A ’ I l ADVANCING
nu EARTH AND

> SPACE SCIENCES

Geophysical Research Letters

RESEARCH LETTER
10.1029/2023GL106988

"Deceased.

Key Points:

e ENSO is predictable for 2+ years
following strong El Nifio events

e Forecasts initialized during weak El
Nifio, Neutral, and La Nifia states are
not skillful at leads greater than
12 months

Supporting Information:

Supporting Information may be found in
the online version of this article.

Correspondence to:

N. Lenssen,
lenssen @mines.edu

Citation:

Lenssen, N., DiNezio, P., Goddard, L.,
Deser, C., Kushnir, Y., Mason, S. J., et al.
(2024). Strong El Nifio events lead to
robust multi-year ENSO predictability.
Geophysical Research Letters, 51,
€2023GL106988. https://doi.org/10.1029/
2023GL106988

Received 27 OCT 2023
Accepted 28 APR 2024

© 2024 The Author(s). This article has
been contributed to by U.S. Government
employees and their work is in the public
domain in the USA.

This is an open access article under the
terms of the Creative Commons
Attribution-NonCommercial-NoDerivs
License, which permits use and
distribution in any medium, provided the
original work is properly cited, the use is
non-commercial and no modifications or
adaptations are made.

Strong El Nifio Events Lead to Robust Multi-Year ENSO
Predictability

N. Lenssen? ©, P. DiNezio' (2, L. Goddard?®, C. Deser*
M. Newman® ©©, and Y. Okumura’

, Y. Kushnir® ©, S. J. Mason?,

1Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO, USA, ’International Research
Institute for Climate and Society, Columbia University, Palisades, NY, USA, 3Department of Applied Mathematics and

Statistics, Colorado School of Mines, Golden, CO, USA, “National Center for Atmospheric Research, Boulder, CO, USA,
5Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA, SNOAA Physical Sciences Laboratory,
Boulder, CO, USA, "Jackson School of Geosciences, University of Texas, Austin, TX, USA

Abstract The El Nifio-Southern Oscillation (ENSO) phenomenon—the dominant source of climate
variability on seasonal to multi-year timescales—is predictable a few seasons in advance. Forecast skill at
longer multi-year timescales has been found in a few models and forecast systems, but the robustness of this
predictability across models has not been firmly established owing to the cost of running dynamical model
predictions at longer lead times. In this study, we use a massive collection of multi-model hindcasts performed
using model analogs to show that multi-year ENSO predictability is robust across models and arises
predominantly due to skillful prediction of multi-year La Nina events following strong El Nifio events.

Plain Language Summary In this study, we demonstrate that ENSO is predictable at least 2 years in
advance when forecasts are made during strong El Nifio events, such as the current El Nifio expected to peak in
winter 2023-2024. That is, strong El Nifios provide forecasts of opportunity in which we have high confidence
in multi-year predictions of ENSO. The opposite is also shown; forecasts initialized during other ENSO states
(weak El Nifio, Neutral, and La Nifia) do not have predictive skill past 12 months. These result hold regardless of
the climate model used to make the predictions, as shown using 1,000s of years of retrospective climate
forecasts made with 11 different state-of-the-art climate models.

1. Introduction

There is immense societal benefit from skillful multi-year climate forecasts as many human systems make de-
cisions on this timescale (Nissan et al., 2019). The El Nifio/Southern Oscillation (ENSO)—the dominant mode of
climate variability at multi-year time scales—influences global weather via atmospheric teleconnections
(Lenssen et al., 2020; Mason & Goddard, 2001; Ropelewski & Halpert, 1986), and has well-known predictability
at lead times of nine or fewer months (Barnston et al., 2019; Tippett et al., 2019; L’Heureux et al., 2020; Becker
et al., 2022). Numerous forecast systems have shown small, but significant predictive skill at lead times beyond
9 months with dynamical (Dunstone et al., 2020; Gonzalez & Goddard, 2016) and statistical (Ding & Alex-
ander, 2023; Ham et al., 2019; Wang et al., 2023) methods, but the sources of this skill are not firmly established.

The long-lead predictability of ENSO could arise from particular sequences of ENSO events. For instance,
persistent La Nifia states lasting two or more years appear highly predictable, particularly after a strong El
Nifio event (DiNezio, Deser, Karspeck, et al., 2017; DiNezio, Deser, Okumura, & Karspeck, 2017; Wu
et al., 2019; Wu, Okumura, Deser, & DiNezio, 2021). Conversely, El Nifio states lasting multiple years might
be predictable based on the onset season (Wu et al., 2019; Wu, Okumura, Deser, & DiNezio, 2021; Wu,
Okumura, & DiNezio, 2021). These studies provided major advances connecting dynamical theories of ENSO
to determine potentially predictable multi-year sequences. However, these studies used hindcasts performed
with a single coupled general circulation model (CGCM) and contain a limited number of events for retro-
spective validation. Evidence for multi-year predictability from other CGCMs is sparse and not systematically
explored (Dunstone et al., 2020; Lou et al., 2023). Therefore, a robust assessment of skill across a multi-model
ensemble is needed.

Small hindcast sample sizes are a ubiquitous limitation in ENSO-prediction research. Hindcast experiments are
run over tens of years of initializations, containing only a dozen or so ENSO events. Furthermore, seasonal
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hindcast experiments have not historically included predictions past 12 months leads. These hindcast experiments
are limited by computational costs of initialized CGCMs and/or short observational data records needed for
initialization and verification (Barnston et al., 2019; Tippett et al., 2019). For instance, the NMME has hindcasts :
initialized monthly over 1982-2010 and real-time forecasts initialized beginning in 2011 with lead times up to
11 months (408 forecasts for each CGCM verified in Barnston et al., 2019) and the CMIP6 Decadal Climate
Prediction Project (DCPP) has hindcasts initialized yearly over 1960-2018 with lead time up to 10 years (59
forecasts for each CGCM verified in Dunstone et al., 2020). When evaluating such datasets, it is necessary to «
evaluate the skill of a forecast system over all hindcasts to maximize sample size in the statistical estimates of
forecast skill. Recent work has suggested that there may be state dependence using limited sample sizes such as
the NMME hindcasts (Larson & Pegion, 2020) and a 110-year hindcast from a European Center for Medium-
Range Weather Forecasts (ECMWF) model (Sharmila et al., 2023). Thus, pooling all forecasts, particularly by
ENSO state at initialization, has the potential to obfuscate the underlying sources of long-lead ENSO skill if
predictability is indeed state-dependent.

In this study, we investigate the model and initial state dependence of multi-year ENSO prediction skill. We
explore initial ENSO states in terms of phase (El Nifio, neutral, La Nifia) and intensity (strong, weak) providing
multi-year skill. To this aim, we construct and analyze a massive multi-model ensemble of model analog climate
hindcasts to identify initial states that lead to multi-year predictive skill. The model analog method (Ding
et al., 2018, 2019, 2020) is used to make forecasts by first identifying states in a “library” of CGCM output that
best match the initial state. Then, ensemble forecasts are issued according to how each of these states evolved in
the CGCM. This forecasting technique is appropriate to investigate ENSO predictability as they have tropical
Pacific skill equal to or exceeding state-of-the-art initialized dynamical forecast systems as they utilize simula-
tions from comparable CGCMs, but do not suffer from initialization shock (Ding et al., 2018). In addition, the
very low computational cost allows the generation of very large ensemble hindcasts based on multiple CMIP-
class CGCMs with leads of 3+ years. Together, these features of our technique enabled us to investigate the
model and state dependence of 2-year ENSO prediction skill.

Section 2 outlines the data and methods used int this study. In Section 3, we investigate the state-dependence of
year 2 ENSO skill in perfect model hindcasts, which provide an upper bound for predictability. Then in Section 4,
we investigate the state-dependence in cross-model hindcasts; we use many CGCM:s as library states to predict a
long control run of a single model with model analog forecasts. Finally in Section 5, we turn to the real world and ¢
use model analog forecasts to predict ENSO over the 109-year record from 1901 to 2009. In each of these an-
alyses, we show that ENSO skill is highly dependent on the state at initialization as well as the target state. Nearly
all of the skill at leads greater than 12 months is due to prediction out of El Nifio, consistent with known multi-year
patterns of ENSO such as the tendency for La Nifia to follow El Nifio. This state-dependency is shown through the
skill of probabilistic forecasts of DJF ENSO state at leads up to 36 months.

2. Data and Methods
2.1. Data

We use long pre-industrial control simulations of at least 500 years in duration from 11 state-of-the-art CGCM:s to
issue model-analog forecasts and to perform the verifications in Sections 3 and 4. The 11 CGCMs are seven
CMIP-class CGCMs and the four available control runs from NMME CGCMs (Table S1 in Supporting Infor-
mation S1). All gridded products are regridded to a common 2° X 2° grid. The monthly mean sea-surface tem-
perature (SST) or “tos” fields and sea-surface height (SSH) or “zos” fields are used. SST and SSH anomalies are
created by removing the monthly climatologies.

The CERA-20C coupled reanalysis is used as SST and SSH “observations” to conduct observational hindcast
experiment in Section 4, following (Lou et al., 2023). A reanalysis product is used to extend the record to span 5
1901-2009 as complete Indo-Pacific observations of SSH do not exist prior to the satellite era. Observed SST and —
SSH fields are first regridded to the common 2° X 2° grid and then converted to anomalies prior to analysis by E
removing the monthly climatologies using a 30-year “fair” sliding climatology of the 30 years prior to a given
year so that data is not included from years that are forecasted (Lou et al., 2023). The 1901-1930 period is used as
climatology for calculating anomalies in the first 30 years of the reanalysis.
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ENSO events are defined according to quantiles of the Oceanic Nifio Index (ONI) which is the seasonal
(3 months) average SST anomaly over the Nifio 3.4 region (SN-5S, 170W—-120 W). These quantiles are calculated
for each season for each CGCM as well as the observations. El Nifio events are defined as the upper quartile, or z
values above the 75th percentile, of ONI. Similarly, La Nifia events are defined as the lower quartile, or values
below the 25th percentile of ONI. This event definition is useful when comparing ENSO-state prediction across
different CGCMs as it reduces the bias from different CGCM ENSO mean states and variabilities by deflmng
events relative to a CGCM's ENSO (Gonzalez & Goddard, 2016). Our ENSO event definition does not include a <
duration requirement. As such, we re-ran all analyses requiring an event to persist at least 5 months and saw no
noticeable difference in any presented figures or results.

2.2. Model Analog Forecasts

Model analog forecasts are made in a two-step process. (a) We find the best analogs for the initial state by
searching through a library of CGCM output. (b) We issue forecasts according to how the best analogs found in
(a) evolved. We follow the full method documented in Ding et al. (2018). For perfect model analog hindcasts
(Section 2), we exclude the initial state from the library of possible analogs. In cross-model and observational
hindcasts (Sections 3 and 4), we use each entire CGCM piControl run as the library for best analog states. We use
the unforced piControl runs as previous work has shown that using a library that contains the historical forcing has
no impact on model-analog forecast skill (Ding et al., 2019).

Best analogs are determined by finding the best matches of SST and SSH fields between the initial state and all
states within the same month in the CGCM library. The initial and library fields are compared over the entir

tropical Indo-Pacific basin (30S-30N, 30E—80W) (Ding et al., 2018). For each time step in the library, w
calculate the root mean square (RMS) distance from the initial SST and SSH fields to the corresponding library
fields. Here, all fields are normalized to have unit variance to allow adding the distances between the initial and
library SST and SSH fields as well as accounting for biases in variability between datasets. These distances are
ranked in ascending order and the evolution of the 15 states closest to the initial field are used to create an

ensemble forecast. Ding et al. (2018) showed that ensemble sizes of 15 were sufficient to maximize skill for

model analog forecasts with at least 500 years of training data, as we have in this study.

e
€

We use SSH fields as well as SST fields to determine best analogs as SSH is closely related to the subsurface heat -
content and therefore the thermocline depth. We see substantially lower year 2+ skill when repeating this study
with best analogs only selected using SST, in agreement with previous findings using model analog forecast
systems (Ding et al., 2018; Lou et al., 2023).

For a given initial state, the ensemble forecast plume is determined by the evolution of the Nifio3.4 index in the
closest 15 analogs. We issue probabilistic forecasts of ENSO events at each lead as the proportion of these 15
analogs that predict El Nifio, Neutral, and La Nifia conditions where we define ENSO events using the quantile
method described above. We choose the closest 15 analogs for our forecast as this number provides high forecast
skill for a wide range of library sizes (Ding et al., 2018).

2.3. Forecast Verification

The probabilistic skill of the ENSO state forecasts is determined using RPSS, a standard skill metric for prob-
abilistic skill (Jolliffe & Stephenson, 2012; Mason, 2018). RPSS is a measure of both a forecast's resolution, or
whether a most likely outcome changes for different issued forecast probabilities, as well as a forecast's reliability,
or how well the forecasted probabilities match the observed rate of events (Mason, 2018). The RPSS is a skill
score comparing the Ranked Probability Score (RPS; Epstein, 1969; Murphy, 1971) of the forecast of interest to a
climatological forecast. It is defined in such a way that an RPSS of 1.0 indicates a perfect forecast, an RPSS of
zero indicates that a forecast is equivalent to climatology, and a negative forecast indicates a forecast that is less
skillful than forecasting the climatological odds of an ENSO event occurring.
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3. Perfect Model Hindcast Experiment

We first investigate the perfect model skill, or the skill of a model predicting its own dynamics. That is, we use the
same CGCM as both the target states as well as the library, omitting the state we are trying to predict as a possible
analog. Perfect model skill is generally an upper bound of skill for the ENSO system. When predicting the state of
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Figure 1. The model analog DJF RPSS skill for (a) perfect model hindcasts of all 11 CGCMs used in the study and (b) perfect model hindcasts stratified by ENSO state at
initialization for two example CGCMs, CESM1.1 and GISS-E2.1G. The extra skill added when initializing during El Nifio conditions is shown by the difference in
RPSS between (c) strong EN initial states and no EN initial states and (d) weak EN initial states and no EN initial states. The analyses in (b)—(d) are pooled over 6 month
periods of lead time for visual clarity as the pooling does not qualitatively effect the results.

ENSO in December-February (DJF), the peak season of ENSO, all models have positive RPSS at leads of up to
12 months (Figure 1a). All but two of the 11 models in the study have positive RPSS out to at least 24 months,
indicating that a range of CGCMs with varied ENSO dynamics exhibit “perfect model” multi-year ENSO pre-
dictability (Figure 1a). These findings agree with theoretical calculations of ENSO predictability of around

3 years (Newman & Sardeshmukh, 2017), the skill of initialized dynamical forecasts (DiNezio, Deser, Okumura, ;
& Karspeck, 2017; Dunstone et al., 2020; Wittenberg et al., 2014), and multi-model long lead skill of model ;

analog forecasts (Lou et al., 2023).

A major goal of this study is to determine if specific states are causing the majority of skill in forecasts at leads
greater than 12 months. As discussed, this type of information cannot be determined by verification metrics
performed over all initialization and target states as has been traditionally done with limited hindcast experiments.
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Here, we determine the probabilistic skill of DJF-target ENSO forecasts stratified by the state at initialization. The
initial state bins are: strong El Nifio (greater than 95th percentile of Nifio3.4), weak El Nifio (between 75% and
95% percentile of Nifio3.4), and no El Nifio which includes both neutral and La Nifia states (below 75% percentile =
of Nifio3.4). Expanding the set of initial state bins to include weak La Nifia and strong La Nifia does not alter year-
2 skill in any CGCM (not shown).

For perfect-model forecasts from CESM1.1, by far the greatest year-2 skill comes from forecasts initialized out of
strong El Nifio events as seen by the large difference between the strong El Nifio line and the Neutral/La
Nifia RPSS skill at leads greater than 12 months (Figure 1b). The strong El Nifio skill between leads 12-24 months
is expected due to the strong tendency for La Nifia to occur after strong El Nifio events. The strong El Nifio skill ¢
seen at leads 24-36 months is due to the high predictability of 2 year La Nifia events following strong El Nifio
events that has been previously shown in CESM1 (DiNezio, Deser, Okumura, & Karspeck, 2017). The same
dramatic increase in year 2+ skill does not occur from forecasts initialized during weak El Nifio events, as shown
between the negligible difference between the weak El Nifio and Neutral/La Nifia skill (Figure 1b). Decomposing
the GISS-E21G CGCM perfect model experiment (Figure 1b) and all other CGCMs (not shown) by initial state
show qualitatively similar results.
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Forecasts initialized during strong El Nifio events (Nifio 3.4 > 95th percentile) have the greatest year-2 skill across
all CGCMs used to generate hindcast experiments except CanESMS5 (Figure 1c). This additional year-2 skill fro
strong El Nifio initial states is seen in the difference between the strong El Nifio RPSS and the no El Nifio RPSS
(Figure 1c) as this accounts for any differences in the total skill of the CGCMs. As with CESM1.1, CGCM:
generally do not see much additional skill from weak El Nifio initial states when compared with no El Nifio
(Figure 1d).
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The skill assessments in Figures 1b—1d are calculated over 6 months pooled periods of lead time for visual clarity
as the pooling does not qualitatively affect the results. The long hindcasts along with this pooling in lead time
results in sample sizes ranging from at least 100 to many 1,000s of forecasts for the analyses of initial-condition
stratification (Figures 1b-1d).

We have robustly shown that ENSO is most predictable at leads of 12+ months for perfect model analog forecasts
when initialized during a strong El Nifio event. This result agrees with theory that there is a strong dynamlcal
tendency for La Nifia to follow El Nifio events (DiNezio, Deser, Okumura, & Karspeck, 2017; Suarez &
Schopf, 1988). In addition, active ENSO states are more reliably predictable than ENSO-neutral states leading to
greater probabilistic skill (Jin et al., 2008; Mason et al., 2021).

With this greater predictability out of strong El Nifio, it is natural to ask if the year 2+ skill is indeed due to
greater predictability of subsequent La Nifia events of 1- or 2-year duration. To test this, we take each of the
initial states used in Figure 1b and decompose the forecast skill according to the true ENSO state upon
verification. Results with two of the CGCMs with greatest multiyear skill, GISS-E2.1G and CESM1.1, are
shown as illustrative examples (Figure 2), but similar results are found for all 11 CGCMs in the study (not
shown). As with the initial state decomposition (Figures 1b-1d), analyses are pooled over 6 months lead
periods ensuring that each one of the skill in Figure 2 that have positive skill are calculated using at least 100
verifications.

All of the skill in forecasts initialized during strong El Nifio events is due to very skillful forecasts of La Nifia

events (Figures 2a—2d). This result, which holds for 11 CGCMs, provides robust support for the theory that strong
El Nifio events precede highly predictable single and double La Nifia events (DiNezio, Deser, Okumura,
Karspeck, 2017). In addition, there is evidence of weak El Nifio events leading to predictable double El Nifio
events (Wu, Okumura, & DiNezio, 2021) as seen by the positive El Nifio skill in leads 12—-18 for El Nifio targets

(Figures 2b—2e). Finally, there is some evidence for that El Nifio events can be predicted skillfully 2+ years

advance from neutral states (Figures 2c-2f).

e

Decomposing skill calculations by the state at verification is useful to understand what states a forecast system
predicts well, but is artificial as it is impossible to know the target state a priori when making real time forecasts.
Thus, the analysis presented in Figure 2 can only be used to show retrospectively that certain verification states
lead to greater skill, and the results in Figure 1 should be used to understand what the perfect model, or upper
bound, of ENSO skill is using model analog forecasts.
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experiments in which we use each model to predict the full preindustrial control (piControl) runs of GISS-E2.1G
and CESM1.1. Cross-model hindcasts investigate the forecast skill of model-analog forecasts in predicting a
target ENSO system that is different from the library ENSO system, analogous to the case of using model-analog
forecasts to predict the real-world ENSO system. By using this cross-model hindcast setup, we are able to
generate thousands of years of hindcasts in a setting that better represents operational forecasts than perfect model
hindcasts.

We use each of the 10 other CGCMs to issue model-analog forecasts of the 851-year GISS-E2.1G piControl as it
has the greatest perfect model skill, but an ENSO with an overly regular period (Figure S1 in Supporting In-
formation S1). We additionally perform hindcasts over the 1,800 years CESM1.1 piControl as it has a more
realistic ENSO, particularly in terms of the asymmetric evolution of El Nifio and La Nifia events (Figure S1 in
Supporting Information S1; Capotondi et al., 2020; DiNezio, Deser, Okumura, & Karspeck, 2017).
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The cross-model skill is generally lower than the perfect model skill, but there is still positive RPSS skill at leads
of 24 months for most CGCM:s in both cross-model experiments (Figures 3a—3d). When predicting GISS-E2.1G,
many of the CGCMs are nearly as skillful as their perfect model benchmark (Figure 3a). This is expected as GISS-
E2.1G has a relatively oscillatory ENSO, leading to a more predictable system (Figure S1 in Supporting
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Information S1). When predicting the more complex and realistic ENSO in CESM1.1, the cross-model skill is
lower because of this more complex and less active ENSO (Figure 3d). Note that both of these CGCMs simulate
2-year La Nifia events near the observed rate of around 6.8/100 years, with 7.5/100 years in GISS-E2.1G and 6.7/
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100 years in CESM1.1 (Table S1 in Supporting Information S1).

As with the perfect model hindcasts, we decompose the cross-model RPSS by state at initialization. Again, we see
that most of the year-2 skill comes from predictions out of strong El Nifio events (Figures 3b—3d). When using
GISS-E2.1G as the hindcast target, all but three CGCMs show better 12—18 months skill and all CGCMs show
better 18—24 months out of strong El Nifio events than other initial states (Figure 3b). When predicting the more
realistic CESM1.1 ENSO, all CGCMs have much more skill when initialized during strong El Nifio events when
compared with no El Nifio events (Figure 3e). Following the perfect model results, initialization during weak El
Nifio events does not dramatically increase year-2 skill (Figures 3c—3f) and we see that the cross-model skill out
of strong El Nifio events is primarily due to very skillful prediction of subsequent La Nifia events (Figure 2).

5. Observational Hindcast Experiment

To demonstrate that the above results hold for the real-world ENSO system, we create model-analog hindcasts

Additional Weak EN SKill (GISS-E21G Init.)

1©

gl

12 18 24 30 36
Lead (months)

o
o

Additional Weak EN SKill (CESM1.1 Init.)

0 6 12 18 24 30 36
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Figure 3. The model analog DJF RPSS skill of cross-model hindcasts using libraries from all 11 CGCMs to predict the piControl of (a) GISS-E2.1G and (d) CESM1.1.
The remaining panels follow the analysis presented in Figures 1c and 1d by summarizing the extra skill in (b), (¢) forecasts initialized during strong EN relative to no EN
and (c), (f) forecasts initialized during weak EN relative to no EN. The analyses in (b, c, e, f) are pooled over 6 month periods of lead time for visual clarity as the pooling
does not qualitatively effect the results.
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using a library from each CGCM to predict CERA20 C, a 109-year coupled reanalysis of the real-world ENSO §
system from 1901 to 2009 (Laloyaux et al., 2018). These observational hindcasts show that model-analog

forecasts have skill at leads exceeding 12 months with some CGCM analogs, in agreement with previous
studies (Figure 4a (Liu et al., 2022; Lou et al., 2023);). In addition, the observational hindcasts show comparable,
albeit slightly lower, skill in predicting the observations to their skill in predicting the full piControl of CESM1.1
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Figure 4. The model analog DJF RPSS skill of forecasts using libraries from all 11 CGCM:s to predict (a) the observational record from 1901 to 2009 (109 years). The
gray in (b) shows the 95% confidence interval due to sampling uncertainty estimated as the empirical median and 95% confidence interval of 200 simulations of all
CGCMs making 109-year cross-model hindcasts of the CESM1.1 piControl. The sampling uncertainty is compared with blue curve showing the range over all 11
CGCMs of observational skill. Note that the blue range in (b) is exactly the range of the skill shown in (a). The final panel (c) is an expanded version of Figure 1b and
shows the RPSS skill given the state at initialization. The violin plots with transparent colors show the sampling distribution from the resampled 109-year cross-model
hindcasts of CESM1.1. The box plots with solid colors show the spread of skill for the 11 CGCMs in predicting the observational record.

(Figure 3d). This lower skill for the observations is because CGCMs generally overestimate the ENSO signal-to-
noise ratio leading to overconfident forecasts of the real world system (Eade et al., 2014; Tippett et al., 2020).

We expect substantial sampling uncertainty in quantifying skill over the 109-year hindcast due to the limited
sample size in the verification statistics as well as the known multidecadal variability in ENSO predictability (Lou
et al., 2023; Wittenberg, 2009; Wittenberg et al., 2014). To make fair comparisons between the observational
hindcasts here and the cross-model hindcasts in Section 3, we quantify this sampling uncertainty in the obser-
vational hindcast. We use a bootstrapping approach in which we create and verify 200 hindcasts using analogs
from each CGCM over random 109-year periods of the 1,800 years CESM1.1 piControl. The 95% likely skill
from the subsampled 109-year cross-model CESM1.1 hindcasts and the range of the observational hindcast skill
overlap for all leads but 4 months (Figure 4b). Thus, we cannot reject the hypothesis that DJF skill is lower when
predicting the observed ENSO system than when predicting the CESM1.1 ENSO system.

This subsampling analysis is additionally used to estimate the 95% confidence intervals of skill when stratifying
by initial state on the 109-year observational record (Figure 4c). We again take random 109-year periods of the
CESM1.1 piControl and determine the 95% likely range of forecast skill given the ENSO state at initialization. As
expected, there is large uncertainty when verifying such few forecasts (violin plots in Figure 4c), but the majority
of year-2 skill comes from predictions initialized during strong El Nifio events. The strong El Nifio-initialized
observational hindcasts (box plots in Figure 4c) show comparable skill to the cross-model case at 12—18 months
leads, but lower skill at 18—24 months leads. However, the middle 50% of CGCMs show positive RPSS at leads of
18-24 months when initialized during strong El Nifio, again suggesting that there is a multi-year forecast of
opportunity during strong El Nifio events. On the other hand, there is no significant skill beyond 12 months in the
observational hindcasts when the initial state is not a strong El Nifio event (Figure 4c).
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6. Summary and Discussion

There is skill in predicting ENSO at leads of 12-24 months, but it is nearly entirely due to the high long-lead
predictability of the system following strong El Nifio events. This finding is robust in long multi-model per-
fect model hindcasts, long multi-model cross-model hindcasts, and predictions over a 109-year observational
reanalysis. These findings are in line with previous findings using non-linear oscillator theory as well as CGCMs
that the intense shoaling of the thermocline during strong El Nifio events lead to predictable multi-year La Nifia
events (DiNezio & Deser, 2014; DiNezio, Deser, Okumura, & Karspeck, 2017; Wu et al., 2019).
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These findings are important for both climate predictability research and for climate service applications using
seasonal to multi-year predictions. Research into ENSO and climate predictability generally focuses on metrics of
skill aggregated over all forecasts, a required assumption given the small hindcasts available. As such, multiple
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studies have claimed that ENSO can be predicted skillfully into the second year (Dunstone et al., 2020; Gonzalez
& Goddard, 2016; Ham et al., 2019; Wang et al., 2023). Our findings make clear that this second-year skill is not
always present in the system; second-year skill is highly state dependent with robust multi-year skill only possible
out of large El Nifio events.

Our results present both good and bad news for climate services or decision makers relying on climate infor-
mation. A strong El Nifio event presents a multi-year forecast of opportunity for ENSO. Since ENSO is the
dominant driver of climate variability on multi-year timescales, we expect that multi-year predictions of climate
impacts will have the greatest multi-year skill out of strong El Nifio events. Such forecasts of opportunity should
be investigated further. On the other hand, there is little evidence shown here for multi-year ENSO skill when
initializing in a state other than a strong El Nifio. Thus, climate services reliant on seasonal-to-interannual
forecasts will likely need to use information other than climate forecasts when making decisions at leads past
12 months if a strong El Nifio event is not ongoing.

sdiy wouy papeojumoq ‘zL ‘202 ‘L0086l

This study has implications for future predictability of ENSO under climate change. If climate change leads to an
increased chance of extreme El Nifio events (Cai et al., 2020) and subsequent multi-year La Nifia events (Geng
et al., 2023), our findings suggest that ENSO will become more predictable at longer leads on average.

The ability to generate multi-model hindcasts over thousands of years on a laptop using model analog forecasts is
an incredibly powerful tool. Large sample sizes provide the ability to decompose forecast skill by both initial and
target state to determine what ENSO states led to multi-year skill. In addition, large samples make it possible to
quantify the sampling uncertainty on forecasts of the observational record to determine the robustness of skill
analyses over a shorter record. Model analog forecasts combined with the wealth of output from CMIP provide a = 2.
tool for robustly exploring questions about climate variability, predictability, and change.
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Our conclusions are particularly salient given the strong El Niiio that peaked during the 2023-2024 boreal winter.
Following our findings, ENSO forecasts issued during this event will provide actionable information about the
state of ENSO through 2025.

Data Availability Statement

The live code-base used to process the data, run the experiments, and verify forecasts can be found at https://
github.com/nlenssen/LongLeadENSO/. All raw, intermediate, and final data is archived at Zenodo (Lens-
sen, 2023a). An archived code-base is available on Zenodo (Lenssen, 2023b).
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