread in trends in LENS to the spread inferred

using theAR(1)model. The primary difference between

the two approaches is with respect to the fraction of grid

boxes found to be significant. Significance is assessed in

the samemanner as was used for both internal and trend

variability, namely by comparing the result with a null

hypothesis for which each members of LENS is com-

pared, in turn, to the ensemble as a whole to quantify

differences that could emerge due comparing a single

time series and an ensemble. When using the Thompson

et al. (2015) model, however, only the western United

States is found to exhibit significantly different behavior

in the observations compared to LENS. The reason for

the difference is that the spread of trends inferred from

the analytical model depends on an estimate of the au-

tocorrelation coefficient that will itself be variable given

only a 50-yr record (Figs. S8 and S11). By contrast, the

block bootstrap approach does not involve estimating a

parameter like the autocorrelation coefficient and so can

produce less variable estimates of the spread. Because

the temporal correlations in these data are weak, the

block bootstrap also does not appear to introduce any

greater bias in this setting compared to an AR(1) model

(Fig. S11). The block bootstrapping approach addi-

tionally permits for the easy preservation of the spatial

covariance in the data, thereby allowing us to produce

spatially consistent temperature fields.

7. An Observational Large Ensemble

The synthetic ensemble can be combined with an es-

timate of the true forced trend in DJF surface temper-

atures to create an Observational Large Ensemble that

is consistent with the statistics of the observed variabil-

ity. Because it is challenging to identify the forced trend

from the observations alone due to the confounding

influence of internal variability [although see, e.g.,

Smoliak et al. (2015) and Deser et al. (2016) for empir-

ical approaches], we use the ordinary least squares trend

of the ensemble mean (EM) of LENS as our best esti-

mate. We then center the synthetic observational en-

semble on the EM trend to create OLENS such that its

trend variability is based solely on statistics derived from

the observations but the forced trend is from the model

simulations. We also apply the entire bootstrapping and

centering procedure to SLP from the NCEP–NCAR

reanalysis.

We extract 36 randommembers from the 1000-member

OLENS for display (Fig. 6). These maps may be com-

pared to the results from LENS in Fig. S12, as well as

Fig. 1 in Deser et al. (2016). Each member of OLENS

can be interpreted as a temperature history that might

have occurred if a different sequence of internal var-

iability had unfolded. By construction, the average

trend across members is identical to that of the EM from

LENS, which indicates a poleward-amplified forced

warming trend across all of North America. Forced

temperature trends range from around 18C (50 yr)21 in

the continental United States to over twice that rate at

the higher latitudes.

There is considerable diversity in the spatial patterns

and magnitudes of DJF temperature trends within

OLENS. For example, member 22 shows warming

throughout North America, but exhibits greater warm-

ing than the EM over western Canada and Alaska. The

pattern of warming in this member is similar to what was

actually observed, although the magnitude is slightly

weaker. In contrast to member 22, member 3 shows

cooling in western Canada, and amplified warming in

eastern Canada (also see members 11 and 30). Member

10 has a more spatially uniform warming trend than ei-

ther member 3 or member 22, with a close resemblance

to the EM.

The spread across all 1000 members of OLENS is

summarized through identifying the ensemble members

that bookend the 95% range of temperature trends av-

eraged across North America. The ensemble member

associated with the 2.5th percentile of North American

temperature trends shows a similar spatial pattern of

trends as member 3, with cooling up to 28C (50 yr)21 in

western Canada, and muted warming elsewhere. The

ensemble member that is at the 97.5th percentile of

North American warming shows the greatest tempera-

ture increases in north-central Canada; regions of

warming are generally shifted eastward compared to

member 22 and the observations. The contrast between

these ‘‘bookend’’ maps of temperature trends over the

past 50 years underscores the importance of account-

ing for internal variability when interpreting the

observational record.

Many of the temperature trend patterns in OLENS

can be related to trends in circulation, as summarized by

SLP (shown as contours in Fig. 6). Note that LENS

shows little evidence for forced trends in DJF SLP, so

the circulation trends in each member of OLENS (and

LENS) result primarily from sampling of internal vari-

ability. A similar lack of forced SLP trends is found in

the CMIP5 ensemble mean (Deser et al. 2017a). In

member 22, the SLP shows widespread decreases over

the North Pacific, with maximum amplitude of more

than 8hPa (50 yr)21 near the Aleutian Islands. This

anomalous cyclonic circulation trend results in anoma-

lous southerly flow over western Canada, causing am-

plified warming in that region. Conversely, member 3

shows a north–south dipole in SLP trends, with an
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increase of over 6 hPa (50 yr)21 spanning the North

Pacific and Canada, and a smaller decrease of over 2 hPa

(50 yr)21 to the south. The positive SLP trends to the

north result in anomalous northerly flow, whereas the

negative SLP trends to the south result in southerly flow,

leading to additional cooling in western Canada and

warming in the western United States, respectively.

The SLP trends associated with the ensemble mem-

bers at the 2.5th and 97.5th percentile of average North

American temperature change have notable differences

(Fig. 6, lower left panels). The cooler member shows

positive trends in SLP greater than 6hPa (50 yr)21 over

the North Pacific that extend into Alaska and Canada.

Conversely, the warmer member shows weaker North

FIG. 6. Sample realizations of 50-yr temperature trends from 36 members of the OLENS. The forced signal is

taken as the ensemble mean (EM, bottom row, third column) of the NCARCESM1 LENS. The variability around

the forced signal in temperature (colors) and sea level pressure (contours) is based upon bootstrapping the ob-

servations. The contour interval is 1 hPa (50 yr)21, starting at60.5 hPa (50 yr)21. The spread across the ensemble is

summarized by the members associated with the 2.5th and 97.5th percentile of average North American temper-

ature change (bottom row, first and second columns). The observed trend (OBS) is shown in the lower right-

hand corner.
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Pacific trends that have minimal extension onto North

America beyond Alaska. The difference in SLP trend

patterns, especially their differentmagnitudes over land,

suggests a role for other processes such as those related

to sea ice and snow cover in causing the high tempera-

ture trends. A quantitative assessment of the role of the

atmospheric circulation in the spread of temperature

trends across OLENS is beyond the scope of this study,

but see Deser et al. (2016) for a more complete analysis

of LENS.

When visually comparing temperature trend maps

from LENS (Fig. S12) and OLENS (Fig. 6), a striking

difference is the presence of large regions of cooling in

many of themembers of LENS.While somemembers of

OLENS also suggest that a 50-yr cooling trend would

have been possible given a different sampling of internal

variability, the cooling in OLENS tends to be smaller

and confined to western Canada and the northern Great

Plains. One way to quantify this difference in behavior is

through calculating the probability that each grid box

had a positive trend in temperature over the past 50

years in each ensemble (Figs. 7a,b). OLENS suggests

that over half (54%of grid boxes) of NorthAmerica had

at least a 95% probability of exhibiting warming,

whereas the same is true of only 29% of grid boxes in

LENS. Note, however, that OLENS contains more

members than LENS; thus, the value of this metric will

be noisier for LENS than OLENS. To address this issue,

and recalling that the members of LENS have them-

selves been bootstrapped as part of the analysis, we also

calculate the fraction of grid boxes with at least a 95%

chance of warming across many random sets of 1000

bootstrap samples from LENS, yielding a range (95%

confidence interval) of 31%–40% for LENS (Fig. 7c). In

both LENS and OLENS, the region with the lowest

probability (,80%) of having a positive temperature

trend over the past 50 years spans southernAlaska to the

north-central United States, which is related to the high

internal variability of temperature in the same region

(Fig. 1).

8. Discussion and conclusions

Determining which climate trends are ‘‘forced’’

versus internal is critical for contextualizing observed

climate change and making predictions for the future.

Underlying any detection and attribution study, for

example, is an estimation of internal variability (Allen

and Stott 2003); however, as has been demonstrated

here and in prior studies (e.g., Laepple and Huybers

2014; Thompson et al. 2015), there may be large biases

in model-generated variability.We have shown that the

NCAR CESM1 LENS tends to overestimate internal

variability in winter temperatures over North America,

which leads to corresponding overestimates of the

possible spread in 50-yr temperature trends due to in-

ternal variability alone. The overestimation of internal

variability in LENS means that it is more difficult to

identify a climate change signal in any given model

simulation than in the observations using a 50-yr re-

cord. The presence of biases in variability during the

historical period suggests that the spread of future

projections are also likely to be biased. Conceptually

similar conclusions regarding model variability were

reached by Eade et al. (2014) in the context of North

Atlantic seasonal forecasts using an ensemble com-

posed of CMIP5 models.

We do not formally assess which frequency band is

leading to the overamplification of variance in LENS.

Prior work focusing on sea surface temperatures

FIG. 7. The fraction of ensemble members that show a positive

temperature trend between 1966–2015 in (a) OLENS and (b) the

NCARCESM1LENS. The spatial pattern for LENS is noisier than

OLENS because the latter has a much larger number of ensemble

members than the former (1000 vs 40). (c) A smoother estimate

through sampling a random set of 1000 members from the boot-

strapped versions of LENS.
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demonstrated that many models underestimate variance

on multidecadal and longer time scales, with the un-

derestimation becoming larger at longer periods

(Laepple and Huybers 2014). If the same behavior holds

over land, then the positive biases in internal variability

we identify may emerge from a compensation between

increased variability at short time scales and damped

variability at longer time scales. This conclusion is con-

sistent with our finding that temperature in LENS is

more weakly correlated in time than the observations.

Further work, however, is required to compare the full

spectra of modeled and observed land temperatures.

The bootstrapping approach taken here is more

generally applicable to other regions, seasons, time

periods, and variables for which the autocorrelation

time scale is small compared to the length of the data

record. In these cases, resampling methods can pro-

vide an intuitive, observationally based method to

estimate the uncertainty in the forced signal due to

internal variability. While we have focused on climate

change as the signal, it is also possible to apply similar

methods to quantify the uncertainty in the climate

response to internal modes of variability such as El

Niño–Southern Oscillation (Deser et al. 2017b). The

bootstrapping method, however, is inappropriate for

studies of variables with more substantial autocorre-

lation, such as sea surface temperatures or global

mean surface temperature, for which it would be more

useful to use other types of stochastic models in order

to create synthetic observations (e.g., Navarra et al.

1998; Brown et al. 2015). In some cases, the short

observational record will not contain sufficient long-

time-scale information to create synthetic observa-

tions at all, although it may be possible to draw upon

paleoclimate information instead (Ault et al. 2013;

Laepple and Huybers 2014).

Neither models nor observations can provide a

complete picture of internal variability due to the in-

fluence of model biases and the lack of complete and

long instrumental records, respectively. Nevertheless,

insights from both can be combined in order to better

understand past climate changes andmakemore robust

projections for the future. In this study, we have de-

veloped and demonstrated a method for estimating the

contribution of internal variability to 50-yr DJF tem-

perature trends over North America. Combined with

the estimate of the forced climate change signal from

LENS, the method was used to create an Observational

Large Ensemble that illustrates counterfactual tem-

perature trends that could have occurred given a dif-

ferent sampling of internal variability, assuming the

accuracy of the forced trend from LENS and minimal

influence of multidecadal variability, consistent with

model behavior (Fig. 4). Similar methods could be

applied to future projections in order to provide im-

proved information about the expected variability in

regional temperature trends.
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