1	Supplementary Materials: The Weakening of the Stratospheric Polar Vortex
2	and the Subsequent Surface Impacts as Consequences to Arctic Sea-ice Loss
3	
4	Yu-Chiao Liang ^{1,2,3*} , Young-Oh Kwon ² , Claude Frankignoul ^{2,4} , Guillaume Gastineau ⁴ , Karen L.
5	Smith ⁵ , Lorenzo M. Polvani ^{3,6,7} , Lantao Sun ⁸ , Yannick Peings ⁹ , Clara Deser ¹⁰ , Ruonan Zhang ¹¹ ,
6	and James Screen ¹²
7	
8	¹ Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
9	² Woods Hole Oceanographic Institution, Woods Hole, MA, USA
10	³ Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
11	⁴ Sorbonne Université, CNRS/IRD/MNHN, LOCEAN/IPSL, Paris, France
12	⁵ Department of Physical and Environmental Sciences, University of Toronto Scarborough,
13	Toronto, Ontario, Canada
14	⁶ Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA
15	⁷ Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY,
16	USA
17	⁸ Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
18	⁹ Department of Earth System Science, University of California, Irvine, CA, USA
19	¹⁰ National Center for Atmospheric Research Climate & Global Dynamics, Boulder, CO, USA
20	¹¹ Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan
21	University, Shanghai, China
22	¹² College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
23	
24	*Correspondence to Yu-Chiao Liang: yuchiaoliang@ntu.edu.tw
25	
26	
27	
28	Submit to Journal of Climate
29	
30	
31	

FIG. S1. JJA present ensemble-mean SST for AMV+/IPV- state (a) and AMV-/IPV+ state (b).

- **FIG. S2.** As in Figure S1 but for SON.

- **FIG. S3.** As in Figure S1 but for DJF.

- **FIG. S4.** As in Figure S1 but for SON.

FIG. R7. The standard deviation of the global-mean SST time series during 1985-2014 period
from CESM2-CAM6 and CESM2-WACCM6 historical simulations.

FIG. S6. December wavenumber1 Z300 response to (a) strong SIC forcing and (b) weak SIC
forcing (color shadings). The contour lines represent the climatological wavenumber1 Z300 in

- 91 December.

95 FIG. S7. December wavenumber2 Z300 response to (a) strong SIC forcing and (b) weak SIC

- 96 forcing (color shadings). The contour lines represent the climatological wavenumber2 Z300 in97 December.

105 FIG. S8. January Z50 (a)-(b), responses to strong sea-ice forcing during AMV+/IPV- and AMV-/IPV+ states, respectively. (c) (a) minus (b). (d)-(f) as in (a)-(c) but to weak sea-ice forcing. The black dots denote the field significance, while the cyan dots the 5% local significance.

117

FIG. S9. January Z500 (a)-(b), responses to strong sea-ice forcing during AMV+/IPV- and AMV-/IPV+ states, respectively. (c) (a) minus (b). (d)-(f) as in (a)-(c) but to weak sea-ice forcing. The black dots denote the field significance, while the cyan dots the 5% local significance.

129 FIG. S10. January SLP (a)-(b), responses to strong sea-ice forcing during AMV+/IPV- and AMV-/IPV+ states, respectively. (c) (a) minus (b). (d)-(f) as in (a)-(c) but to weak sea-ice forcing. The black dots denote the field significance, while the cyan dots the 5% local significance.