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ABSTRACT

The intrinsic atmospheric and ocean-induced tropical precipitation variability is studied using millennial

control simulations with various degrees of ocean coupling. A comparison between the coupled simulation

and the atmosphere-only simulation with climatological sea surface temperatures (SSTs) shows that a sub-

stantial amount of tropical precipitation variability is generated without oceanic influence. This intrinsic

atmospheric variability features a red noise spectrum from daily to monthly time scales and a white noise

spectrum beyond the monthly time scale. The oceanic impact is inappreciable for submonthly time scales but

important at interannual and longer time scales. For time scales longer than a year, it enhances precipitation

variability throughout much of the tropical oceans and suppresses it in some subtropical areas, preferentially

in the summer hemisphere. The sign of the ocean-induced precipitation variability can be inferred from the

local precipitation–SST relationship, which largely reflects the local feedbacks between the two, although

nonlocal forcing associated with El Niño–Southern Oscillation also plays a role. The thermodynamic and

dynamic nature of the ocean-induced precipitation variability is studied by comparing the fully coupled and

slab ocean simulations. For time scales longer than a year, equatorial precipitation variability is almost en-

tirely driven by ocean circulation, except in the Atlantic Ocean. In the rest of the tropics, ocean-induced

precipitation variability is dominated by mixed layer thermodynamics. Additional analyses indicate that both

dynamic and thermodynamic oceanic processes are important for establishing the leading modes of large-

scale tropical precipitation variability. On the other hand, ocean dynamics likely dampens tropical Pacific

variability at multidecadal time scales and beyond.

1. Introduction

The great dependence of human society and natural

ecosystems on rainfall makes precipitation variability an

essential aspect of Earth’s climate. Precipitation variability

is particularly important in the tropics, as it not only af-

fects local water supply but also regulates climate re-

motely through the generation and dispersion of Rossby

waves (e.g., Sardeshmukh and Hoskins 1988; Barsugli

and Battisti 1998; Schneider et al. 2003). Tropical pre-

cipitation variability ranges over many time scales, from

short-lived weather systems, such as thunderstorms, to

intraseasonal phenomena, such as the Madden–Julian

oscillation (MJO), to even longer interannual and

decadal variations, including El Niño–Southern Os-

cillation (ENSO). Understanding the origin of tropical

precipitation variability across the entire temporal range is

among the fundamental objectives of climate science.

The natural variability of precipitation can be con-

sidered, to first order, as a superposition of an internal
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part due to intrinsic atmospheric dynamics and an ex-

ternal part via the interaction of atmosphere with land

and ocean. In the tropics, it is well accepted that the

ocean plays a crucial role through variations in sea

surface temperatures (SSTs). Above-normal SSTs of-

ten increase the boundary layer moist static energy and

induce anomalous convection. A well-known example

is the El Niño event, during which the Pacific warm

pool shifts eastward, as do deep convection and heavy

rainfall. Owing to the ocean’s dynamic control on El

Niño–related SST variations, this ocean-induced pre-

cipitation variability exhibits predictability beyond the

2–3-week time scale of weather noise.

The ocean’s role in generating tropical precipitation

variability is reflected in the positive local relationship

between precipitation and SST over much of the

tropical oceans (Trenberth and Shea 2005). However,

certain areas (e.g., the southwestern Indian Ocean and

the western Pacific Ocean in summer) feature a neg-

ative precipitation–SST relationship (Trenberth and

Shea 2005; Wu et al. 2006). In these regions, a large

portion of precipitation variability likely results from

remote SST forcing or intrinsic atmospheric dynamics

(Wang et al. 2005; Wu et al. 2006).

As a nonlinear system, the atmosphere exhibits sub-

stantial variability of its own (Lorenz 1963). The chaotic

behavior of the atmosphere is often simplified as white

noise, with no predictability beyond a few weeks

(Hasselmann 1976; Frankignoul and Hasselmann 1977).

The importance of the atmospheric intrinsic variability

has been long recognized in the midlatitudes, where the

atmosphere is commonly treated as a stochastic forcing

term in the coupled atmosphere–ocean system (e.g.,

Frankignoul 1985; Barsugli and Battisti 1998). At low

frequencies, the atmospheric variability is amplified by

feedbacks from the slowly evolving ocean state. The

coupling between the atmosphere and ocean in the mid-

latitudes is primarily thermodynamic (e.g., Frankignoul

and Hasselmann 1977; Barsugli and Battisti 1998; Deser

et al. 2003); however, dynamical coupling may also be

important in some cases, for example for some aspects of

the Pacific decadal oscillation (e.g., Schneider and Miller

2001; Schneider and Cornuelle 2005; Kwon and Deser

2007; Newman et al. 2016) and the Atlantic multidecadal

oscillation (e.g., Zhang 2008; Zhang et al. 2016; Delworth

et al. 2017), although studies by Clement et al. (2015,

2016) have challenged the latter.

In the tropics, however, precipitation variability due

to intrinsic atmospheric dynamics has been far less

studied compared to its ocean-induced counterpart.

The historical emphasis on the ocean-induced pre-

cipitation variability is largely due to its greater pre-

dictability, but the extent to which it represents the

total precipitation variability at different time scales

has yet to be determined. In addition, there is a lack of

consensus on whether ocean dynamics plays a leading

role in tropical air–sea interaction. For example, some

studies found ocean circulation to be important in

driving decadal-scale climate variability in the tropical

Pacific (e.g., Jin 2001; Luo and Yamagata 2001), whereas

other studies argued for thermodynamic coupling be-

tween the atmosphere and the ocean mixed layer (e.g.,

Clement et al. 2011; Okumura 2013; Zhang et al. 2014).

The Community Earth System Model (CESM) Large

Ensemble Project (Kay et al. 2015), which includes

millennial control simulations with fully coupled, slab

ocean and atmosphere-only configurations, provides an

ideal opportunity for addressing these issues. In this

study, we will analyze the contribution of the atmo-

sphere and ocean to tropical precipitation variability

over a wide range of time scales from daily to multi-

decadal. The influence of intrinsic atmospheric pro-

cesses is assessed from the atmosphere-only simulation

forced by a prescribed climatological seasonal cycle of

SSTs taken from the fully coupled control simulation.

By comparing the atmosphere-only simulation with the

fully coupled one, we obtain the ‘‘ocean induced’’ com-

ponent of precipitation variability. We note that this

ocean-induced component can arise from intrinsic ocean

variability and ocean–atmosphere coupling; we will

mainly discuss their combined effect. The thermodynamic

and dynamic nature of the ocean-induced precipitation

variability is studied by means of the slab ocean and full-

depth ocean coupled simulations.

The rest of the study is organized as follows. Section 2

describes the data and methods. The results are pre-

sented in section 3, where we quantify the atmospheric

and oceanic contributions to tropical precipitation var-

iability at different time scales. The oceanic contribution

is then explained by understanding the nature of local

precipitation–SST feedbacks. Finally, we present a brief

analysis of the spatial characteristics of the leadingmodes

of atmospheric and ocean-induced precipitation vari-

ability. The results are summarized and discussed in

section 4, along with implications for the simulation of

historical tropical precipitation trends.

2. Data and methods

a. Model simulations

We analyze three long preindustrial control simula-

tions from the CESM (Hurrell et al. 2013): an 1800-yr

fully coupled run, a 900-yr slab ocean run, and a 2100-yr

atmosphere-only run. These simulations differ in their

degree of ocean coupling but are all fully coupled with

3198 JOURNAL OF CL IMATE VOLUME 30



land. All three simulations use the Community Atmo-

sphere Model (CAM), version 5, and the Community

Land Model, version 4, and are run at approximately

18 resolution for all model components. These simula-

tions were conducted as part of the CESM Large En-

semble Project (Kay et al. 2015).

In the slab ocean run (SlabOcean), CAM5 is coupled

to a slab ocean model, the depth of which is taken as the

climatological annual mean mixed layer depth from the

fully coupled run (Coupled). A fixed ‘‘q flux’’ term,

prescribed as a seasonal-varying climatological sea sur-

face heat flux from the Coupled run, is added to the SST

equation following Bitz et al. (2012). This accounts for

the effect of ocean dynamics on the SSTmean state. The

SlabOcean run allows for thermodynamic coupling be-

tween the atmosphere and the ocean mixed layer but

eliminates any impact from variations in the ocean cir-

culation. We will estimate the impact of dynamic ocean

coupling from the difference between the Coupled and

the SlabOcean runs.

Because of the lack of dynamical ocean coupling, the

tropical SST climatology in the SlabOcean run is slightly

warmer than that in the Coupled run in all seasons

(Fig. S1 in the supplementary material). As a result, the

SlabOcean run has slightly larger precipitation in its

climatology than the Coupled run in certain oceanic

regions (discussed later), which may affect the compar-

ison of precipitation variability and remains a caveat in

the interpretation of our results.

The atmosphere-only run uses the monthly climato-

logical seasonal cycle of SST and sea ice from the Cou-

pled run as its lower boundary condition. We will refer

to this simulation as ClimSST. Because of the absence of

SST variability beyond the mean seasonal cycle, pre-

cipitation variability over ocean primarily results from

atmospheric intrinsic dynamics. Strictly speaking,

however, it also contains land–atmosphere coupled vari-

ability, particularly in monsoon regions, where caution

must be taken for interpreting the ClimSST run. Never-

theless, since all the simulations have the same land

model, presumably intrinsic land–atmosphere variability

will be the same in all of our simulations and will not

affect their comparison. The difference between the

Coupled run and the ClimSST run captures the ocean-

induced component of precipitation variability. Note that

this precipitation variability results from internal ocean

processes, as well as ocean–atmosphere coupling; our

experiments do not allow us to differentiate between

the two.

To estimate the impact of the lack of two-way cou-

pling in the atmosphere-only simulations, we conduct a

100-yr uncoupled simulation forced by time-varying

monthly mean SSTs taken from years 401–500 of the

Coupled run. This simulation will be referred to as

FullSST.

b. Observational datasets

To benchmark the simulated precipitation variability,

we analyze pentad (5-day mean) precipitation during

1979–2014 from the Global Precipitation Climatology

Project (GPCP; Adler et al. 2003; Huffman et al. 2009).

The data are recorded on a 2.58 3 2.58 grid and can be

downloaded from the JISAO website (http://research.

jisao.washington.edu/data_sets/gpcp/daily/pentad.html).

Note that fitting the rain gauge–based observations to a

rectangular spatial grid inevitably introduces some spa-

tial and temporal averaging, which affects variability.

Therefore, we only present the observed results for the

purpose of comparing against the simulations, which are

also computed on a rectangular grid.

We also analyze monthly precipitation during 1979–

2014 from the CPC Merged Analysis of Precipitation

(CMAP; http://www.esrl.noaa.gov/psd/data/gridded/data.

cmap.html) and monthly surface temperature during

1980–2014 from the Goddard Institute for Space Studies

(GISS) surface temperature analysis (http://www.esrl.

noaa.gov/psd/data/gridded/data.gistemp.html). The spa-

tial resolution is 2.58 3 2.58 for the CMAP precipitation

and 28 3 28 for the GISS surface temperature. The GISS

surface temperature combines data from the Global

Historical Climatology Network, version 3 (meteorologi-

cal stations), the Extended Reconstructed Sea Surface

Temperature, version 4 (ocean areas), and the Scientific

Committee on Antarctic Research data (Antarctic sta-

tions), as detailed in Hansen et al. (2010).

c. Methods

We first remove the linear trend from all datasets, in

order to minimize the impact of climate drift from the

simulations and anthropogenic forcing from the obser-

vations. The climate drift in the simulations is minimal

because the simulations are started from a spun-up ocean

state (Kay et al. 2015). Before comparing the simulations

with the observations, we interpolate the observed data

onto the model grid. When calculating the observed air–

sea relationships using the CMAP, which contains miss-

ing data, the calculation is done only if at least 70%of the

months in a given grid box have data.

Wedivide the total precipitation variability into several

frequency bands of interest, including daily–annual,

interannual–decadal, decadal, and multidecadal. Each

frequency band is isolated by applying Lanczos filtering

in the time domain (Duchon 1979). To estimate the am-

plitude of precipitation variance for each frequency band,

we calculate the standard deviation of the filtered data.

We validate this approach by summing up the power
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spectra over the specific frequency band, which yields

consistent results (figures not shown).

3. Results

a. Overview of precipitation variance across all time
scales

It is useful to first examine the total precipitation variance

over all time scales resolved by the data. For the pentad

GPCP data, we calculate the total variance as the standard

deviation of pentad precipitation anomalies during the

36 years (1979–2014) that are available (Fig. 1b). To esti-

mate the total variance from the fully coupled CESM for

the same frequency span as the observations, we calculate

the standard deviation of pentad precipitation output from

each of the 50 nonoverlapping 36-yr segments of the Cou-

pled run and then average across the 50 segments (Fig. 1a).

Both the simulated and observed total precipitation

variance fields closely follow the pattern of their

corresponding precipitation climatologies (contours in

Figs. 1a,b). For example, regions of large variance

correspond to areas with high climatological precipitation,

such as the ITCZ, whereas low variance can be found in

regions of low mean rainfall, such as the southeastern

Pacific. The similarity between patterns of variance and

climatology is expected, since precipitation is a positive

definite quantity and fluctuates about its mean within the

range of zero and itsmaximum amplitude. There are large

biases in the simulated precipitation variance (Fig. 1c).

The CESM overestimates the precipitation variance over

most of the ITCZ and underestimates it over the equa-

torial Pacific and the off-equatorial Atlantic Ocean. The

pattern of biases in variance is very similar to the pattern

of biases in climatology (contour in Fig. 1c).

In Fig. 2, we compare the power spectra of pre-

cipitation from GPCP (black lines) and the fully coupled

CESM simulation (blue lines) in six tropical regions,

which are indicated by the purple boxes in Fig. 2g. Inmost

FIG. 1. Mean (contours) and standard deviation (color shading) of pentad precipitation

anomalies from (a) the Coupled run, (b) the GPCP, and (c) their difference. Results from the

Coupled run are calculated as the average of 50 nonoverlapping 36-yr segments (1800 yr in

total), whereas results for the GPCP are calculated using the available 36 yr (1979–2014).

Contour interval is 3 mmday21, starting at 3mmday21, in (a) and (b) and 1mmday21, starting

at 1mmday21, in (c). Dashed contours in (c) indicate negative values. Zero contours are

omitted. Areas where the difference in variance is not significant at the 99% level based on the

F test are stippled in (c). Here and in the rest of the paper, the equivalent sample sizes for

statistical tests are determined following (Zwiers and von Storch 1995).
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FIG. 2. (a)–(f) Precipitation power spectra averaged over selected regions in the tropics from theGPCP (black) and the Coupled (blue),

the SlabOcean (green), and the ClimSST (red) runs. The dashed vertical lines denote the 30-day and 1-yr time scales. (g) The location of

the corresponding regions is shown as the purple boxes. The observed spectra are calculated as the average of two partially overlapping

24-yr segments from the 36-yr pentad data. The simulated spectra are calculated as the average of partially overlapping 100-yr segments

from the daily output; each segment overlaps the next one by 50 yr. Annual mean precipitation climatology from the Coupled simulation

(shading) and the GPCP (contours) in (g). Contour interval is 3 mmday21, starting at 3mmday21.
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of these regions (except the equatorial Pacific), the fully

coupled CESM overestimates precipitation variance at

time scales shorter than 50 days. The general over-

estimation of high-frequency precipitation variance is

consistent with previous findings thatmost climatemodels

rain too frequently compared to observations, particularly

at light rain rates (Pendergrass and Hartmann 2014).

For the three regions in the tropical Pacific (Figs. 2a,d,e),

the fully coupled CESM reproduces the observed spec-

tra reasonably well. However, the imprint of an overly

vigorous ENSO in the model is evident in most regions,

with a spectral peak in the frequency band of approxi-

mately 2–8 yr21 that is narrower and stronger compared

to the observations (Fig. 2a). An earlier version of

CESM with CAM, version 4, also overestimated the

ENSO amplitude (Deser et al. 2012a), which is likely

associated with an excessive negative cloud feedback

(Tang et al. 2016). For the other three regions outside

the PacificOcean (Figs. 2b,c,f), the CESMoverestimates

precipitation variance at almost all frequencies.

Figure 2 also shows the precipitation power spectra

from the SlabOcean (green lines) and the ClimSST (red

lines) runs. (Note that the ClimSST run is forced with

monthly climatological SST and thereby does not in-

clude submonthly SST variability; however, a brief

analysis in Fig. S2 of the supplementary material in-

dicates that such an experimental setup should not affect

the interpretation of our results.) The spectra from the

ClimSST run resemble that arising from a red noise

process with increasing variance from daily to monthly

time scales. Beyond the monthly time scale, the un-

coupled spectra are virtually flat, which is consistent

with the common assumption that atmospheric intrinsic

variability is essentially white noise (e.g., Hasselmann

1976; Frankignoul and Hasselmann 1977). The pre-

cipitation variability from the SlabOcean run also

features a red noise spectrum. The time scale beyond

which the spectra becomewhite varies with region, but it

is generally close to or longer than a year. Compared to

the ClimSST run, the precipitation variability from the

SlabOcean run has similar variance at high frequencies

and generally larger variance at low frequencies. This is

analogous to the first-order explanation for the genera-

tion of climate variability in midlatitudes, where atmo-

spheric intrinsic variability is generally amplified at low

frequencies through the influence of more slowly evolv-

ing SST anomalies, which in turn are due to the integrated

thermodynamic response of the ocean mixed layer to

intrinsic atmospheric variability (Hasselmann 1976;

Frankignoul and Hasselmann 1977; Frankignoul 1985).

Considering the substantial oceanic impact on pre-

cipitation variability beyond the monthly time scale and

the close relationship between precipitation variability

and precipitation climatology, it is necessary to examine

whether oceanic variability also affects precipitation

climatology. As shown in Fig. 3a, there are considerable

discrepancies in the long-term mean precipitation be-

tween the Coupled and ClimSST runs, despite their

virtually identical SST climatologies (Fig. S1). The in-

clusion of SST variability increases climatological pre-

cipitation in the equatorial Pacific by 25%–45% and

moderately reduces it by 15% or less in certain off-

equatorial regions, including the northeastern and

southeastern Pacific, the Maritime Continent and the

adjacent oceanic regions, the North Atlantic, and the

southwestern Indian Ocean. The increase at the equa-

torial Pacific is most likely due to the nonlinear rectifi-

cation effect of SST forcing (i.e., positive SST anomalies

can increase precipitation substantially, whereas nega-

tive SST anomalies only have a minor effect since the

mean precipitation is low to begin with). There are also

noticeable discrepancies over land, where SST vari-

ability generally increases precipitation climatology

north of the equator and reduces it south of the equator.

As we shall see, the sign of the oceanic contribution to

precipitation climatology is generally consistent with

that to precipitation variance.

The climatological precipitation discrepancies in the

ClimSST run can be attributed to either the lack of SST

variability or the lack of two-way coupling; the latter

eliminates any SST response to atmospheric forcing and

could degrade the simulation of tropical climate (e.g.,

Wang et al. 2005;Wu et al. 2006). In Fig. 3b, we compare

the Coupled run with the FullSST run, in which the

monthly varying SSTs from a 100-yr segment of the

Coupled run are prescribed. The FullSST run does not

substantially underestimate precipitation climatology

from the Coupled run in the equatorial Pacific but still

shows generally similar discrepancies as those in the

ClimSST run over the rest of the tropics, indicating that

the lack of two-way coupling could cause the differences

between ClimSST and Coupled runs outside of the

equatorial Pacific. This is in conflict with previous studies,

which suggested that two-way coupling is not necessary in

simulating the time-averaged climate (Skinner et al. 2012;

He and Soden 2016). Note, however, that the FullSST run

is only 100 years long and therefore might not provide a

robust estimation of precipitation climatology (note that

the differences between Coupled and FullSST runs are

generally less than 15% over the tropical ocean and not

statistically significant).

Discrepancies in precipitation climatology can also be

found between theCoupled and SlabOcean runs (Fig. 3c).

This may be partially due to the SST biases (Fig. S1).

However, in the equatorial Pacific, precipitation clima-

tology is 15%–35% larger in the Coupled run despite the
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lower SST, which suggests that coupling with ocean dy-

namics increases precipitation climatology. In addition,

the Coupled run shows larger precipitation climatology

than the SlabOcean run in the north equatorial Atlantic

(by 5%–45%)and parts of northernAfrica (by 5%–25%).

b. Precipitation variance at daily to yearly time scales

The regional average precipitation spectra in Fig. 2

suggest that the relative role of ocean in driving pre-

cipitation variability varies with time scale. In Fig. 4, we

present precipitation variance from the Coupled and

ClimSST runs at subannual and beyond-annual time

scales. Since the uncoupled precipitation variance is

distributed according to an approximately red noise

process in the frequency domain (Fig. 2), its spatial

pattern at individual frequency bands is also similar to

the pattern of precipitation climatology (Figs. 4b,f).

For the subannual time scale, the ocean-induced pre-

cipitation variability (i.e., Coupled – ClimSST runs) is

small (Fig. 4c) and consists of less than 30% of the total

variance in almost the entire tropics, except at the central

equatorial Pacific (Fig. 4d). Particularly at the sub-

monthly time scale, precipitation variance is very similar

between the Coupled and ClimSST runs (Fig. 2). The

insignificance of ocean at submonthly time scales is

largely due to the lack of substantial SST variability on

these time scales (Fig. S3 in the supplementary material).

However, this result might be susceptible to the model’s

inadequate simulation of phenomena, such as the MJO,

which might be better represented with improved pa-

rameterization and higher resolution (Boyle et al. 2015).

As shown in the right column of Fig. 4, the relative

impact of ocean is larger at lower frequencies. For time

scales longer than a year, ocean amplifies precipitation

variability over most of the tropical oceans. Particularly

within 108 of the equator, oceanic variability generally

contributes to more than 30% of the total precipitation

variance (Fig. 4h). In the equatorial Pacific, pre-

cipitation variability is almost entirely driven by ocean

(values .80%). In contrast to the ClimSST run

(Fig. 4f), precipitation variance in the Coupled run

(Fig. 4e) has its maximum values on the equatorward

sides of the climatology maxima (ITCZ and SPCZ) in

the Pacific at this frequency band. In certain regions

(e.g., the southwestern Indian Ocean, the Bay of Bengal,

and the northeastern Pacific), however, ocean suppresses

FIG. 3. Fractional difference in annual mean precipitation climatology (color shading) be-

tween (a) Coupled and ClimSST runs, (b) Coupled and FullSST runs, and (c) Coupled and

SlabOcean runs. The fractional difference is shown as a percentage relative to the Coupled

climatology. Annual mean precipitation climatology from the Coupled run is plotted as con-

tours. Contour interval is 3mmday21, starting at 3mmday21. Areas where the difference in

variance is not significant at the 99% level based on the Student’s t test are stippled. There is

muchmore stippling in (b) than in (a) and (c), mainly because of the relatively small sample size

of the FullSST run.
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precipitation variability (Figs. 4g,h). The oceanic contri-

bution to low-frequency precipitation variability as well as

its seasonality will be further discussed in the next two

sections.

c. Precipitation variance at interannual and longer
time scales

In this section, we present tropical precipitation vari-

ability on interannual and longer time scales (.2yr).

Subdividing this frequency band into three frequency

bands (2–10, 10–50, and .50yr) does not provide addi-

tional insight, as their characteristics are very similar to

those based on .2yr for the analyses presented here

(Figs. S4 and S5 in the supplementary material). In this

and the following sections, we analyze each season sepa-

rately. Results will be presented for December–February

(DJF) and June–August (JJA); results for March–May

and September–November are similar to those for DJF

and JJA, respectively, and will not be presented here.

The patterns of precipitation variance on interannual

and longer time scales in the ClimSST run are again

similar to their climatologies, both in DJF and JJA (not

shown). Here, we focus on the role of ocean by com-

paring the fractional difference in precipitation variance

among the three model configurations. Ocean enhances

precipitation variability over most tropical ocean re-

gions, particularly at the equatorial Pacific, where it

generates over 90% of the total variability in DJF and

over 70% in JJA (Figs. 5a and 6a, respectively). On the

other hand, ocean suppresses precipitation variability in

certain off-equatorial oceanic regions. For DJF

(Fig. 5a), these regions include the southwestern Indian

Ocean, the center of the South Pacific convergence zone

(SPCZ) and the subtropical central North Pacific (the

latter only for the decadal time scale and beyond;

Fig. S4). For JJA (Fig. 6a), these regions include the

northeastern Pacific, the South China Sea, and the Bay

of Bengal. Interestingly, the negative oceanic contribu-

tion primarily occurs in the summer hemisphere.Wewill

further analyze the pattern of the ocean-induced pre-

cipitation variance in the next section. The magnitude of

the positive oceanic contribution peaks at the in-

terannual time scale in the equatorial Pacific and the

equatorial Indian Ocean, consistent with Fig. 2. The

impact of the ocean also extends to land regions. In

particular, it induces positive precipitation variance in

North and central Africa in DJF (Fig. 5a) and in South

America in JJA (Fig. 6a).

FIG. 4. Precipitation standard deviation (mmday21; color shading) from the (a),(e) Coupled run; (b),(f) ClimSST

run; and (c),(g) their difference and (d),(h) their fractional difference, using (left) 365-day high-pass and (right)

365-day low-pass daily precipitation anomalies. Contours show the annual mean precipitation climatology from the

Coupled run in (a),(e),(c),(g),(d),(h) and from the ClimSST run in (b) and (f). Contour interval is 3 mmday21,

staring at 3mmday21. Note that different scales are used to plot the results for the two time scales. The scales of the

color bars are chosen in a way that the uncoupled precipitation variance [(b) and (f)] appears similarly for the two

time scales. Areas where the difference in variance is not significant at the 99% level based on the F test are stippled

in (c),(g),(d),(h). The lack of stippling in (c) and (d) is mainly due to the large sample size.
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In the off-equatorial regions, both the positive and

negative ocean-induced precipitation variability are

largely reproduced by the SlabOcean run and are

therefore primarily associated with mixed layer ther-

modynamic processes (Figs. 5b and 6b). At the equator,

however, most of the precipitation variability requires

coupling with ocean dynamics (Figs. 5c and 6c). TheDJF

equatorial Atlantic is an exception where mixed layer

thermodynamics dominate. In addition, the Coupled

run generally simulates less precipitation variability in

the off-equatorial regions than the SlabOcean run,

which likely suggests a negative contribution from ocean

circulation but could also be caused by the lower cli-

matological SST in the Coupled run (Fig. S1).

d. Local air–sea relationships

The pattern of the ocean-induced precipitation vari-

ability shown in Figs. 7a and 8a suggests positive and

negative feedbacks between precipitation and SST

anomalies. If we assume that these feedbacks are pri-

marily local and instantaneous for the time scales con-

sidered here (i.e., precipitation and SST adjust to each

other’s variations well within a year), we should be able to

understand them through the simultaneous, pointwise

correlation between precipitation and SST. Of course,

local correlations may also reflect nonlocal controls on

precipitation and SST (e.g., those due to atmospheric and

oceanic teleconnections). These will also be taken into

account in our discussion below.

Figures 7b and 8b show the local pointwise regression

coefficients between precipitation and surface temper-

ature anomalies in DJF and JJA, respectively, from the

Coupled run (mmday21K21). Note that no time filter-

ing has been applied, other than the use of seasonalmeans.

In both DJF and JJA, the precipitation–SST regression is

positive over most of the tropical oceans, with values ex-

ceeding 2.5mmday21K21 over the western equatorial

Pacific and the equatorial Indian Ocean. On the other

hand, the regression is negative in the center of the ITCZ

and SPCZ, as well as some areas of the subtropical oceans

(e.g., the southwestern Indian Ocean in DJF and the Bay

of Bengal and the South China Sea in JJA) andmany land

regions, particularly in the summer hemisphere.

Previous studies (Trenberth and Shea 2005;Wang et al.

2005; Wu et al. 2006) showed that the local precipitation–

SST relationship characterizes the basic nature of

FIG. 5. Fractional difference in precipitation standard deviation (color shading) between

(a) Coupled and ClimSST, (b) SlabOcean and ClimSST, and (c) Coupled and SlabOcean using

yearly DJF precipitation anomalies. The fractional difference is shown as a percentage relative

to the Coupled standard deviation. DJF mean precipitation climatology from the Coupled run

is plotted as contours. Contour interval is 3mmday21, starting at 3mmday21. Areas where the

difference in variance is not significant at the 99% level based on the F test are stippled.
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precipitation–SST interaction. In the absence of remote

SST forcing (such as that associated with ENSO, which

will be discussed later), the relationship is positive when

SST forces precipitation and negative when precipitation

forces SST. A negative relationship in the absence of

nonlocal effects is primarily associated with cloud radia-

tive cooling and cold air downdrafts associated with

convection (e.g., Waliser and Graham 1993; Sud et al.

1999). In the absence of precipitation-forcing SST, pre-

cipitation generally increases with increasing local SST,

and vice versa. We can determine this from the

atmosphere-only simulations with prescribed SST

anomalies, in which a positive precipitation–SST re-

lationship is found throughout the tropical oceans

(Wang et al. 2005; Wu et al. 2006). In a coupled system,

however, the relationship can be negative. In this

case, a positive precipitation anomaly can cause a local

cooling of SST, which will act to reduce precipitation

and suppress the initial precipitation anomaly.

Therefore, we can expect ocean to locally amplify

precipitation variability where SST forcing dominates

(i.e., positive precipitation–SST regression) and locally

suppress precipitation variability where precipitation

forcing dominates (i.e., negative precipitation–SST re-

gression). Indeed, the pattern of the precipitation–SST

regression value over ocean (Figs. 7b and 8b) is very

similar to that of the oceanic contribution to precipitation

variance (i.e., Coupled vs ClimSST; Figs. 8a and 9a). In

general, ocean amplifies precipitation variability in re-

gions of positive precipitation–SST regression, and vice

versa. However, there are exceptions in certain parts

of the ITCZ (i.e., the northern ITCZ in DJF and both

the northern and southern ITCZ in JJA), where ocean

amplifies precipitation variability despite a negative

precipitation–SST regression. A common characteristic

of these regions is the presence of large horizontal SST

gradients. It is likely that most of the local precipitation

variability is driven by variations in the SST gradient

rather than the amplitude of the SST itself (Lindzen and

Nigam 1987; Back and Bretherton 2009; Li and Carbone

2012). Indeed, in the northern ITCZ region in DJF, we

find a moderate negative correlation between pre-

cipitation and the local Laplacian of SST (Fig. S6 in the

supplementary material). On the other hand, such

negative precipitation–SST regressions can also result

from remote SST forcing and, in that case, may not

serve as an indicator of negative ocean-induced pre-

cipitation variability, as we shall show next.

Previous studies suggested that ENSO-related SST

anomalies may be particularly effective in modulating

the precipitation–SST relationship through its ability

to shift precipitation at large scales (Trenberth and

Shea 2005; Wu et al. 2006). In Figs. 9 and 10, we calcu-

late the precipitation–SST regression for ENSO years

FIG. 6. As in Fig. 5, but for JJA.
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(Figs. 9a and 10a) and non-ENSO years (Figs. 9b and

10b) separately. The difference between the two (Figs. 9c

and 10c) provides an estimation of the impact of ENSO.

The ENSO-induced precipitation–SST regression

(Figs. 9c and 10c) has about the same magnitude as the

total precipitation–SST regression (Figs. 7b and 8b). The

pattern of the ENSO-induced precipitation–SST re-

gression (Figs. 9c and 10c) is essentially determined by

whether the local SST and precipitation anomalies have

the same sign duringENSO (Fig. S8 in the supplementary

material). In the equatorial Pacific and the eastern Indian

Ocean, where precipitation increases during El Niño and

decreases during La Niña, ENSO drives a positive

precipitation–SST regression. The positive regression

suggests that the SSTs could be more likely to cross the

convection threshold during ENSO, causing an enhanced

precipitation response to the SST anomaly. In the off-

equatorial Pacific and the western Indian Ocean, ENSO

drives a negative precipitation–SST regression. These

regions experience a lack of rainfall because of the drastic

equatorial shift of convection during El Niño, despite the
positive local SST anomaly. The clear-sky condition may

in turn enhance the warming of the SST (Klein et al. 1999;

Shinoda et al. 2004; Chiang and Lintner 2005). In-

terestingly, the remote influence of equatorial Pacific SST

anomalies is only effective at the interannual time scale

and virtually nonexistent at the decadal time scale and

beyond (latter not shown).

Figures 9d and 10d show the difference in precipita-

tion variance between ENSO years and non-ENSO

years. The ENSO-induced precipitation variability is

positive over most of the tropics and is most appreciable

over regions where ENSO substantially affects the

precipitation–SST regression (Figs. 9c and 10c). Note

that, even in regions where ENSO induces a negative

precipitation–SST regression, precipitation variability is

FIG. 7. (a) Difference in precipitation standard deviation between the Coupled and

SlabOcean runs using yearly DJF mean precipitation, and linear regressions of precipitation

anomaly onto surface temperature anomaly using yearly DJF output (b) from the Coupled run

and (c) from CMAP and GISS surface temperature analysis. Regions where more than 30% of

the data are missing are filled in gray. Contours are the DJF precipitation climatology from the

Coupled run in (a) and (b) and the observed DJF precipitation climatology in (c). Contour

interval is 3mmday21, starting from 3mmday21. Stippling in (a) indicates that the difference

in variance is not significant at the 99% level based on the F test, whereas stippling in (b) and

(c) indicates that the linear correlation between precipitation and surface temperature is not

significant at the 99% level based on the two-sided Student’s t test.
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still generally enhanced by ENSO. Such enhanced

variability is most likely a result of remote SST forcing,

since the ENSO-induced local precipitation–SST feed-

backs act to suppress precipitation variability.

To benchmark the CESM simulated precipitation–

SST regression, we present the observed precipitation–

SST regression inFigs. 7c and 8c. Because of the relatively

short record of the observations, most of the tropics do

not show statistically significant correlations (stippling in

Figs. 7c and 8c). Nevertheless, the model is able to re-

produce the basic structure of the observed precipitation–

SST regression, and most of the discrepancies between

the two are related to biases in the model’s mean state.

For example, the tendency for negative regression values

within the centers of the precipitation maxima (SPCZ,

ITCZ, and the Maritime Continent) is present to some

degree in observations, although the exact geographical

locations may not coincide with those simulated as a re-

sult of the biased mean state in the model. On the other

hand, some of the discrepancies appear unrelated to the

climatological biases and are likely a result of the mis-

representation of the precipitation–SST feedbacks. For

example, in DJF, the CESM underestimates the negative

regression in the Maritime Continent and the adjacent

oceanic regions and the positive regression in the western

equatorial Pacific; it also overestimates the positive

regression in the equatorial Atlantic. In JJA, the neg-

ative regression in the summer Asian monsoon regions

is generally stronger and extends farther south in the

observations.

e. Spatial modes of precipitation variability

The substantial precipitation variability simulated in the

SlabOcean and ClimSST runs merits more detailed ana-

lyses on its spatial and temporal characteristics. To that

end, we performed and compared EOF analyses in vari-

ous tropical regions at interannual (,10yr), decadal (10–

50yr), and multidecadal (.50yr) time scales. We only

present results based on EOFs over the tropical Pacific, a

region that has historically attracted great attention.

Figures 11 and 12 show global maps of annual mean

precipitation and sea level pressure (SLP) anomalies

correlated with the first principal component (PC) of

precipitation anomalies within the tropical Pacific re-

gion (outlined by the red rectangle) for each time scale.

The Coupled (Figs. 11a–c), SlabOcean (Figs. 11d–f), and

ClimSST (Fig. 12) runs all simulate spatially coherent

precipitation and circulation patterns within the tropical

Pacific at all time scales. Unlike the Coupled run, which

shows a decrease in explained variance with increasing

FIG. 8. As in Fig. 7, but for JJA.
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time scale, the SlabOcean run shows an increase, and the

ClimSST run shows almost no change. Indeed, the var-

iance explained in theCoupled run diminishes by nearly a

factor of 2 (from 38.4% to 23.1%), whereas that in the

SlabOcean runmore than doubles (from13.9% to 29.3%)

between interannual and multidecadal time scales. The

variance explained in the ClimSST run is much smaller

than that in the other two runs at all time scales (6%–7%).

For all three time scales, the first EOF of the Coupled

run exhibits an ENSO-like precipitation pattern in the

tropical Pacific with teleconnections extending to nearly

the entire globe. Particularly at the interannual time

scale, the spatial coherence of the global precipitation

and SLP patterns associated with the first EOF in the

Coupled run (Fig. 11a) is unmatched by that from

the SlabOcean (Fig. 11d) andClimSST (Fig. 12a) runs. The

first EOF of the SlabOcean run features a similar ENSO-

like pattern at the multidecadal time scale, although the

remote teleconnections differ (Fig. 11f). However, at the

interannual (Fig. 11d) and decadal (Fig. 11e) time scale,

the leading mode of variability shows a distinctive struc-

ture with an out-of-phase relationship between the

equatorial Pacific and the northern subtropics. For these

two time scales, the ENSO-like mode appears as the

second EOF in the SlabOcean run (Fig. S9 in the sup-

plementary material). Although the ENSO-like mode in

the SlabOcean run is generally similar to that in the

Coupled run, it shows an embedded negative precipitation

FIG. 9. Linear regression of precipitation anomaly onto surface temperature anomaly (color

shading) using yearly DJF output from the Coupled run for (a) ENSO years, during which the

yearlyDJF SST anomaly in theNiño-3.4 region exceeds one standard deviation, (b) non-ENSO

years, during which the SST anomaly of Niño-3.4 is less than 30% standard deviation, and

(c) their difference. (d) Difference in the standard deviation of yearly DJF precipitation be-

tween theENSOyears and non-ENSOyears in theCoupled run.DJF precipitation climatology

from the Coupled run is plotted as contours. Contour interval is 3 mmday21. Stippling in

(a),(b),(d) indicates the results of the statistical tests and is plotted the same as in Fig. 7.
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anomaly right at the equator, which is absent in the

Coupled run. This difference can be found for all three

time scales and likely reflects the strong dependence of

precipitation variability on coupling with ocean dynamics

at the equatorial Pacific (Figs. 5c and 6c).

The first mode of the ClimSST run features a zonally

banded pattern in the tropical Pacific and explains a

relatively small portion of the total precipitation vari-

ance (Fig. 12). This pattern differs substantially from the

ENSO-like pattern because of the lack of ocean cou-

pling. Compared to the Coupled and SlabOcean runs,

the ClimSST run has the most temporally consistent

EOF modes, with similar patterns and amplitude across

all time scales. This is in agreement with the previous

conclusion that the uncoupled tropical precipitation

variability is essentially a white noise beyond themonthly

time scale.

An interesting feature of Fig. 11 is the pronounced

extratropical circulation patterns associated with the

tropical Pacific precipitation variability, which occur in

the Coupled run at all time scales and in the SlabOcean

run mainly at the multidecadal time scale. For example,

most of these show a negative SLP anomaly in the North

Pacific and a positive SLP anomaly in the southeastern

Pacific, as well as connections to the Southern Ocean

and Atlantic basin of varying strength. It is well known

that tropical precipitation anomalies can modulate ex-

tratropical circulation via the generation and dispersion

of Rossby waves (e.g., Sardeshmukh and Hoskins 1988;

Barsugli and Battisti 1998; Schneider et al. 2003). On the

other hand, the extratropical circulation can also ener-

gize tropical climate variability. It has been shown that

the atmospheric stochastic forcing from both the North

Pacific (e.g., Pierce et al. 2000; Di Lorenzo et al. 2015)

and the South Pacific (e.g., Okumura 2013; Zhang et al.

2014) are particularly important for the development of

the ENSO-like pattern of variability. A question that

often appears in these studies is how ocean coupling

facilitates these tropical–extratropical teleconnections.

Here, we present a brief analysis on this question.

FIG. 10. As in Fig. 9, but for JJA.

3210 JOURNAL OF CL IMATE VOLUME 30



In Fig. 13, we show global maps of annual mean pre-

cipitation and SLP correlations with the leadingmode of

SLP variability in the extratropical South Pacific (158–
708S, 1708E–708W; outlined by the red box) at each time

scale. The region chosen for the EOF analysis is defined

in the sameway as byOkumura (2013), who investigated

the decadal tropical–extratropical teleconnections in a

similar way using the Community Climate System

Model, version 4. Both the Coupled and SlabOcean runs

show a local Pacific–South American pattern (PSA;

with a low pressure anomaly off the coast of Chile and an

adjacent high pressure anomaly to its south) embedded

within a larger southern annular mode structure at all

three time scales, consistent with Okumura (2013). For

all time scales in the Coupled run and the SlabOcean

run, the PSA is associated with a meridional dipole

pattern of precipitation in the South Pacific; however,

the tropical precipitation anomalies are not consistent.

The ClimSST run also simulates a PSAmode, indicating

that such a mode can be generated through atmospheric

intrinsic dynamics. However, its correlation with tropi-

cal precipitation is negligible (figures not shown).

A key distinction between the two coupled model

configurations is that the connection to the tropical Pa-

cific (both precipitation and SLP) strengthens as the

time scale lengthens in the case of the SlabOcean run

FIG. 11. Linear correlation of precipitation (shading) and SLP (contour) anomalies with the leading PC of

precipitation anomalies in the Indo-Pacific region, which is marked by the red boxes. Data are the annual mean

output filtered by (a),(d) 10-yr high pass, (b),(e) 10–50-yr bandpass, and (c),(f) 50-yr low pass. Results are from the

(left) Coupled and (right) SlabOcean runs. Contour interval is 0.2. Dashed contours represent negative values. The

zero contour is thickened. Variance explained by EOF1 is shown in the title of each panel.
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and weakens in the case of the Coupled run. Moreover,

in the Coupled run on the multidecadal time scale, the

tropical Pacific linkage to the PSA is mainly confined to

south of the equator (Fig. 13c), which differs from the

ENSO-like pattern based directly on the tropical pre-

cipitation EOF (Fig. 11c). No such distinction is evident

for the SlabOcean run at the multidecadal time scale,

which exhibits nearly identical global-scale patterns

whether based on the first EOF (EOF1) of South Pacific

SLP (Fig. 13f) or tropical Pacific precipitation (Fig. 11f).

If the analysis is based on the EOF of North Pacific SLP

instead of the South Pacific, similar results are found:

that is, the SlabOcean run also exhibits stronger tele-

connections between the northern extratropics and the

tropical Pacific at the multidecadal time scale compared

to the interannual time scale, while the Coupled run

shows the opposite (Fig. S10 in the supplementary ma-

terial). EOF analyses of tropical Pacific SST further

show that multidecadal ENSO-like variability is stron-

ger in the SlabOcean run than the Coupled run (Fig. S11

in the supplementary material). This indicates a possible

negative role of ocean dynamics in the tropical–

extratropical teleconnections and the development of

ENSO-like variability at the multidecadal time scale.

4. Conclusions and discussion

We have studied tropical precipitation variability in

fully coupled, slab ocean, and fixed-SST runs whose

component models, when active, are identical. Themain

goal was to identify atmospheric and oceanic origins of

tropical precipitation variability and to understand the

thermodynamic and dynamic nature of the ocean-

induced precipitation variability. We obtain the atmo-

spheric component of precipitation variability from the

fixed-SST run and the ocean-induced component from

the difference between the fully coupled and fixed-SST

runs. Note that this definition of ocean-induced pre-

cipitation variability does not differentiate between the

impact of internal oceanic variability and that of ocean–

atmosphere interaction. While internal oceanic variabil-

ity has been shown to produce a multidecadal spectral

peak in SST in the northern North Atlantic in association

with fluctuations of the thermohaline circulation

(Delworth and Zeng 2016; Delworth et al. 2017), we

find no evidence for spectral peaks beyond that asso-

ciated with the interannual ENSO phenomenon in ei-

ther tropical precipitation (Fig. 2) or tropical SST

(Fig. S3) in the fully coupled simulation. Thus, most of

the ocean-induced tropical precipitation variability

studied here likely originates from ocean–atmosphere

interaction instead of internal oceanic variability.

Further experiments are needed to provide conclusive

results.

Our analyses of the fixed-SST simulation show that

substantial precipitation variability is internally gener-

ated by the atmosphere. This atmospheric intrinsic

precipitation variability exhibits a red spectrum at sub-

monthly time scales and a white spectrum at longer time

scales. The pattern of the atmospheric intrinsic pre-

cipitation variance is similar to the pattern of pre-

cipitation climatology at all time scales examined

(submonthly–multidecadal). Because of the lack of

substantial SST variability at submonthly time scales,

the high-frequency precipitation variability is almost

identical with and without oceanic influence. At lower

frequencies, however, the ocean has a strong impact.

FIG. 12. As in Fig. 11, but for the ClimSST run.
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At the interannual time scale and beyond, the role of

ocean in generating precipitation variability varies with

region. Ocean increases precipitation variability over

most of the tropical oceans but reduces it over some

parts of the subtropics preferentially in the summer

hemisphere. In the equatorial Pacific and equatorial

Indian Ocean, the ocean-induced precipitation is pri-

marily driven by ocean dynamics. Over the rest of the

tropical oceans, however, it is dominated by the ther-

modynamic coupling with the ocean mixed layer.

In addition to its impact on precipitation variability,

ocean also affects the simulation of precipitation cli-

matology. In particular, precipitation climatology along

the equator of the Pacific is reduced by nearly half when

SST variability is not included. This has great implica-

tions for the future design of AMIP-type experiments,

since it has been a common practice to neglect SST

variability in simulations that only aim to study the time

mean changes in precipitation (e.g., externally forced

mean climate change). Our results showed that the in-

clusion of accurate SST variability is necessary for sim-

ulating the time mean precipitation in this key region.

The pattern of the ocean-induced precipitation variabil-

ity is similar to the pattern of the pointwise precipitation–

SST regression. In regions where the regression is positive,

SST forcing dominates the precipitation–SST rela-

tionship and amplifies precipitation variability. In re-

gions where the regression is negative, however, the SST

FIG. 13. Linear correlation of precipitation (shading) and SLP (contour) anomalies with the leading PC of SLP

anomalies in the South Pacific region, which is marked by the red boxes. Data are the annual mean output filtered

by (a),(d) 10-yr high pass, (b),(e) 10–50-yr bandpass, and (c),(f) 50-yr low pass. Results are from the (left) Coupled

and (right) SlabOcean runs. Contour interval is 0.2. Dashed contours represent negative values. The zero contour is

thickened. Variance explained by EOF1 is shown in the title of each panel.
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anomaly is largely a response to the negative precipitation

feedback and subsequently acts to suppress precipitation

variability. ENSO is also important for the establishment of

the precipitation–SST relationship by enhancing the SST

forcing at the equator and inducing a negative precipitation

feedback in the off-equatorial regions. Interestingly, the

negative precipitation–SST relationship generally occurs at

the center of the ITCZ and in the summer hemisphere

subtropics, where the sea surface is relatively warm. Ob-

servational studies showed that precipitation and cloud

formation tend to keep SST below a certain maximum

value (e.g., Waliser andGraham 1993; Sud et al. 1999), and

negative precipitation feedback is therefore likely stronger

in regionsofwarmSST.However, future studies are needed

to assess the simulation of such processes in climatemodels.

Assessing the simulation of the ocean-induced pre-

cipitation variability is a challenge partly because of the

difficulty in separating the ocean-induced variance from

the total variance in observations. However, the pattern

similarity between the ocean-induced precipitation vari-

ance and the precipitation–SST regression allows us to

assess the former through the latter. The coupled CESM

simulates overall reasonable precipitation–SST regression;

its biases are largely associated with biases in the position

of the ITCZ.

Although we have focused mostly on the relationship

between precipitation and SST anomalies, fluctuations

in the SST gradient can also be important in generating

precipitation variability. In particular, the observational

study by Li and Carbone (2012) showed a greater role

for the local SST gradient than the local SST in trig-

gering individual rainfall events over the tropical west-

ern Pacific. On a seasonal mean basis, however, we found

that precipitation variability is more closely related to the

local SST rather than the local SST gradient in both ob-

servations and the fully coupled simulation (Figs. S6 and

S7), except in the center of the northern ITCZ in DJF and

directly along the equator in thewesternPacific in bothDJF

and JJA. The issue of the relative importance of the local

SST versus SST gradient on precipitation variability as a

function of temporal scale merits additional investigation.

We briefly presented an EOF analysis to study the

spatial characteristics of the precipitation variability

simulated by the three CESM configurations. The leading

modes of tropical Pacific precipitation show very different

amplitude and spatial structures with and without ocean

coupling. A similar ENSO-like precipitation pattern ap-

pears in theCoupled run at decadal andmultidecadal time

scales and in the SlabOcean run at all time scales longer

than one year. In the Coupled run, the ENSO-like mode

and its teleconnection with the extatropical circula-

tion weaken as the time scale lengthens. In contrast, the

SlabOcean run shows a stronger ENSO-like mode and a

more robust tropical–extratropical teleconnection at lon-

ger time scales. This suggests that the role of ocean dy-

namics in driving tropical Pacific variability likely

diminishes with increasing time scale. Particularly at

time scales longer than 50 years, the ENSO-like vari-

ability in the SlabOcean run becomes stronger than

that in the Coupled run.

The stronger multidecadal variability in the SlabOcean

run indicates a negative feedback between ocean circu-

lation and SST variability at low frequencies, which was

proposed by Di Nezio (2011). At the interannual time

scale, ENSO is initialized by changes in the thermo-

cline depth associated with the reflected Kelvin wave. The

Kelvin wave is generated because wind-driven Rossby

waves do not arrive at the western boundary in phase (e.g.,

Cane and Sarachik 1981). At longer time scales, however,

the wind forcing and ocean adjustment are able tomaintain

a closer balance, resulting in a weaker Kelvin wave and

weaker thermocline forcing. As a result, changes in the

thermocline no longer drive the SST variability but are in-

stead in opposite phase to SST, providing a negative feed-

back. Such a mechanism likely causes the Coupled run to

have a weaker ENSO-like variability than the SlabOcean

run at the multidecadal time scale.

Natural precipitation variability at multidecadal and

longer time scales has historically received less attention

than its higher-frequency counterpart, mainly because

of the lack of long-term observations. However, quan-

tifying and understanding such variability is crucial for

the interpretation of climate change, both in the recent

past and coming decades. Many studies show that cli-

mate changes during a 50-yr span can be dominated by

natural variability at regional scales, especially in the

extratropics in winter (Deser et al. 2012b, 2014; Kay

et al. 2015; Deser et al. 2016). This makes the assessment

of historical climate simulations difficult, since the

chronologies of the simulated internal variability need

not match each other or the observation. Figures 14a

and 14b show that the intermodel spread of 50-yr trends

(1955–2005) in tropical precipitation from historical

simulations in the CMIP5 archive is substantially larger

than the multimodel mean trend, which is typically in-

terpreted as the radiatively forced component. The

small amplitude of the multimodel mean trend is in part

due to the cancellation among the trends from the in-

dividual models. However, the spread in trends across

the 35 members of the CESM large ensemble (Fig. 14d)

is also larger than thatmodel’s forced response (given by

the ensemble mean: Fig. 14c). This suggests that internal

variability is large enough to mask the forced response,

at least in the CESM, with implications for interpreting

the observed record. Furthermore, the spread in 50-yr

trends due to internal variability (Fig. 14d) is only
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modestly less than the spread across the CMIP5 models

(Fig. 14b), suggesting that internal climate variability,

rather than the models’ structural differences, is the

main cause of spread.

Deser et al. (2012b) showed that the low-frequency

precipitation variability in the extratropics is dominated

by atmospheric intrinsic dynamics. In the tropics, on the

other hand, ocean is expected to have a much greater

impact on precipitation. However, the spread in trends

from nonoverlapping 50-yr segments of the ClimSST

run is comparable to that from the 35-member CESM

large ensemble (and that from the Coupled control run;

FIG. 14. The 50-yr DJF precipitation trend from the CMIP5 historical run and the CESM

historical and preindustrial control runs. The historical trend is taken from the period of De-

cember 1955–November 2005. (a) The ensemble mean and (b) intermodel standard deviation

of the historical precipitation trend from 40 CMIP5 models. (c) The ensemble mean and

(d) intermember standard deviation of precipitation trend from the 35-member CESM his-

torical runs, which only differ from each other slightly in their initial conditions. (e) The

standard deviation of precipitation trends using nonoverlapping 50-yr segments from the

ClimSST run. DJF precipitation climatology from the respective simulations is shown in con-

tours, with an interval of 3mmday21 and starting at 3mmday21. [The 40 CMIP5 models are

BCC_CSM1.1, BCC_CSM1.1(m), BNU-ESM, CanESM2, CCSM4, CESM1(BGC), CESM1

(CAM5), CESM1(FASTCHEM), CESM1(WACCM), CMCC-CESM, CMCC-CM, CMCC-

CMS, CNRM-CM5, CNRM-CM5.2, EC-EARTH, FGOALS-g2, GFDL CM2.1, GFDL CM3,

GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H, GISS-E2-H-CC, GISS-E2-R, GISS-E2-R-CC,

HadCM3, HadGEM2-CC, HadGEM2-ES, INM-CM4.0, IPSL-CM5A-LR, IPSL-CM5A-MR,

IPSL-CM5B-LR, MIROC4h, MIROC5, MIROC-ESM, MIROC-ESM-CHEM, MPI-ESM-

LR, MPI-ESM-MR, MPI-ESM-P, MRI-CGCM3, and MRI-ESM1. Expansions of acronyms

are available online at http://www.ametsoc.org/PubsAcronymList.]
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not shown), except at the equator (Fig. 14e). We have

shown that the leading modes of large-scale tropical

precipitation variability require interaction with the

ocean. Therefore, the evolution of SSTs holds the key to

future predictions of large-scale tropical precipitation.

On regional scales, however, atmospheric intrinsic dy-

namics account for a substantial proportion of tropical

precipitation variability, particularly over land regions,

which may indicate limited predictability beyond the

synoptic time scale.

Since all of our simulations were conducted with the

CESM, future studies are encouraged to test the robust-

ness of our results, particularly with higher-resolution

models, which may more faithfully capture ENSO vari-

ability and its teleconnections (Jia et al. 2015) as well as

submonthly variability.
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