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ABSTRACT: Future Arctic sea ice loss has a known impact on Arctic amplification (AA) and mean atmospheric circula-
tion. Furthermore, several studies have shown it leads to a decreased variance in temperature over North America. In this
study, we analyze results from two fully coupled Community Earth System Model (CESM) Whole Atmosphere Commu-
nity Climate Model (WACCM4) simulations with sea ice nudged to either the ensemble mean of WACCM historical runs
averaged over the 1980–99 period for the control (CTL) or projected RCP8.5 values over the 2080–99 period for the exper-
iment (EXP). Dominant large-scale meteorological patterns (LSMPs) are then identified using self-organizing maps
applied to winter daily 500-hPa geopotential height anomalies (Z′

500) over North America. We investigate how sea ice loss
(EXP 2 CTL) impacts the frequency of these LSMPs and, through composite analysis, the sensible weather associated
with them. We find differences in LSMP frequency but no change in residency time, indicating there is no stagnation of the
flow with sea ice loss. Sea ice loss also acts to de-amplify and/or shift the Z′

500 that characterize these LSMPs and their asso-
ciated anomalies in potential temperature at 850 hPa. Impacts on precipitation anomalies are more localized and consistent
with changes in anomalous sea level pressure. With this LSMP framework we provide new mechanistic insights, demon-
strating a role for thermodynamic, dynamic, and diabatic processes in sea ice impacts on atmospheric variability. Under-
standing these processes from a synoptic perspective is critical as some LSMPs play an outsized role in producing the mean
response to Arctic sea ice loss.

SIGNIFICANCE STATEMENT: The goal of this study is to understand how future Arctic sea ice loss might impact
daily weather patterns over North America. We use a global climate model to produce one set of simulations where sea
ice is similar to present conditions and another that represents conditions at the end of the twenty-first century. Daily
patterns in large-scale circulation at roughly 5.5 km in altitude are then identified using a machine learning method. We
find that sea ice loss tends to de-amplify these patterns and their associated impacts on temperature nearer the surface.
Our methodology allows us to probe more deeply into the mechanisms responsible for these changes, which provides a
new way to understand how sea ice loss can impact the daily weather we experience.

KEYWORDS: Sea ice; Atmospheric circulation; Synoptic-scale processes; Climate change; Climate models;
Machine learning

1. Introduction

The Arctic sea has experienced a significant decline in sea
ice extent with trends of24.36% decade21 and greatest losses
in the Barents–Kara Seas and Beaufort Sea (Comiso et al.
2017). Climate models project that the Arctic will become
seasonally ice free by the mid-twenty-first century (Wang and
Overland 2012), albeit with large uncertainty due to internal
variability (Jahn et al. 2016). This sea ice loss is greatest in

September; however, the impact on the atmosphere is largest
in winter when turbulent heat fluxes from the ocean to the
atmosphere are greatest (Deser et al. 2010; Singarayer et al.
2006).

One robust impact of sea ice loss on the atmosphere is Arctic
amplification (AA), where the Arctic warms faster than the
global mean (Screen and Simmonds 2010; Barnes and Screen
2015; Dai et al. 2019). The AA signal can be seen in observa-
tions (e.g., Serreze et al. 2009; Screen and Simmonds 2010) and
modeling studies (e.g., Holland and Bitz 2003; Deser et al.
2010). The increased atmospheric temperatures associated with
AA are largest near the surface and during the winter months
(e.g., Serreze et al. 2009; Holland and Bitz 2003; Deser et al.
2010). Although the causes of AA and their relative importance
remain an active area of research (Smith et al. 2019), several
feedback mechanisms operating at low and high latitudes have
been shown to contribute, including the surface albedo feed-
back, the lapse rate feedback, and the Planck feedback (Pithan
and Mauritsen 2014). Additional processes such as increased
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atmospheric transport of heat and moisture associated with re-
mote SSTs have also been shown to play an important role in
producing the AA signal and in particular its extension to
higher altitudes (Screen et al. 2012; Perlwitz et al. 2015).

The increased turbulent heat fluxes associated with Arctic
sea ice loss result in the development of localized thermal low
pressure anomalies over the region of sea ice loss (Alexander
et al. 2004; Gervais et al. 2016; Smith et al. 2017). The remote
circulation response; however, is more uncertain (Smith et al.
2019). AA is associated with a general reduction in meridio-
nal temperature gradient and increase in mean column thick-
ness over the Arctic, which, through thermal wind arguments,
is expected to weaken the midlatitude westerlies (Vihma
2014). This leads to the tug-of-war paradigm, where sea ice
loss is expected to shift the midlatitude jets equatorward,
while greenhouse gas forcing separate of sea ice loss acts to
shift them poleward (e.g., Deser et al. 2015; Oudar et al. 2017;
McCusker et al. 2017; Blackport and Kushner 2017). Fully
coupled and atmosphere-only simulations with imposed fu-
ture sea ice loss show broadly consistent impacts on the atmo-
spheric circulation including a weakened Icelandic low, an
intensified Aleutian low and Siberian high, and an equator-
ward shifted and often weakened zonal mean midlatitude jet
(Screen et al. 2018). However, Peings et al. (2021) showed
that even with the large, imposed future sea ice loss internal
variability can play an important role in determining the at-
mospheric response.

The further impact of Arctic sea ice loss on atmospheric
variability has become an important topic of discussion and
disagreement. Francis and Vavrus (2012) hypothesized that
AA leads to a reduction in the midlatitude westerlies and con-
sequently more meanders in the jet. Although issues with
the methodology they used were highlighted in subsequent
papers (Barnes 2013; Screen et al. 2013), the topic of Arctic
midlatitude linkages has been the subject of considerable re-
search and has been summarized in numerous review articles
(Cohen et al. 2014; Vihma 2014; Barnes and Screen 2015;
Screen et al. 2018). More recently, Blackport and Screen
(2020) extended the observational analysis to the present day
and found that the observed trends in waviness are no longer
significant, although the AA signal has continued to increase.
They conclude that the causal link is likely that periods of in-
creased waviness leads to periods of increased AA due to en-
hanced meridional temperature and moisture fluxes. Much of
this previous work on Arctic sea ice loss and atmospheric vari-
ability has focused on the historical period; however, in the
future we expect sea ice loss to be much greater and the
mechanisms through which it impacts atmospheric variability
may differ from those discussed above.

Atmospheric variability can be characterized in a variety of
ways that may capture different aspects and come with their
own advantages or disadvantages. Many studies have utilized
variance or standard deviation and found a reduction in the
standard deviation of surface temperature with Arctic sea ice
loss that they attribute to a reduction of the meridional tem-
perature gradient (Screen 2014; Screen et al. 2015; Collow
et al. 2019; Dai and Deng 2021). This metric is straightforward
and provides useful general information about changes in

temperature distribution at each location. A variety of metrics
have been employed to examine changes in the waviness or
sinuosity of the midlatitude flow (e.g., Francis and Vavrus
2012, 2015; Cattiaux et al. 2016); in particular in the observa-
tions, often departures of a single geopotential height contour
from its zonal mean value are used. However, early applica-
tions of such methods (Francis and Vavrus 2012) have been
shown to be sensitive to analysis parameters chosen (Barnes
2013; Screen et al. 2013) so careful attention must be paid in
their application to ensure robustness across seasons and with
mean warming (Cattiaux et al. 2016). These metrics provide
useful information about the amplitude of spatial patterns
across the Northern Hemisphere. However, neither standard
deviation nor sinuosity provides information about spatial
patterns, and both are limited in terms of the ability to probe
more deeply into the physical mechanisms responsible.

Alternatively, the identification of large-scale meteorological
patterns (LSMPs) and their changes can provide key informa-
tion about regional atmospheric variability. LSMPs can be man-
ually identified through synoptic typing; however, for large
datasets objective classification methods such as k-means or
self-organizing maps (SOM) can be employed (Grotjahn et al.
2016). SOM is a machine learning method that can effectively
identify archetypal patterns and classify data into these catego-
ries. A benefit of the SOM method is that it does not require
patterns to be orthogonal, unlike the more traditional method
of empirical orthogonal functions (EOFs). As a result, the SOM
method can produce LSMPs (SOM nodes) that are more realis-
tic (Grotjahn et al. 2016). Much like classic synoptic typing anal-
ysis, composite analysis of diagnostic fields can be applied to
identified LSMPs. This provides a framework through which
physical understanding of these patterns and their sensible
weather impacts can be ascertained, which is not possible using
measures of variability such as standard deviations or sinuosity.

This study will examine the impact of future Arctic sea ice
loss on LSMPs of midtropospheric circulation over North
America. We will employ two fully coupled climate model
simulations with nudged sea ice to historical or projected end
of twenty-first-century conditions, so changes are much larger
than the observed trend. Self-organizing maps will be used to
identify LSMPs of 500-hPa geopotential height anomalies and
examine their changes in frequency and pattern with sea ice
loss. Composite analysis of these LSMPs will be used to inves-
tigate the sensible weather conditions associated with these
LSMPs including low-level potential temperature and precipi-
tation. Finally, the impact of sea ice loss will be viewed
through the lens of these LSMPs to better understand pro-
cesses tied to atmospheric variability.

2. Data and methods

a. Model simulations

To investigate the contribution of sea ice loss to atmo-
spheric variability, we employed a pair of two Community
Earth SystemModel (CESM) (Hurrell et al. 2013) simulations
with constrained sea ice. The model setup utilizes the Whole
Atmosphere Community Climate Model (WACCM4), the
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Parallel Ocean Program version 2 (POP2), the Community Land
Model version 4 (CLM4), and the Los Alamos Sea Ice Model
(CICE4) component models. The atmosphere and land compo-
nents both have horizontal resolutions of 1.98 3 2.58, and the
ocean and sea ice components have roughly 18 resolutions. The
Whole Atmosphere Community Climate Model (WACCM4)
is a high-top model with 66 vertical pressure levels reaching
5.963 1026 hPa (approximately 140 km). The added vertical res-
olution and extension to higher heights leads to a better represen-
tation of the stratosphere. This is important for studying the
impact of sea ice loss as troposphere–stratosphere interactions
are known to be an important mechanism through which sea ice
loss impacts the atmosphere (Sun et al. 2015). The model also in-
cludes a sophisticated stratospheric chemistry package that pro-
vides more realistic conditions in the upper-atmosphere (Marsh
et al. 2013). The CICE4 model includes a thermodynamic com-
ponent that calculates growth rates of snow and ice, an ice dy-
namics component that utilizes realistic ice physics based on ice
mass and velocity, a thickness parameterization that quantifies
ice strain and thickness, and a transport model that simulates ice
advection (Hunke et al. 2015).

Both experiments are fully coupled with radiative forcing
held constant at the year 2000. The control simulation (CTL)
sea ice is nudged to the ensemble mean of the WACCM his-
torical runs averaged over 1980–99 and the experiment simu-
lation (EXP) is nudged to projected RCP8.5 values over
2080–99. The nudging method is described in Deser et al.
(2015) and utilizes spatially and seasonally varying longwave
radiative fluxes (LRF) in each grid cell of the sea ice model to
force the sea ice to mimic historical and projected sea ice con-
ditions. The LRF is applied only to the sea ice model where
there is sea ice. The magnitude of the downward LRF is larger
for months of greater ice thickness and coverage, and vice
versa. Although energy is not conserved using this method,
water is conserved between the sea ice and ocean model com-
ponents. The experiments are both 300 years in duration, but
we disregard the first 100 years for spinup time and retain
only the last 200 years for the analysis.

One advantage of this coupled model configuration is that
SSTs are free to vary. This allows for more realistic SSTs that are
free to increase as the sea ice edge retreats and maintains dynamic
atmosphere–ocean variability. Ocean–atmosphere coupling has
been shown to be important for generating a more realistic re-
sponse to sea ice loss that extends to lower latitudes and higher al-
titudes (Deser et al. 2015) and in producing a reduced summer
storminess in the mid-to-late twenty-first century due to Arctic
sea ice (Kang et al. 2023). Although the SSTs will differ between
the simulations, they are still a direct biproduct of changes in sea
ice as this is the only difference between the two model setups.

b. Self-organizing maps algorithm

The SOM methodology works by repeatedly introducing
input data vectors and adjusting a set of nodes to better match
these input data. Each SOM node is the same size as an input
data vector and is initialized prior to training, in this case with
random data. These nodes are then updated throughout the
training. To accomplish this, the SOM algorithm determines a

best matched unit (BMU) for a specific training step (t) by
finding the map node (mc) with the smallest Euclidean dis-
tance to the input data vector [x(t)]. The SOM is then updated
using the following relation:

mi(t 1 1) 5 mi(t) 1 a(t)hci(t)[x(t) 2 mi(t)], (1)

where hci(t) is the neighborhood function that defines the rel-
ative influence on different map nodes, and a(t) is the learn-
ing rate parameter that defines how much the map nodes are
updated (Vesanto et al. 2000; Kohonen 2001). For the neighbor-
hood function we use the Epanechnikhov function defined as

hci 5 max 0, 1 2
d2ci
s(t)2

[ ]
, (2)

where d is the distance between a given node (i) and the BMU (c).
For the Epanechnikov function, the BMU is modified the most
and this decreases with distance away from the BMU. Nodes
outside of the radius of influence [s(t)] are left unchanged.
We use the diameter of the SOM as the initial radius of influence
and decrease the value with each training iteration to eventually
reach 1. Here we conduct two trainings with different initial s(t).
The first training is important for broad organization and in this
case has an initial s(t) value of 5. The second training is utilized
for fine tuning and has an initial s(t) of 2. For the learning rate
parameter, we use an inverse function of training time defined as

a(t) 5 a0= 1 1 100
t
L

( )
, (3)

where a0 is the initial learning rate for each training and L is
the total number of training steps (t) in each training. Here
we use a0 5 0.1 for the first training and a0 5 0.01 for the sec-
ond training.

There are three measures used to assess SOM map quality:
topological error, quantization error, and the Sammon map.
Quantization error is the average Euclidean distance between
the input data and their associated BMU, thus describing how
similar the map nodes are to the input data vectors. The topo-
logical error is defined as the percentage of input data vectors
for whom the next best match unit is not a neighbor to the
BMU and thus quantifies how well ordered the SOM is. The
Sammon map is a nonlinear mapping that visually represents
the relative locations of the SOM map nodes. Overtraining a
SOM can result in a quantization error that continues to de-
crease at the expense of a twisted Sammon map and higher
topological error. The SOM shown here is well constructed,
meaning that it has a balance of low quantization error and
low topological error (,15%) and a flat Sammon map (not
shown). More information about the SOM method is avail-
able in Kohonen (2001). The SOM Program Package is pub-
licly accessible at http://www.cis.hut.fi/research/som-research/.

c. Creation of final SOM

In this study, SOM is used to identify large-scale patterns of
daily winter 500-hPa geopotential height anomalies (Z′

500)
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over North America. Analysis is conducted over the winter
(December–February) season when the impact of sea ice loss
on atmospheric circulation is greatest. The data are also con-
fined to the region of 258–758N, 1808–208E to focus on the
North American midlatitude response to sea ice loss and iden-
tify patterns of variability on synoptic spatial scales. We are
interested in identifying changes in large-scale patterns sepa-
rately from the mean response to sea ice loss. As such, anom-
alies are computed for each simulation (CTL and EXP)
separately. A daily climatology is computed for each simula-
tion by averaging each calendar day over all 200 model years.
Anomaly fields are then created by subtracting the daily cli-
matology, for the corresponding simulation and calendar day,
from each day of the simulation. This procedure takes into ac-
count the seasonal cycle of Z500 so that anomalies are identi-
fied across all months and effectively removes the seasonally
varying mean response to sea ice loss. For subsequent analy-
sis, the term “anomalies” will refer to the difference in any
field relative to its seasonally varying climatology and these
will be denoted with a prime, for example Z′

500.
There are several options for preprocessing input data de-

pending on the research question. In this study, the Z′
500 fields

are normalized by removing the mean of the time series and
dividing by the standard deviation at each grid point prior to
training. This ensures that locations that experience greater
variability do not have a larger impact on the SOM classifica-
tion. The data are then multiplied by the cosine of the latitude
to account for grid box area changes with latitude. Input data
for the SOM consist of model output from both the CTL and
EXP simulations to ensure all patterns of variability present
in each simulation are represented in the final SOM.

The SOM algorithm includes several user-defined parame-
ters, the most notable being the number of map nodes (arche-
typal patterns). Here the number of map nodes is determined
through testing a variety of different SOM sizes. A final SOM
size is chosen that is the smallest size that is able to identify all
patterns that are physically relevant to the research question. Af-
ter testing different SOM sizes, a 5 3 3 grid of map nodes for a
total of 15 nodes was chosen for this study. For well-constructed
SOMs, such as that presented here, Gervais et al. (2016) found
that changes in other user-defined parameters (e.g., neighborhood
function and learning rate parameter) made little difference in the
final SOM.

d. SOM analysis

Once a SOM is trained, the final nodes or LSMPs are no
longer modified and each input data vector (or day of data in
this case) is compared to the final SOM and assigned a BMU.
This enables a multitude of additional analyses to explore the
LSMPs. The frequency of occurrence of each LSMP is com-
puted as the total number of BMUs for a given node divided
by the total number of input days for the entire SOM. This
can provide information about which LSMPs are most com-
mon. We can also obtain a more complete understanding of
the physical processes associated with each node through
compositing of any variable of interest. These composites (S)
are computed for a given node by averaging all days that are

assigned as a BMU for that node. For both the frequency (f)
and composite, calculations can include all of the input data
or only the BMUs associated with either the CTL (fCTL or
SCTL) or EXP (fEXP or SEXP).

Differences in atmospheric variability between experiments
can arise from either differences in the frequency of SOM
nodes (Df 5 fEXP 2 fCTL) or differences in their pattern
(DS 5 SEXP 2 SCTL). The relative importance of changes in
frequency versus change in pattern will depend on the SOM
size. With a smaller SOM we would expect changes in pattern
to be greater and for a larger SOM we would expect to
see more changes in frequency. Examining both metrics to-
gether provides a complete view of changes in the variability
(Gervais et al. 2020). Throughout the paper, these differences
will be described as the impact of sea ice loss on the either the
frequency or pattern.

Significant differences in frequency are evaluated using a
permutation test. Here BMUs from both simulations are ran-
domly assigned to new “CTL” and “EXP” labels and a new
Df is computed. This process is repeated 1000 times in order
to create a null distribution of Df values. If the true Df lies out-
side the 2.5th or 97.5th percentile, the frequency differences
are deemed significant. This process is repeated for each
node. Statistical significance for DS at each grid point is deter-
mined using Student’s t test at a 95% confidence level with a
null hypothesis of zero.

The SOM categorizes each day into different LSMPs with a
given f and S. Thus, the seasonal mean field of a given experi-
ment can be approximated as the sum of the frequencies of
each node times their composite. As discussed in Gervais et al.
(2020), the total difference between simulations [D(fS)] for all
nodes can then be approximately decomposed into contribu-
tions from changes in frequency and pattern as follows:

D(fS) 5 DfSavg 1 favgDS, (4)

where

D(fS) 5 ∑
n

i51
feiSei 2 ∑

n

i51
fciSci, (5)

DfSavg 5 ∑
n

i51
( fei 2 fci)

Sei 1 Sci
2

, (6)

favgDS 5 ∑
n

i51

fei 1 fci
2

(Sei 2 Sci): (7)

In these equations, n is the number of SOM nodes (which in the
case of our SOM is 15), and the indices c and e indicate the
CTL and EXP simulations respectively. This decomposition can
be conducted for any variable of choice to understand the im-
pact of frequency versus pattern associated with these LSMPs.

3. Results and discussion

a. Winter atmospheric response to sea ice loss

The atmospheric response to future sea ice loss will be de-
fined in this study as the difference between the CTL and EXP
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simulations (EXP 2 CTL). The differences in sea ice cover be-
tween the simulations are seasonally varying with the greatest
differences in September coinciding with the seasonal sea ice
minimum (Fig. 1a). Although sea ice loss is greatest in September,
the mean impact on atmospheric circulation is greatest in the
winter, consistent with previous studies (Vihma 2014). This
seasonality of the atmospheric response can be seen in the
monthly mean differences in 500-hPa geopotential height
(Z500) and sea level pressure (SLP) between the simulations
(Fig. S1 in the online supplemental material.). The winter
mean atmospheric response to future sea ice loss shows a clear
signal of Arctic amplification with warmer potential tempera-
tures at 850 hPa (Q850) that are greatest at the high latitudes
(Fig. 2a). Consistent with an increase in mean column temper-
ature, we find a similar pattern in the geopotential heights in
the midtroposphere (Z500; Fig. 2b).

During the winter, differences in sea ice between the CTL
and EXP are concentrated in the marginal sea ice zone with
reductions of up to 100% sea ice cover (Fig. 1b). The local re-
sponse to sea ice loss can be clearly seen in the surface fluxes
and SLP. Over the marginal seas where sea ice loss is greatest
and the atmosphere is exposed to more open ocean, there is a
substantial increase in turbulent heat flux (defined as the sum
of the sensible and latent heat flux) from the ocean to the atmo-
sphere (Fig. 2f). Over the Bering–Beaufort Seas and Hudson
Bay this change in turbulent heat flux reaches 100 W m22.
Consistent with a large decrease in surface albedo with a
greater fraction of ice free ocean there is a large increase in
net absorbed shortwave radiation at the surface with sea ice
loss (Fig. 2h). The warmer surface temperatures of an ice-free
ocean are associated with a larger net surface outgoing long-
wave radiation (Fig. 2g). Finally, there is a local reduction in
SLP concentrated near regions of sea ice loss (Fig. 1e) consis-
tent with a thermal low response (Fig. 2e). For example, over

the Hudson Bay there are large negative SLP anomalies that
reach25 hPa. Over and downstream of these regions of newly
open ocean in the Bering–Beaufort Seas and Hudson Bay
there is enhanced total cloud cover (Fig. 2i) and precipitation
(Figs. 2f,j) consistent with enhanced sensible and latent heat
flux associated with a transition to ice-free conditions (Fig. 2f).

In the midlatitudes, negative anomalies in the winter mean
Z500 and SLP response indicate a deepening of the Aleutian
low in the North Pacific (Figs. 2b,e). This is dynamically con-
sistent with an intensification and elongation of the Pacific jet,
where we would expect a corresponding eastward displace-
ment of an enhanced secondary circulation favoring a more
intense troposphere-deep cyclonic circulation. Here we iden-
tify the jet using the wind speed on the dynamic tropopause,
where the dynamic tropopause is defined as the 2 potential vortic-
ity unit (PVU; 1 PVU 5 1026 K kg21 m2 s21) surface (Fig. 2c).
The dynamic tropopause is an ideal surface upon which to ex-
amine midlatitude jets as this is where the jet is maximized and
it rises with the increasing column temperature (Hoskins et al.
1985) thus ensuring that the differences are due to changes in
the jet rather than the height of the tropopause. Coinciding with
the elongated North Pacific jet and deeper Aleutian low, we see
an increase in precipitation that extends to the west coast of
North America (Fig. 2j).

Over the Atlantic, the response to sea ice loss includes an in-
crease in Z500 (Fig. 2b) over Greenland and an equatorward shift
of the North Atlantic jet, as seen in the dipole of wind speed on
the dynamic tropopause (Fig. 2c), consistent with several previous
studies (Deser et al. 2015; Sun et al. 2015; Blackport and Kushner
2017, 2018; Screen et al. 2018; Ronalds et al. 2020). Furthermore,
we find a dipole in precipitation over the North Atlantic as would
be expected from an equatorward shift of the storm track along
with the jet (Fig. 2j). The winter mean SLP response shows no
clear change in the Icelandic low (Fig. 2e).

FIG. 1. (a) Monthly mean sea ice extent (millions of km2) defined as the total area of grid boxes having at least 15%
sea ice concentration for the CTL (green) and EXP (purple) experiments. (b) Mean difference in winter sea ice
(December–February) concentration (%) between the EXP and CTL experiments.
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FIG. 2. Mean winter differences between simulations (EXP2 CTL) in color and climatology in black contours
for (a) Q850 with climatology contoured every 5 K, (b) Z500 with climatology contoured every 100 m, (c) wind
speed on the dynamic tropopause (DT WIND) with climatology contoured every 5 m s21, (d) 50-hPa geopoten-
tial height (Z50) with climatology contoured every 100 m, (e) SLP with climatology contoured every 4 hPa,
(f) turbulent heat flux (THFLX) with climatology contoured every 10 W m s22, (g) surface longwave radiation
(LW) with climatology contoured every 5 W m s22, (h) surface shortwave radiation (SW) with climatology con-
toured every 2 W m s22, (i) total cloud cover (CLDT) with climatology contoured every 5%, and (j) precipita-
tion (PCP) with climatology contoured every 2 mm day21. Insignificant differences at the 5% significance level
according to a resampling test are stippled.
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b. Identification of large-scale patterns

To understand the impact of sea ice loss on LSMPs, we be-
gin by first identifying dominant large-scale patterns of Z′

500
using SOM (Fig. 3). Figure 3 shows the Z′

500 SOM nodes
(LSMPs) in color and composites of Z500 in the control simu-
lation (SCTL) in black lines. In general, LSMPs on the left side
of the SOM have amplified climatological ridges (troughs)
over western (eastern) North America and vice versa on the

right side of the SOM. Enhancement of the ridge/trough pat-
terns shifts from being farther east in LSMPs at the top of the
SOM (e.g., LSMP [1, 1]) to farther west at the bottom (e.g.,
LSMP [5, 1]). Similarly, negative (positive) anomalies over
the climatological ridge (trough) shift from being to the west
in LSMP [1, 3] to farther east in LSMP [5, 3].

The LSMPs [1, 1] and [2, 1] in the upper-left corner have a
pattern similar to the positive phase of the Pacific–North

FIG. 3. SOM of DJF Z′
500(color; m) over North America with the DJF climatological mean Z500 (black contours every 100 m).
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American pattern (PNA; Wallace and Gutzler 1981) with
negative anomalies in the Pacific and eastern North America
and positive anomalies over Alaska and the Pacific North-
west. Conversely, LSMP [5, 3] in the bottom-right corner re-
sembles the negative PNA. LSMPs [1, 1], [1, 2], and [1, 3]
include anomalies over the North Atlantic that are consistent
with a negative Arctic Oscillation (AO; Thompson and Wal-
lace 1998) or North Atlantic Oscillation (NAO)-like (Hurrell
1995) pattern. LSMPs [1, 1] and [1, 2] have positive Z′

500 near
Iceland while LSMP [1, 3] has a center of action shifted farther
west. LSMPs [1, 2] and [1, 3] have negative anomalies over the
subtropical North Atlantic. In contrast, LSMPs [3, 2] and [4, 2]
have weak positive AO/NAO-like anomalies. Although the
NAO is an important feature of the Northern Hemisphere cli-
mate variability and exerts an impact on North American
weather, our SOM is trained with data over North America and
therefore we expect variability over the North Atlantic will
have a limited presence as compared to other sources. LSMPs
[4, 1] and [5, 1] have a strong positive anomaly over Alaska that
acts to amplify and shift the climatological ridge over the Rock-
ies farther east, while LSMPs [3, 3], [4, 3], and [5, 3] have a nega-
tive anomaly over Alaska. LSMPs [1, 1], [1, 2], [2, 1], and [2, 2]
exhibit a strengthened Aleutian low, while LSMPs [4, 3], [5, 1],
[5, 2], and [5, 3] exhibit a weakened Aleutian low. Nodes in the
center of the SOM have weaker patterns overall.

To obtain further understanding of the synoptic conditions
associated with each map LSMP and their sensible weather
impacts, we compute control simulation composites (SCTL)
for additional variables. LSMPs in the top left of the SOM
(namely, LSMPs [1, 1], [1, 2], [2, 1], [2, 2]) have deeper Aleu-
tian lows as shown in their sea level pressure anomalies
(SLP′; Figs. 4 and 5) consistent with the negative values in
Z′

500 SOM (Fig. 3). Those on the right side of the SOM (viz.,
LSMPs [3, 3], [4, 3], [5, 3]) have Aleutian lows that are shifted
farther east toward the continent and coupled with a high
over the subtropics (Figs. 4 and 5). This high/low pressure
couplet of SLP′ over the Gulf of Alaska and west coast of
North America acts to generate westerly lower-tropospheric
winds through geostrophic balance arguments. This in turn
can act to enhance the transport of warm maritime air into
the continent, which is seen in the positive Q′

850 values over
western North America associated with these LSMPs (Fig. 4).
LSMPs on the top and left side of the SOM are generally
colder, specifically nodes [1, 1], [1, 2], [3, 1], and [4, 1]. These
are associated with either an enhancement of the climatologi-
cal high pressure and ridge over western North America
(LSMPs [1, 1], [2, 1], [3, 1], [4, 1]) and/or a weakened Iceland
low (LSMPs [1, 1] and [2, 1]) consistent with the negative
phase of the NAO (Fig. 4). LSMPs [1, 2] and [4, 1] are associ-
ated with particularly deep cold anomalies down to228C.

Circulation patterns can also play a key role in the precipi-
tation over the continental United States. LSMPs with strong
Aleutian lows that are closer to the continent ([2, 2], [2, 3],
[3, 2], [3, 3]) are associated with enhanced precipitation along
the west coast, whereas nodes with weaker Aleutian lows
([4, 1], [5, 1], [4, 2], [5, 2]) have less precipitation along the
west coast (Fig. 5 and contours in Fig. 9). Enhanced precipita-
tion in the southeastern United States is found in LSMPs

[5, 1], [5, 2], [5, 3], and [1, 3], all of which are characterized by
a trough over the southeastern United States (Fig. 5 and con-
tours in Fig. 9). In contrast, precipitation is reduced in LSMPs
[2, 1], [3, 1], and [3, 2] where the trough is located offshore
(Fig. 5 and contours in Fig. 9).

Figures 6a and 6b show the associated frequency of each
map node in the CTL and EXP simulations. All LSMPs in
Fig. 3 are present in both the CTL and EXP simulations. In
the CTL simulation, LSMPs [3, 2], [4, 2], and [4, 3] occur most
often. The LSMPs that occur least often are [1, 1] and [1, 2],
both of which are characterized a deepened Aleutian low,
cold Q′

850 over North America, and high SLP′ over northeast-
ern Canada and Greenland. In the EXP simulation, LSMPs
[2, 2], [4, 2], and [4, 3] occur most often, while LMSPs [1, 1],
[2, 1], and [3, 1] occur least often. The mean residency time,
defined as the number of consecutive days spent in a given
map node, are shown in Figs. 6d and 6e for the CTL and EXP
simulations respectively. Mean residency times range from 3.2
to 4.3 days with LSMP [5, 1] having the highest and LSMP
[4, 2] the lowest residency time for both the CTL and EXP
simulations. It should be noted that for both the frequency
and residency time the values will change depending on the
SOM size (decreasing with increasing SOM size), therefore
the actual values are less meaningful than how they might
change between the CTL to the EXP simulations.

c. Impact of sea ice loss on LSMP frequency
and residency

To understand the impact of sea ice loss on LSMPs, we will
first discuss the impact on their frequency of occurrence and
residency. Figure 6c demonstrates the difference in frequency
of each LSMP between the CTL and EXP. LSMP [3, 2] de-
creases in frequency by 20.6% while LSMPs [1, 2] and [2, 2]
increase in frequency by 0.7% and 0.9%, respectively. These
changes may seem small; however, relative to the CTL fre-
quency of 6.4% in LSMP [2, 2], for example, the fractional in-
crease is 14%. All of these LSMPs ([1, 2], [2, 2], and [3, 2])
have anomalously strong Aleutian lows but LSMPs [1, 2] and
[2, 2] are stronger than LSMP [1, 3] (Figs. 3 and 4); therefore,
these changes in frequency imply that patterns with deepened
Aleutian lows become more common with sea ice loss. It
should be noted that here we have already removed the seasonal
mean difference between the experiments that was characterized
by a mean deepening of the Aleutian low and that this result
shows further changes in how often these deepened Aleutian low
patterns occur. We also see that LSMP [5, 1] decreases in fre-
quency while LSMP [4, 1] increases in frequency with sea ice
loss. Since node [5, 1] has a larger positive Z′

500 over Alaska than
node [4, 1] (Fig. 3), this can be interpreted as the positive anom-
aly over Alaska becoming de-amplified.

Unlike the frequency, only LSMP [2, 2] experiences a sig-
nificant change in mean residency time, with an increase of
0.3 days. This LSMP also exhibited an increase in frequency,
indicating that some of the increase in frequency is due to
enhanced persistence. Since these LSMPs capture synoptic
spatial scale variability, they include patterns associated
with Rossby wave propagation across North America. The
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overall lack of change in residency times across the SOM
implies that there is no general change in the speed of
wave propagation owing to sea ice loss.

d. Impact of sea ice loss on LSMP pattern

To complete our investigation of sea ice impacts on LSMPs,
we examine differences in LSMP composite mean (DS) for a

variety of atmospheric variables. The impact of Arctic sea ice
loss is to weaken the Z′

500 in many LSMPs, which can be inter-
preted as a reduction in variability (Fig. 7). The best example
of this is LSMP [1, 2], where the magnitude of the gradient as-
sociated with the 2NAO-like dipole in Z′

500 between the Ice-
landic low and subtropical high is reduced by approximately
15% with sea ice loss. In many cases, the DS of Z′

500 are not

FIG. 4. CTL composites ofQ′
850 (color; 8C), SLP

′ (black contours every 4 hPa; dashed negative from 2 hPa), and wind speed on the dynamic
tropopause (green contours every 5 m s21 from 35 m s21).
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centered on the CTL composites Z′
500 and thus are better

characterized as a shift in location; for example, the anoma-
lous ridging along the west coast in LSMPs [4, 1], [5, 1], and
[5, 2] is shifted farther south. A few LSMPs are amplified with
sea ice loss; for example, the positive Z′

500 in the subtropical
Pacific in LSMPs [4, 3] and [5, 3] are deepened and in [5, 3]
extended farther east toward the continent. LSMP [1, 3] also
has negative DS of Z′

500 in the North Pacific consistent with a

deepened Aleutian low. In all cases, the DS of Z′
500 are smaller

than the CTL composites and so there is no change in the sign
of the patterns. This is necessarily true for Z′

500 since the SOM
is trained and BMUs are assigned based on this field. However,
for other fields, LSMP composites may see larger changes if the
conditions associated with these Z′

500 patterns change.
To understand the impact of sea ice loss on the sensible

weather associated with these circulation patterns, we examine

FIG. 5. CTL composites of total precipitation (color; mm day21), SLP (black contours every 4 hPa), and wind speed on the dynamic tropo-
pause (magenta contours; every 5 m s21 from 35 m s21).
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DS of Q′
850 (Fig. 8) and precipitation anomalies (Fig. 9). The

most striking impact of sea ice loss on Q′
850 is in LSMP [1, 2]

(Fig. 8). This LSMP was associated with deep cold anomalies up
to 21.758C in the CTL simulation. However, the impact of sea
ice loss far exceeds this at up to148C in DS of Q′

850, resulting in
a change in sign of Q′

850 associated with this LSMP in the CTL
relative to the EXP. LSMP [4, 1] that is also associated with
strong cold anomalies over North America reaching 228C in
the CTL simulation experiences a large decrease in magnitude
with sea ice loss of up to 11.58C. Both LSMPs [4, 1] and [1, 2]
increase in frequency with sea ice loss, so the circulation pat-
terns typically associated with deep cold anomalies become
more common with sea ice loss; however, they are much less
cold or, in the case of [1, 2], now associated with a warmQ′

850.
Looking across the entire SOM, we see that a reduction in the

amplitude ofQ′
850 associated with these Z′

500 LSMPs is ubiquitous
(Fig. 8). Other LSMPs associated with large cold anomalies
(LSMPs [1, 1], [2, 1], [5, 1], and [2, 3]) become warmer and those
associated with warmer anomalies become colder. Several of
these LSMPs (namely, [3, 3], [4, 3], and [5, 3]), are not associated
with significant changes in frequency (Fig. 6), so their contribution
to changes in variability is solely through a change in pattern. This
de-amplification of Q′

850 is consistent with the general reduction
in Z′

500 across the SOM owing to sea ice loss. One explanation is

that the reduction of horizontal temperature gradients owing to
AA may lead to a reduction in anomalous temperature advec-
tions occurring in these nodes, even though the mean impact of
AA is already removed by virtue of computing the anomalies.
This can result in reduced Q′

850 and through hypsometric argu-
ments in a corresponding reduction inZ′

500.
The impact of sea ice loss on precipitation anomalies associ-

ated with these LSMPs is less robust and more localized (Fig. 9).
LSMPs [3, 1], [4, 1], and [4, 2] all experience a small decrease in
precipitation along the California coast, acting to amplify the pre-
cipitation anomalies values typically associated with these LSMPs
(Fig. 9). This is consistent with a positive SLP′ that acts to further
reduce the transport of moist air to the region (Fig. S2). The op-
posite is true for LSMPs [1, 1] and [2, 2] (Fig. 9 and Fig. S2).
LSMP [1, 3] experiences an increase in DS of precipitation anom-
alies in the southeastern United States (Fig. 9) consistent with the
enhanced troughing (Fig. 7 and Fig. S2) occurring in proximity to
the Gulf of Mexico and Atlantic Basin, well-known moisture
sources for the region. The opposite is true for LSMP [3, 3].

e. Mechanisms responsible for LSMP [1, 2]
pattern changes

Given the striking changes in LSMP [1, 2] and in particular
the associated Q′

850, a deeper investigation into mechanisms

FIG. 6. Heatmaps of frequency of occurrence of each node in the (a) CTL and (b) EXP, and (c) their difference, and mean residency
time for each node in the (d) CTL and (e) EXP, and (f) their difference. Differences are only shown when significant at the 95% level using
a permutation test.
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operating in this node is warranted. First, it is important to
recognize that the LSMPs identified in this study are from
anomalous Z500 fields relative to the respective climatologies
of each simulation (i.e., Z′

500). Thus, these patterns represent
atmospheric variability separate from mean impacts of sea ice
loss. However, when it comes to understanding the impacts of
these LSMPs on fields such as Q850, the mean impacts of sea
ice loss can still be important. As such, in the ensuing analysis

we will be examining both composites of total fields (e.g.,
Z500) and anomaly fields (e.g., Z′

500).
Figure 10 shows the CTL and EXP composite of Q850 and

SLP. In the CTL simulation, high SLP over the center of the
continent and low SLP over the North Atlantic implies a north-
northeasterly geostrophic wind. Coupled with the strong meridi-
onal background temperature gradient between the pole and
the midlatitudes, there is implied geostrophic cold air advection

FIG. 7. CTL Composites of Z′
500 (contours; every 50 m from650 m; dashed negative) and difference in composites (EXP2 CTL) of Z′

500
(color; stippled insignificant using Student’s t test).
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over northeastern North America. Furthermore, the anticy-
clonic circulation around the high pressure system would aid in
transporting this cold air throughout North America. This helps
explain why LSMP [1, 2] is associated with deep cold continen-
tal temperatures.

In the EXP simulations, the background temperature gradi-
ent from equator to pole is weakened, as is expected with AA
(Fig. 10). This in and of itself would cause a reduction in cold

air advection in this LSMP. However, we also see that the
high pressure over Hudson Bay is weakened, resulting in a
slackening of the SLP gradient over eastern Canada and a
weakening of the implied north-northeasterly geostrophic
wind by roughly 30%. Furthermore, the overall reduction in
the strength of the high pressure system would reduce the typ-
ical transport of this cold air into the interior of North Amer-
ica. This can be seen, for example, in the slacking of the

FIG. 8. CTL Composites of Q′
850 (contours; every 0.258C from 60.258C; dashed negative) and difference in composites (EXP 2 CTL) of

Q′
850 (color; stippled insignificant using Student’s t test).
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meridional pressure gradient from Hudson Bay to the Gulf of
Mexico coast. Therefore, though we could ascribe the changes
in cold air advection to mean AA and the weakened tempera-
ture gradient (a thermodynamic impact), these changes in
SLP also imply a large role for dynamical impacts.

As discussed previously, there is an increase in mean winter
turbulent heat flux and decrease in mean winter SLP between
the two simulations over Hudson Bay (Fig. 2), consistent with

a local thermal low pressure response to sea ice loss. The dif-
ference in CTL and EXP LSMP [1, 2] composites of SLP′ are
insignificant over much of the North American continent
(Fig. 11c). Furthermore, the effect of turbulent heat flux is
smaller in LSMP [1, 2] (Fig. 11d) potentially owing to the
warmer Q′

850 reducing the ocean–atmosphere temperature
gradients (Fig. 11a). This implies that much of the difference
in the SLP gradients discussed above is owing to differences

FIG. 9. CTL Composites of precipitation anomalies (contours; every 1 mm day21 from 61 mm day21; dashed negative) and difference in
composites (EXP2 CTL) of precipitation anomalies (color; stippled insignificant using Student’s t test).
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in the mean climatology between the CTL and EXP simula-
tions and how this projects onto the LSMP [1, 2] circulation
pattern rather than changes in SLP that are specific to this
LSMP. For this node in particular, where the high pressure in
this region is an important factor, this mean change acts to re-
duce the zonal SLP gradient and consequently the strong cold
air advection in northeastern North America that character-
izes the LSMP.

In addition to changes in temperature advection, diabatic pro-
cesses may also play a role in the increased Q′

850 associated with

LMSP [1, 2]. There is an increase in total cloud cover anomalies
and precipitation anomalies downstream (south) of Hudson
Bay with sea ice loss (Figs. 11e,f). This is expected given the
mean increase in moisture and heat flux (Fig. 2f) from the ice-
free surface with sea ice loss (Fig. 1b). This increase in clouds
and precipitation relative to other LSMPs is associated with less
incoming net shortwave radiation and less upward longwave ra-
diation (Figs. 11g,h). Furthermore, we would expect an increase
in diabatic heating to be associated with cloud and precipitation
generation, though this cannot be directly confirmed with the
variables saved in these model simulations. These results imply
a role of diabatic processes in addition to temperature advection
in producing the large differences inQ′

850 in LSMP [1, 2].

f. Contributions of changes in LSMPs to mean DJF
response to sea ice loss

AA is one of the most notable impacts of Arctic sea ice loss.
In Fig. 2a we can see this reflected in the DJF seasonal mean
difference between the CTL and EXP (DQ850). As described
above, some LSMPs are associated with greater changes Q′

850
than others (e.g., LSMP [1, 2]). Decomposing the DJF mean
Q′

850 response by LSMP contribution can provide an avenue
into better understanding of how synoptic-scale processes relate
to mean Q′

850 response and elucidate additional mechanisms re-
sponsible for AA that might otherwise be obscured.

As discussed in the methods section (section 2), the mean
difference between experiments can be approximated as those
arising due to changes in frequency versus pattern of the
LSMPs [Eq. (4)]. For Q850 the contribution from changes in
frequency are much smaller than from changes in pattern (not
shown). On the left side of Eq. (4), D(fS) is an approximation
of the seasonal mean difference between experiments for a
given variable (e.g., DQ850). Substituting these assumptions,
we can rewrite Eq. (4) for Q850 as

DQ850 ’ ∑
n

i51
favg,iDSi, (8)

where favg,i is the mean frequency of occurrence over the CTL
and EXP simulations and DSi is the composite mean Q850 of
EXP minus that of CTL for a given node i. Expanding out the
summation, dividing both sides by DQ850 and multiplying by
100 we can obtain the percent contribution of each node to
DQ850:

100 ’
favg,1DS1
DQ850

3 100 1
favg,2DS2
DQ850

3 100 1 · · · 1 favg,15DS15
DQ850

3 100: (9)

In Fig. 12, each of the terms of the right-hand side is plotted,
showing the percent contribution of each node to the mean
DJF Q850 response. The sum of all the percent contributions
over all nodes is approximately equal to 100 (65%) at each
grid point location, confirming that changes in composite are
indeed the greatest contributor to the mean Q850 response.

To avoid the creation of artificially high values of percent
contribution where DQ850 is very small, grid points where

FIG. 10. Node [1, 2] composites of Q850 (color) and SLP (black
contours; every 4 hPa) for (a) CTL, (b) EXP, and (c) their differ-
ence (EXP2 CTL). For (a) and (b). SLP contours are every 4 hPa
and for (c), SLP contours are every 1 hPa with dashed negative val-
ues and the 0 contour omitted.
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FIG. 11. Node [1, 2] CTL composites (contours) and differences (EXP 2 CTL) in composites (color)
for (a) Q′

850 (contours every 0.258C from 60.258C; dashed negative), (b) Z′
500 (contours every 50 m from

650 m; dashed negative), (c) SLP′ (contours every 2 hPa from 62 hPa; dashed negative), (d) turbulent
heat flux anomalies (THFLX′; contours every 20 W m s22 from 6 20 W m s22; dashed negative), (e) total
cloud cover anomalies (CLDT′; contours every 5% from 65%; dashed negative), (f) precipitation anoma-
lies (PCP′; contours every 1 mm day21 from61 mm day21; dashed negative), (g) incoming shortwave radi-
ation anomalies (SW′; positive down; contours every 5 W m s22 from 65 W m s22; dashed negative), and
(h) outgoing longwave radiation anomalies (LW′; positive up; contours every 5 W m s22 from65 W m s22;
dashed negative). In all panels insignificant differences at the 5% level computed using Student’s t test are
stippled.
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DQ850 is not statistically significant are masked out in Fig. 12.
This is computed using a permutation test applied at each grid
point to determine if the mean of DJF days used for the SOM
analysis in the CTL are different from the EXP simulation
with a significance level of 95%. This is similar to the test

used in Fig. 2 except there the DJF seasonal mean is com-
puted first and the null hypothesis is that the seasonal means
are the same.

If each of these nodes contributed equally to the meanQ850 re-
sponse, we would expect the percent contribution over 15 nodes

FIG. 12. Percentage contribution of changes in each LSMP composite pattern to mean Q850 in DJF (color). For reference, the DJF
mean difference between CTL and EXP (DQ850) is provided in contours every 0.58C beginning at 0.58C, as shown in Fig. 2a in color. Loca-
tions where DQ850 is not significantly different at the 95% confidence level as determined using a permutation test are masked out. Stip-
pling shows regions where the percentage contribution of changes in LSMP composite are not significant at a 95% level as determined
using a permutation test.
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to be 6.6% at each grid point. To test this, we compute a null dis-
tribution of percent contributions using a permutation test. Here
the percent contributions are computed as in Eq. (9) but using an
average frequency of 6.6% and the number of days per compo-
sites equal to the frequency times the number of input data vec-
tors. We then shuffle the SOM node labels and choose a new set
of CTL and EXP randomly without replacement and compute
the difference in their composites. This process is repeated
500 times and if the actual percent contribution to the mean
Q850 response is greater than the 97.5th percentile or less
than the 2.5th percentile of this null distribution, it is consid-
ered significant at the 95% level.

The results show that there are indeed nodes that contrib-
ute much more significantly to mean Q850 response than
others. LSMP [1, 2] stands out for its significant contributions
to mean DJFQ850 response over the majority of North America
ranging from 20% to 50%. Over northern Canada (including
the Northwest Territories, Nunavut, and northern Quebec)
where mean Q850 response is greatest, LSMP [1, 2] contributes
up to 20% of the total mean Q850 response. This is more than
double the rate if there was an equal distribution across nodes.
LSMP [4, 1] also has a notable increase in contribution to the
mean Q850 response of up to 15% over the Yukon and North-
west Territories. It should be noted that these two LSMPs were
associated with deep cold anomalies in the CTL simulations
(Fig. 4) in these regions. This implies that processes specific to
these LSMPs, such as those outlined in section 3c, are important
for creating the mean Q850 response and can occur on synoptic
time scales.

In the midlatitudes, the mean Q850 response is much smaller
and the contributions of LSMPs are larger. LSMP [1, 2] con-
tributes up to 50% to the mean Q850 response in the southern
United States. This implies that LSMP [1, 2] plays an impor-
tant role in propagating the mean Q850 response into the mid-
latitudes. There are also notable positive contributions to the
mean Q850 response in the southern United States from
LSMPs [1, 1], [2, 3], and [4, 2] as well as negative contribution
other LSMPs including [2, 1], [2, 2], [3, 1], [3, 2], [3, 3], [4, 1],
and [4, 3]. This is consistent with the general reduction in in-
tensity in Q850 across LSMPs identified in Fig. 8. It should be
noted that in these regions where DQ850 is smaller, the percent
contribution will be much larger for the same DSi. One inter-
pretation of these results is therefore that when the mean sig-
nal is smaller the impact of internal variability will be larger.

4. Conclusions

The goal of this study was to identify the impact of future sea
ice loss on large-scale meteorological patterns (LSMPs) and
their associated sensible weather impacts. We analyze output
from two fully coupled CESM-WACCM simulations, one with
sea ice nudged to the ensemble mean of the WACCM historical
runs averaged over 1980–99, and the other simulation nudged to
projected RCP8.5 values over 2080–99. A machine learning
method, self-organizing maps (SOM), is used to identify LSMPs
of anomalous 500 hPa in both experiments. Composite analysis
of days assigned to these LSMPs is then used to understand the
associated sensible weather conditions.

To identify the impact of sea ice loss on LSMPs, we quan-
tify differences in how often these LSMPs occur (frequency)
and for how many consecutive days data are classified in these
LSMPs (residency). There are significant changes in LSMP
frequency, most notably with two patterns associated with the
coldest potential temperatures at 850 hPa (Q850) becoming
more common in the future. However, there were little changes
in the residency across the set of LSMPs, indicating that there is
no general change in the speed of propagation of Rossby waves
or stagnation of the flow with sea ice loss.

The impact of sea ice loss on LSMP patterns and their asso-
ciated sensible weather impacts were identified by taking dif-
ferences in composites of the CTL and EXP simulations for a
variety of variables. In general, sea ice loss tends to de-
amplify and in some cases shift the LSMP patterns, as seen in
the composite differences in Z′

500. The impact of sea ice loss
on Q′

850 is generally consistent with the general reduction in
amplitude of the Z′

500. This is consistent with previous studies
that suggested that decreases in the variance of temperature
can occur due to the mean AA (Screen 2014; Screen et al.
2015; Collow et al. 2019; Dai and Deng 2021). Since the ampli-
tude of tropospheric waves can generally be attributed to the
displacement of air masses, it makes sense that with a reduc-
tion in the background temperature gradient associated with
AA we would find a commensurate reduction in amplitude of
LSMPs and their associated Q′

850. There are less robust and
more localized impacts of sea ice loss on precipitation anoma-
lies associated with the LSMPs that are generally consistent
with SLP′ changes.

One LSMP in particular, LSMP [1, 2], exhibits a striking
change in associated Q′

850 with sea ice loss. In the CTL simula-
tion, this LSMP is associated with deep cold anomalies of
Q′

850 reaching 21.758C; however, with Arctic sea ice loss there
is an increase in Q′

850 exceeding 48C. LSMP [1, 2] is associated
with a ridge of higher pressure over the center of the continent
that would facilitate northerly flow of cold Arctic air deep into
the continental United States and Canada in the CTL simula-
tion, as can be seen in the cold anomalies across much of the
North American continent. AA reduces the meridional tem-
perature gradient and thus would result in a reduction in cold
air advection associated with this LSMP.

In this framework, it is possible to further identify the coin-
cident impact of dynamical forcing. With Arctic sea ice loss,
there are enhanced turbulent heat fluxes from the newly ice-
free Hudson Bay and the resulting local thermal low pressure
anomaly in the wintertime. This results in both a reduction in
the southward extent of the high SLP ridge and a weakening
of the localized SLP gradient, consequently limiting the geo-
strophic meridional flow. Since these SLP changes are related
to a local thermal response to sea ice loss that are geographi-
cally tied to Hudson Bay, they are likely robust to internal
variability unlike many other dynamical impacts of sea ice
loss. The combined impact of these two changes in the back-
ground mean state, both dynamical and thermodynamical,
would result in a reduction in cold air advection. This analysis
indicates that when it comes to the sensible weather impacts
associated with LSMPs, there is an interplay between changes
in the mean state and changes in the LSMP.
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We further identify diabatic forcing mechanisms that may
increase the Q′

850 in this LSMP. With Arctic sea ice loss, there
is an increase in total cloud cover anomalies downstream of
Hudson Bay with a coinciding decrease in anomalous short-
wave radiation reaching the surface and increase in anoma-
lous longwave radiation down. Along with this increase of
total cloud cover anomalies, there is also an enhancement of
precipitation anomalies, both of which are likely associated
with latent heating although this cannot not be confirmed
given the fields available in our simulations.

Given the association of LSMP [1, 2] with large changes in
Q′

850 owing to sea ice loss, a follow-on question was how im-
portant this specific LSMP is to the overall mean Q850 re-
sponse which is largely an AA signal. We find that in the
Canadian north where the mean Q850 response is large, this
single LSMP accounts for up to 20% of the total signal. This
is significantly larger than the 6.6% that would be expected if
that signal were equally distributed among all the LSMPs. Al-
though the mean Q850 response is weaker in the midlatitudes,
the role of LSMP [1, 2] is even greater reaching 50% in the
southern United States. This implies that LSMP [1, 2] play an
outsized role in the mean Q850 response and its propagation
farther south.

Although we have not examined extreme temperature
events in this study, LSMP [1, 2] does resemble the broad-
scale patterns associated with cold-air outbreaks over the
eastern United States (e.g., Walsh et al. 2001). Previous litera-
ture has highlighted the role of AA in reducing the intensity
of cold air outbreaks over North America (Screen et al. 2015;
Ayarzagüena and Screen 2016); however, this analysis dem-
onstrates that further investigation including the role of dy-
namics and diabatic effects in cold-air outbreaks could yield
new insight into the problem.

The results in this study demonstrate that there are notable
changes in LSMPs and their associated sensible weather with
Arctic sea ice loss. However, here we have shown results from
just a single set of climate model simulations. Future work
conducing a similar analysis with a suite of climate model ex-
periments, such as those available in the Polar Amplification
Model Intercomparison Project [PAMIP; Smith et al. (2019)],
would help confirm the robustness of these results.
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