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Table S1: List of model simulations used in this study. Historical, rcp45, and rcp85 refer to the 
CMIP5 radiative forcing protocols (Meinshausen et al. 2011). ERSSTv3b and ERSSTv4 refer to 
the Extended Reconstructed Sea Surface Temperature version 3b (Smith et al. 2008) and 4 
(Huang et al. 2015). HadISST refers to the adley Centre Sea Ice and Sea Surface Temperature 
data set (Rayner et al. 2003). More details on the simulations can be found in the respective 
references. CESM website refers to http://www.cesm.ucar.edu/experiments/cesm1.1/LE. 

Model 
family 

Experimental 
setup Forcing details 

Time 
period 

Ensemble 
members or 
number of 
models Reference 

CESM Coupled 

CESM1-CAM5 

historical, rcp85 1920-2100 40 (Kay et al. 2015) 

CESM TOGA 

CAM5 

ERSSTv4, HadISST 1880-2014 10 CESM website 

CESM GOGA 

CAM5 

ERSSTv4, HadISST 1880-2015 10 CESM website 

CESM Coupled 

CESM1-CAM5 

Preindustrial control 2,200 years 1 (Kay et al. 2015) 

CESM Atmosphere-only 

CAM5 

Climatological SSTs 
from CESM 
preindustrial control 

2,600 years 1 CESM website 

GFDL Coupled 

CM2.1-AM2.1 

historical, rcp45 1861-2015 10 (Kosaka and Xie 2016) 

GFDL GOGA 

AM2.1 

ERSSTv3b, 
HadISST 

1950-2012 10 (Kosaka and Xie 2016) 

CMIP5 Coupled historical, rcp85 1871-2099 40 various 
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Table S2: 1983-2012 trends over the US Southwest (region marked in Fig. 1a) for unadjusted 
and dynamically adjusted observed precipitation (GPCC) and surface air temperature (BEST). 
Uncertainty for unadjusted observations is based on the minimum and maximum trend in 
Newman et al. (2015) and given in square brackets. For dynamically adjusted trends, the result 
from EEMD/EEMD detrending is given, while the uncertainty is based all the different 
detrending methods tested (see section S1) and given in square brackets. 

  Water year Oct-Dec Jan-Mar Apr-Jun Jul-Sep 

Precipitation 
(%/30 yrs) 

Unadj. -19.3 

[-21.4, -12.0] 

-19.0 

[-26.2, -9.2] 

-26.7 

[-29.7, -15.9] 

-9.1 

[-14.0, 1.5] 

-29.3 

[-36.6, -19.3] 

 Dyn. adj. -6.13 

[-6.13, -0.8] 

-3.4 

[-9.6, -2.0] 

-0.8 

[-0.8, 11.9] 

1.3 

[1.3, 15.2] 

6.2 

[-5.1, 6.2] 

Temperature 
(°C/30 yrs) 

Unadj. 0.84 

[0.68, 0.85] 

1.01 

[0.76, 1.08] 

0.38 

[0.28, 0.64] 

0.46 

[0.37, 0.56] 

1.32 

[1.09, 1.44] 

 Dyn. adj. 0.49 

[0.35, 0.79] 

0.31 

[-0.07, 0.61] 

0.34 

[0.34, 1.01] 

0.50 

[0.50, 0.89] 

0.28 

[0.28, 0.88] 
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S1. Detrending method prior to dynamical adjustment 

For dynamical adjustment with constructed circulation analogues (CCA), a large number of 
analogues are required. Ideally, these analogues are not systematically skewed in their 
distribution of climate states they represent. In context of surface air temperature (SAT) it can be 
problematic to use CCAs from a climate significantly warmer or colder than the climate that one 
is trying to reconstruct, since an analogue from a warmer climate will falsely give the impression 
that a particular circulation pattern induced warmer conditions, when in the respective climate 
that particular circulation pattern might not have a tendency to induce warmer conditions 
(Smoliak et al. 2015). Note that this issue can also be exploited to study the changing influence 
of particular circulation patterns under transient climate conditions (Cattiaux et al. 2012). When 
using climate models, the issue can be avoided for example by creating CCAs from control 
simulations, which represent stationary climate states. For observations this is not possible, 
which is why an estimate of the climate non-stationarity, i.e., the forced anthropogenic trend, has 
to be removed before the observations can be used to create an un-skewed distribution of CCAs. 

Different approaches to detrend SAT have been tested in Deser et al. (2016). Here we test 
whether and how precipitation (P) and sea level pressure (SLP) should be detrended before 
constructing the CCAs, since it is less clear a priori whether to detrend or not, due to a less 
robust understanding of the anthropogenically forced trend in these two variables compared to 
SAT (Gillett and Stott 2009; Hegerl et al. 2015). The following detrending methods are tested: 
(i) no detrending, (ii) removing the CESM LE mean, (iii) removing the CMIP5 multi-model 
mean across 40 models, and (iv) removing the first intrinsic mode function of the ensemble 
empirical mode decomposition (EEMD; Wu and Huang 2009). EEMD has the benefit of being 
non-parametric and is suited to deal with non-stationary and non-linear time-space phenomena; 
however, it is purely statistical. The CESM LE mean and CMIP5 multi-model mean have the 
benefit of being informed by physics; however, they include possible model biases. We apply 
these detrending methods in different combinations to P and SLP observations over the period 
1901-2015 and investigate their impact on the 1983-2012 dynamically adjusted P and SLP trend 
over Western North America, i.e., same domain and time period as in the main paper (Fig. S1). 
While it is clear that the different methods yield slightly different results, they ultimately all 
reduce the drying trend over the US Southwest. The range of area-averaged P trends resulting 
from the different detrending methods is given in Table S2 and is comparable to the uncertainties 
in the unadjusted observations themselves. We thus conclude that it does not matter critically for 
the study here which detrending method is chosen. Maybe more interestingly, this also suggests 
that any forced gradual changes in SLP (if they exist in reality), do not notably affect our 
estimate of the general SLP influence on the observed P and SAT trends. For consistency, in the 
main paper we focus on the results from the detrending of SAT, P, and SLP with EEMD.  
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Figure S1: Water year precipitation (P), surface air temperature (SAT), and sea level pressure 
(SLP) trend from 1983 to 2012 from (a) observations (GPCC and TCR version 2c) and (b-h) 
after dynamical adjustment. Prior to dynamical adjustment, P, SAT, and SLP have been 
detrended with the methods indicated in the individual panels. 

 

We dynamically adjust ensemble member #8 of the CESM LE, since it happens to show a similar 
shift from positive to negative PDO during 1983-2012 as observed (not shown) as well as a similar 
drying trend over the US SW. The dynamical adjustment of this simulation (and all other 39 CESM 
LE members, used in Fig. S4) is conducted in a similar fashion as for observations (Section 2.2). 
That is, 95 model years of CESM LE member #8 are used (1920-2015), 80 of which are selected 
randomly to form the CCAs, and the procedure is repeated 100 times. Instead of EEMD, we use 
the CESM LE 40-member mean (a good estimate of the model’s forced response; Deser et al. 
2016) to detrend precipitation, SAT, and SLP prior to dynamical adjustment. 
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Figure S2: Water year sea level pressure (SLP) trend from 1983 to 2012 from different reanalysis 
datasets. While the positive SLP trend in the Aleutian Low is robust across datasets, the anomaly 
over the Western US varies across datasets in terms of location, magnitude, and sign. Similar 
results are seen in surface pressure (not shown).  
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Figure S3: Water year precipitation and sea level pressure (SLP) trend from 1983 to 2012 from 
(a) GFDL GOGA, (b) GFDL LE, (c) CMIP5. (d-f) same as (a-c), but for surface air temperature 
and SLP. Number of simulations of each ensemble is given in brackets. Contours are sea level 
pressure trend in 0.5hPa 30 years-1 increments starting at ±0.25hPa. 
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Figure S4: Water year sea surface temperature (SST), precipitation, and sea level pressure (SLP) 
trends for (a) observations 1936-1965, (b) observations 1983-2012, (c) ensemble mean of CESM 
LE 1936-1965, (d) ensemble mean of CESM LE 1983-2012. Contours are sea level pressure 
trend in 0.5hPa 30 years-1 increments starting at ±0.25hPa.  
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Figure S5: 1983-2012 water year trend averaged over the US Southwest for (a) precipitation and 
(b) surface air temperature from unadjusted and dynamically adjusted observations and all 40 
CESM LE members. The uncertainty range for the dynamically adjusted observations (red 
shading) is based on the 7 different detrending approaches discussed in Section S1. The red 
dashed line marks the detrending approach used in the main text (EEMD/EEMD).  
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Figure S6: 30-year precipitation trends over the US SW from (red) CESM GOGA, (blue) CESM 
LE, (light blue) a 2,200-year long CESM preindustrial control simulation, and (black) a 2,600-
year long atmosphere-only simulation with CAM5, the atmospheric component of CESM, in 
which climatological SSTs from the CESM preindustrial control simulation are prescribed 
perpetually. For the specific period 1983-2012, the individual simulations from CESM GOGA 
and CESM LE are shown with circles; all the other trends are summarized with vertical bars that 
represent the 5-95% range of the trend distribution. The seasons are marked on the x-axis as 
water year (WY), Oct-Dec (OND), Jan-Mar (JFM), Apr-Jun (AMJ), and Jul-Sep (JAS). 
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Figure S7: 30-year water year precipitation and sea level pressure trends from (a) observations, 
(b) CESM atmosphere-only control simulation with CAM5, and (c) CESM coupled preindustrial 
control simulation. For observations, the 1983-2012 trend is shown. For the two model 
simulations, the 30-year trend period with the highest precipitation pattern correlation with the 
observed trend pattern (over the entire domain of the Figure) is shown. Model trends are 
expressed relative to their long-term mean. 
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