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show that the predictability of 2-year LN, measured by 
the potential prediction utility (PPU) of the Niño-3.4 SST 
index during the second year, is related to the magnitude of 
the initial conditions. Forecasts initialized with strong ther-
mocline discharge or strong peak El Niño amplitude show 
higher PPU than those with initial conditions of weaker 
magnitude. Forecasts initialized from states characterized 
by weaker predictors are less predictable, mainly because 
the ensemble-mean signal is smaller, and therefore PPU is 
reduced due to the influence of forecast spread. The error 
growth of the forecasts, measured by the spread of the Niño
-3.4 SST index, is independent of the initial conditions and 
appears to be driven by wind variability over the south-
eastern tropical Pacific and the western equatorial Pacific. 
Analysis of observational data supports the modeling 
results, suggesting that the “thermocline discharge” and 
“Peak El Niño” predictors could also be used to diagnose 
the likelihood of multi-year La Niña events in nature. These 
results suggest that CESM1 could provide skillful long-
range operational forecasts under specific initial conditions.

Keywords  ENSO · El Nino · La Nina · prediction · 
discharge

1  Introduction

Year to year fluctuations in the sea-surface temperature 
(SST) of the tropical Pacific Ocean have dramatic impacts 
on weather and climate throughout the world. These vari-
ations are mainly driven by the El Niño/Southern Oscilla-
tion (ENSO) phenomenon, which is characterized by an 
initial warming of the central and eastern Pacific that peaks 
in boreal winter, known as El Niño, typically followed by 
anomalous cooling on the subsequent year, known as La 

Abstract  The predictability of the duration of La Niña 
is assessed using the Community Earth System Model 
Version 1 (CESM1), a coupled climate model capable of 
simulating key features of the El Niño/Southern Oscilla-
tion (ENSO) phenomenon, including the multi-year dura-
tion of La Niña. Statistical analysis of a 1800  year long 
control simulation indicates that a strong thermocline dis-
charge or a strong El Niño can lead to La Niña conditions 
that last 2 years (henceforth termed 2-year LN). This rela-
tionship suggest that 2-year LN maybe predictable  18 to 
24 months in advance. Perfect model forecasts performed 
with CESM1 are used to further explore the link between 
2-year LN and the “Discharge” and “Peak El Niño” predic-
tors. Ensemble forecasts are initialized on January and July 
coinciding with ocean states characterized by peak El Niño 
amplitudes and peak thermocline discharge respectively. 
Three cases with different magnitudes of these predictors 
are considered resulting in a total of six ensembles. Each 
“Peak El Niño” and “Discharge” ensemble forecast con-
sists of 30 or 20 members respectively, generated by add-
ing a infinitesimally small perturbation to the atmospheric 
initial conditions unique to each member. The forecasts 
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Niña. After this sequence of warm and cold SST anomalies 
the tropical Pacific returns to near normal conditions. Much 
of the research on prediction and predictability of ENSO 
has focused on the onset of El Niño (Latif et al. 1998; Kirt-
man et al. 2001), mainly because predicting the onset of La 
Niña events is comparatively trivial since they generally 
follow El Niño.

According to linear ENSO theory, the onset and decay 
of El Niño and La Niña events are governed by wind-
driven changes in the depth of the equatorial thermocline, 
the boundary separating the warm surface waters from 
deep and colder waters (Cane and Zebiak 1985; Neelin 
et  al. 1998). Weaker trade winds associated with an El 
Niño event drive an initial relaxation of east-west tilt of the 
equatorial thermocline, resulting in a deeper thermocline 
in the east and a shallower thermocline in the west. This 
response is followed by a zonal-mean shoaling that peaks a 
few seasons later once Sverdrup balance is stablished. This 
anomalously shallow thermocline initiates the demise of El 
Niño because it increases the entrainment and upwelling 
of cold subsurface waters. During this transition phase the 
upper ocean is characterized by a reduction in heat content, 
which is typically referred as “discharge” of equatorial heat 
content. Conversely, stronger trade winds at the peak of La 
Niña drive a delayed zonal-mean deepening of the thermo-
cline characterized by increased upper ocean heat content. 
During this “recharge” phase the anomalously deeper ther-
mocline diminishes the cooling effect of upwelling initiat-
ing the demise of La Niña and transition into El Niño.

Observed El Niño and La Niña events show striking 
departures from this linear oscillatory behavior. First, most 
El Niño events last a few seasons and then quickly transi-
tion into La Niña. In contrast, one out of two observed La 
Niña events last 2 years or longer (Kessler 2002; McPhaden 
and Zhang 2009; Ohba and Ueda 2009; Okumura and 
Deser 2010; Okumura et  al. 2011; Deser et  al. 2012). 
Moreover, very few La Niña events transition directly into 
El Niño as expected from oscillatory behavior. Instead, 
the great majority of La Niña events slowly decay, often-
times taking several years of near-neutral conditions until 
the next El Niño event is triggered (Kessler 2002). These 
observational findings suggest a break down of the oscilla-
tory coupling between SST and thermocline anomalies that 
are at the heart of linear ENSO theory.

Several mechanisms have been proposed to explain 
these asymmetries in the dynamics and duration of El 
Niño and La Niña. These mechanisms emphasize differ-
ent asymmetries in the coupling between SST, wind, and 
thermocline depth during El Niño vs. La Niña. One mech-
anism argues that positive SST anomalies lead to a much 
stronger wind response and associated delayed thermocline 
response than negative SST anomalies of the same mag-
nitude. This asymmetric wind response arises from the 

non-linear response of atmospheric deep convection to SST 
anomalies and explains the quick and effective termina-
tion of El Niño events, as well as their consistent transition 
into La Niña. In contrast, negative SST anomalies drive a 
weaker wind response, which leads to a weaker thermo-
cline recharge and an ineffective termination of La Niña 
events (e.g. Frauen and Dommenget 2010; Choi et al. 2013; 
DiNezio and Deser 2014). Spatial asymmetries in the pat-
terns of the wind anomalies of El Niño and La Niña have 
also been linked to their asymmetric duration (e.g.  Ohba 
and Ueda 2009; Okumura et al. 2011).

Other studies have focused on the role of thermocline 
depth anomalies on the dynamics of 2-year La Niña. Hu 
et  al. (2013) proposed the following conditions for a sec-
ond year La Niña: (1) a strong La Niña, which would inter-
rupt the recharge phase by causing the subsurface ocean 
to remain cold, and (2) absence of downwelling equato-
rial Kelvin waves after the first year, which would other-
wise lead to the demise of La Niña. Because thermocline 
depth anomalies lead SST anomalies by a few seasons, then 
these mechanisms could be used to predict the return or the 
demise of La Niña, and hence its duration. However, the 
mechanisms proposed by Hu et al. (2013) may not provide 
predictions with lead times longer than 1 year for the fol-
lowing reasons. The first condition, a strong La Niña during 
the first year, could provide information up to 12 months in 
advance, however is not supported by observations which 
show that some of the strongest events (e.g. the La Niña 
event of 1988/1989) have lasted only 1  year. The second 
condition would provide prediction lead times shorter than 
1 year, which would be useful, but would not represent an 
improvement from the predictions provided by current sea-
sonal climate forecast systems.

Longer term predictions have received less attention 
beyond the study of DiNezio and Deser 2014, (hereafter 
DD14). Based on analysis of climate model output and 
ocean reanalysis data, DD14 showed that the state of ENSO 
the year following the first peak of La Niña is related to the 
magnitude of the thermocline shoaling 6 months before the 
onset of La Niña  that is, 18 months before the second year 
peak of La Niña. This relationship indicates that a strong 
thermocline shoaling or discharge prior to La Niña’s first 
peak will lead to La Niña conditions during the follow-
ing year, i.e. a 2-year La Niña. DD14 propose that events 
with a larger discharge must persist longer because the 
recharge—the thermocline deepening following the peak 
of La Niña–is proportionally weaker and therefore ineffec-
tive at returning to thermocline to neutral conditions in just 
1 year. As discussed above, this asymmetry occurs because 
of nonlinearities in both the wind response (Choi et  al. 
2013), but also because vertical thermocline displacements 
are less effective at influencing SSTs during the recharge 
phase relative to the discharge phase. During the recharge, 
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the thermocline deepens and becomes progressively decou-
pled from the ocean’s surface layer becoming less effective 
at influencing SSTs. As a result, La Niña events initiated 
by a large discharge have to persist for an additional year 
in order to drive the integrated recharge heating required to 
return to neutral conditions.

Although our mechanistic understanding of the dynam-
ics of La Niña events has advanced considerably, it is not 
yet clear whether skillful prediction of the duration of La 
Niña is possible. This is a critical issue for the prediction 
of persistent drought conditions associated with La Niña in 
areas such as, the Southeastern United States, Texas, and 
California (Schubert et al. 2004; Seager et al. 2008; Hoer-
ling et  al. 2009; Cook et  al. 2011; Trenberth et  al. 1988; 
Hoerling and Kumar 2003; Seager 2007; Hoerling et  al. 
2013. Some of the proposed mechanisms, particularly those 
focusing on the role of the equatorial thermocline, sug-
gest that there are precursor conditions that could be used 
to anticipate the evolution of La Niña. One observational 
study evaluating the evolution of SST anomalies and heat 
content, a proxy for thermocline depth, found that the tran-
sition from La Niña to El Niño may take longer than 1 year 
(Kessler 2002). The study of DD14 found that the depth of 
the thermocline six months before the onset of La Niña, i.e. 
at the peak of the discharge phase, is correlated (r = 0.47

) with SST anomalies a year and a half later. This relation-
ship could provide an 18-month lead time for predicting 
a 2-year La Niña event. However, the value of r suggests 
that there is a large fraction of variability that could be 
explained by other predictors or be caused by unpredictable 
atmospheric variability (Penland and Sardeshmukh 1995; 
McPhaden and Yu 1999; Thompson and Battisti 2001; 
Fedorov et al. 2003; Chiodi and Harrison 2015).

The aim of our study is to explore the predictability of 
the duration of La Niña using the Community Earth Sys-
tem Model Version 1 (CESM1), a climate model that simu-
lates realistic ENSO characteristics, particularly in regards 
to the asymmetric duration of El Niño and La Niña. Our 
approach is idealized in the sense that we use CESM1 to 
predict its own simulated climate trajectories. The result-
ing “perfect model” forecasts allow us to explore the upper 
limits of predictability, that is, the skill of the model under 
the best possible conditions. Using this “perfect model” 
approach we explore the link between initial conditions 
and long-term prediction of the duration of La Niña. Par-
ticularly, we focus on identifying initial conditions that 
could allow skillful prediction of 2-year La Niña more than 
1  year in advance. First, we explore the predictors of La 
Niña duration in a long control simulation performed with 
CESM1. We then perform a series of “perfect model” fore-
casts from selected events simulated in the CESM1 control 
simulation. We use these forecasts to explore how long the 
forecasts remain skillful, mainly by focusing on 24 and 

18-month lead time forecasts initialized at the peak of El 
Niño and the peak discharge, respectively. Last, we explore 
the effect of other modes of variability on error growth and 
associated predictability loss.

2 � Data and methods

2.1 � Coupled general circulation model

The CESM1 is a numerical model of the global coupled 
climate system consisting of coupled atmosphere and ocean 
global general circulation models (GCMs) and compre-
hensive land, cryosphere, and biogeochemistry models. 
Our forecasts were performed with all components of the 
model (ocean, atmosphere, cryosphere and land) were con-
figured at nominal 1◦ latitude–longitude resolution. Land 
and ocean biogeochemistry modules were active, but con-
figured so that their associated carbon fluxes do not affect 
atmospheric CO

2
 and hence climate. A brief overview of 

CESM1 and salient improvements to the atmospheric and 
oceanic model components is given below. Further details 
about CESM1 maybe found in Hurrell et  al. (2013), Kay 
et  al. (2015), and in a special collection of the Journal of 
Climate (see http://journals.ametsoc.org/page/CCSM4/
CESM1).

2.2 � Long pre‑industrial control simulation

We use a multi-century control simulation performed 
with CESM1 forced by constant external forcings set at 
pre-industrial levels. The control simulation is 2200 years 
in length, of which years 400–2200 are used in our study. 
The first 400 years exhibit climate drift due to initialization 
and are not considered in the analysis. The remaining 1800 
years used in our analysis exhibit negligible climate drift. 
More details on the initialization and equilibration of the 
control simulation may be found in Kay et al. (2015).

2.3 � Observational datasets

The following observational datasets are used to evalu-
ate the realism of CESM1’s ENSO simulation: SST from 
the Hadley Centre Sea Ice and SST (HadISST) dataset 
(Rayner et al. 2003) during 1880–2013 on a 1◦× 1◦ longi-
tude–latitude grid; and (2) upper-ocean temperature from 
the European Centre for Medium-Range Weather Fore-
casts (ECMWF) ORA-S4 ocean reanalysis for the period 
1958–2013 (Balmaseda et  al. 2013). ORA-S4 assimilates 
temperature and salinity profiles, and along-track altimeter-
derived sea-level anomalies on a 1◦× 1◦ longitude–latitude 
grid with progressively finer latitude resolution (0.3◦) in the 
tropics, and 42 levels in the vertical (18 of which are in the 
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upper 200 m). The ORA-S4 reanalysis is driven by winds 
from the 40-year ECMWF Re-Analysis Project (ERA-40) 
until 1989, ERA-Interim from 1989–2010, and ECMWF 
NWP analysis thereafter. ORA-S4 also uses observed SST, 
sea-surface salinity, sea-ice, and global mean sea-level to 
correct biases in the heat and fresh-water budgets.

2.4 � ENSO indices

The Niño-3.4 SST index is computed by averaging the SST 
anomalies over the central Pacific (120◦W–170◦W, 5◦S–5◦

N) for both the CESM1 and HadISST V1.1. Thermocline 
depth, Z

TC
, is computed as the depth of the maximum verti-

cal temperature gradient in the upper 500 m using the three-
dimensional output from CESM1 and the ORA-S4 reanaly-
sis. The zonal-mean thermocline index, Z̄′

TC
, is defined as 

the Z
TC

 anomalies averaged across the equatorial Pacific 
(140◦W–80◦W, 5◦S–5◦N). SST and Z

TC
 anomalies are com-

puted relative to the 1958-2013 climatology, the common 
period between the ORAS-4 and HadISST datasets.

2.5 � Simulated ENSO

CESM1 simulates many features of ENSO observed in 
nature, particularly the asymmetries in amplitude and 
duration between El Niño and La Niña. The Niño-3.4 SST 
index, an index commonly used to capture SST variability 
associated with ENSO, shows frequent multi-year La Niña 
events, which generally follow strong El Niño events both 
in observations (Fig 1a) and the CESM1 control (Fig 1b). 
We define 2-year La Niña (2-year LN) events as those with 
a Niño-3.4 SST index less than −0.5 standard deviations 
for two consecutive DJF seasons. Such persistent La Niña 
events in the model occur with a 45% frequency similar 
to observed events according the HadISST dataset which 
shows 14 out of 29 (44%) 2-year LN during the 1870–2015 
period. Note the more recent 1958–2013 period had a total 
of 8 2-year LN out of 11 events (75%). The frequency of 
occurrence of simulated 2-year LN also exhibits remark-
able multi-decadal variations, with values ranging from 6 
to 73% over 50-year periods.

The spectrum of the simulated Niño-3.4 index shows a 
broad peak in the 2–7 years band similar to observations 
and previous versions of the model (Fig.  1c). On aver-
age, the maximum power is approximately 50% larger 
in CESM1 compared to HadISST, albeit it appears to be 
more realistic than in CCSM4, which simulated a spec-
tral peak twice as large as observed. The stronger ENSO 
variability in CESM1 results is also reflected in a stand-
ard deviation of the Niño-3.4 SST index of 0.91 K com-
pared to 0.76 K for the detrended HadISST1.1 data dur-
ing the 1870–2015 period. Observations show centennial 
changes in ENSO amplitude, with values of 0.70 K for 

the 1870–1969 period and of 0.77 K for the 1916–2015 
period. CESM1 simulates centennial variations in ampli-
tude ranging from 0.81 to 1.02 K (computed from over-
lapping 100 year periods, not shown). Although the mod-
el’s ENSO amplitude is larger than observed, it represents 
an improvement relative to CCSM4, which had a mean 
ENSO amplitude of 1.07 K (Deser et  al. 2012). Last, 
CESM1 has a tendency to simulate El Niño events that 
start with weak Niño-3.4 SST warming (about 1 K) for 
a first year, attaining full amplitude 1 year later (Fig. 1b, 
e.g. El Niño events in 1540s and 1550s decades). While 
similar 2-year El Niño events have been observed (e.g. 
during 1931 and 2015), these events are more frequent in 
the CESM1 control, in which 1 in 3 strong El Niño events 
are preceded by warming the previous year.
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Fig. 1   a Observed and b simulated Niño-3.4 SST index correspond-
ing to 50 year periods (1964–2015 for observations and 1436–1485 
for CESM1). c Power spectrum [ K2 year−1] of the Niño-3.4 SST 
index from detrended observations (HadISST1.1, dashed red curve 
for 1870–1969 and solid red curve for 1916–2015), CESM1 (model 
years 400–2200, blue curve), and CCSM4 (model years 1–1300; 
green curve). CESM1 and CCSM4 data are from control simulations 
performed with constant pre-industrial forcings. The light-blue shad-
ing depicts the 95% confidence intervals for the CESM1 power spec-
trum based on the individual spectra of 100-year segments. Dashed 
blue line shows the power spectra of CESM1’s simulated 100-year 
period with the smallest spectral peak. Note that to quantitatively 
compare the variance between the model and observations, the curves 
must be integrated over the frequency
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2.6 � Simulated 2‑year La Niña

We evaluate the dynamics of the simulated 2-year LN by 
comparing the composite evolution SST and Z

TC
 anoma-

lies against observations. The observed composite is based 
on 8 2-year events during the 1958–2013 period for which 
there is available sub-surface temperature data from ORA-
S4 reanalysis. The simulated composite is based on 156 
events. The observed composite agrees with the analysis 
of (Okumura and Deser 2010) which showed that 2-year 
La Niña are common throughout the historical record. We 
identify key times during the evolution of 2-year LN events 
by their calendar month together with a superscript indicat-
ing the lag in months relative to January of the second year 
peak (Jan0), which is our target forecast date. Observed 
and simulated La Niña have their first peak during boreal 
winter, denoted Jan−12, 1 year after the preceding El Niño, 
denoted Jan−24 (Fig 2, shading).

Both observations and CESM1 show that the thermo-
cline shoals across the equatorial Pacific after the peak of 
El Niño  with peak shoaling occurring around July (Jul−18) 
(Fig 2, contours). This zonal mean shoaling of the ther-
mocline (Fig 2, purple contours), is a delayed response to 

wind anomalies during El Niño, and is typically character-
ized by a reduction in upper ocean heat content over the 
equatorial Pacific, hence the moniker “discharge” of equa-
torial heat content. La Niña onsets after the discharge (Fig 
2, blue sharing around Jan−12), as the shallower thermo-
cline enhances the cooling effect of equatorial upwelling. 
The termination of La Niña occurs 2  years later (Jul+6) 
during the “recharge” phase characterized by an anoma-
lously deeper thermocline across the equatorial Pacific (Fig 
2). The simulated Z′

TC
 anomalies are strikingly realistic in 

terms of magnitude and timing suggesting that the simu-
lated 2-year LN are governed by similar dynamics than in 
nature.

2.7 � Perfect model forecasts

We selected three events from the control simulation and 
ran a series of forecasts for each case study. The forecasts 
are not affected by ocean initial condition uncertainty, ini-
tialization shocks, or model drift because the model is use 
to predict itself. Therefore the resulting “perfect model” 
forecasts can be used to assess the potential predictability 
of the duration of La Niña in CESM1.

All three selected events exhibit 2-year LN of similar 
magnitude, but are preceded by El Niño events of differ-
ent amplitudes, both in terms of SST and thermocline depth 
anomalies (Fig.  3). The first case is characterized by a 
strong El Niño leading to a large shoaling of the thermo-
cline (Fig. 3a). This event shows the largest SST anomalies, 
with peak values averaging more than 3 K over the Niño
-3.4 region. This event also shows the largest thermocline 
shoaling (discharge) among the three cases. Averaged 
over the equatorial waveguide (5◦S–5◦N), the discharge is 
about −40 m at its peak in May of year 1455. The second 
case shows weaker positive SST anomalies at the peak of 
El Niño, as well as less pronounced thermocline shoaling, 
with peak Niño-3.4 SST anomalies of 2.5 K and discharge 
of about −30 m (Fig.  3b). The third event shows a much 
weaker El Niño and thermocline shoaling, with peak Niño
-3.4 SST anomalies of less than 1 K and discharge of about 
−20 m (Fig. 3c). A lagged correlation analysis of subsur-
face ocean temperatures throughout the tropics shows that 
there are no significant off-equatorial signals correlated to 
the evolution of La Nina, other than the surface signature of 
meridional modes.

The three selected cases will be referred to as “strong”, 
“moderate” and “weak”, corresponding to the magnitude of 
the preceding El Niño and thermocline discharge anoma-
lies. Ensemble forecasts were initialized for each case on 
January 1st of years 1455, 1182, 1125 respectively. We 
refer to these as “Peak El Niño” forecasts because the ini-
tial conditions coincide roughly with the time of maximum 
positive SST anomalies over the central Pacific. Additional 
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lasting 2  years (2-year LN). Observational data are HadISST1.1 
(Rayner et  al. 2003) and ORAS4 (Balmaseda et  al. 2013) respec-
tively. Simulated data are from the control simulation performed with 
CESM1 under constant pre-industrial forcings. Orange (purple) con-
tours show positive (negative) thermocline depth anomalies on 5 m 
intervals. Equatorial SST and Z′

TC
 anomalies are averaged over the 5◦

S-5◦N band. The observation-based composites are computed using 
8 observed 2-year LN out of a total of 11 events from the 1958–2013 
period. The model-based composite is computed using 156 simulated 
2-year LN out of a total of 343 events from the CESM1 control. Refer 
to Sect. 2.6 for details on the methodology used to select 2-year LN 
events
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ensemble forecasts were initialized on July 1st of the same 
years, which roughly coincides with the peak thermocline 
shoaling; we refer to these as “discharge” forecasts. We 
also refer to the “Peak El Niño” and “Discharge” ensem-
ble forecasts as “24-month lead” and “18-month lead” fore-
casts respectively, corresponding the number of months 
prior to the second La Niña January peak. Note that the 
naming convention of both types of forecasts is based on 
the initialized state and not the predictand.

For each of the “strong”, “moderate” and “weak” events 
we generated an ensemble of 20 and 30 forecasts for the 18 
and 24-month lead cases respectively. The 24-month fore-
casts consist of 30 members in order to estimate the spread 
and ensemble-mean with higher accuracy. The size of the 
ensembles allow us to minimally resolve the extremes of 
the forecast probability density function, such that, at least 
one member will fall outside the 95% confidence interval 
(e.g., for an ensemble of 20 members, 1 member will fall 
outside the 95% confidence interval). Each member of the 
forecast ensembles was initialized with the same July 1st or 
January 1st ocean, sea-ice, and land initial conditions. The 
forecasts were initialized with a perturbed atmosphere and 
perfect knowledge of the ocean, sea ice, and land. How-
ever, we expect that the ocean initial conditions will be the 
dominant source of ENSO predictability. To simulate irre-
ducible atmospheric uncertainty in the initial conditions, 
a unique roundoff level perturbation was made to the full 
atmospheric temperature, velocity, and moisture fields for 
each member. Each ensemble member was then integrated 
forward in time for 4 years.

The spread of the Niño-3.4 SST index grows rapidly 
from the infinitesimal perturbation, approaching 0.2 K 
after the first two months. Note that both January- and July-
initialized forecasts show similar spread over the first two 

months. Thus for the purpose of assessing multi-year pre-
dictability in this model, there is apparently no long-term 
difference between perturbing with errors at the level of 
rounding, versus at the level of real-world observations. 
Any differences between these approaches would be effec-
tively overcome after a few months of integration. The 
month of initialization influences the spread after the sec-
ond month, showing evidence of seasonal modulation and 
state dependence. We discuss these features in great detail 
in Sect. 3.3.

2.8 � Forecast plumes

For each forecast member, we computed SST anomalies 
by removing the monthly mean climatology of the control 
integration. We then computed each member’s Niño-3.4 
SST index as described in Sect.  2.4. We follow the same 
procedure to compute the forecasted Z̄′

TC
 index. We inter-

pret the ensemble mean Niño-3.4 and Z̄′
TC

 indices as the 
predictable component of each forecast. The standard devi-
ation of these indices within a given ensemble was used to 
quantify the spread among the different members, a meas-
ure of error growth of the predicted signals.

2.9 � Measuring predictability

A number of metrics have been used in the literature to 
quantify predictability. Most of them are related in some 
way to the magnitude of the ensemble spread relative to the 
variance of the system, in other words, the signal-to-noise 
ratio. However, other metrics can be useful for quantifying 
the utility of ensemble forecasts (e.g. Kleeman 2002). In 
this study we use the following two measures to examine 
predictability: (1) the forecast ensemble spread, a simple 

Fig. 3   As in Fig. 2 but for the 
events selected for the perfect 
model forecasts. Dashed orange 
and magenta lines show the 
initial January and July dates for 
the 24- and 18-month lead fore-
casts. Dashed blue line shows 
January peak of the second year 
La Niña, the target forecast time
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indicator of our confidence in a given forecast, and (2) the 
“potential prediction utility” (Kleeman and Moore 1999), a 
measure of the usefulness of the forecast.

The potential prediction utility (PPU) can be expressed 
as:

where s and ⟨x⟩ are the standard deviation and ensemble 
mean Niño-3.4 SST indices, respectively. Like the com-
monly used correlation coefficient, the PPU also varies 
from zero to one, with a value of one indicating a per-
fect forecast. The PPU naturally tends toward unity as the 
ensemble spread tends to zero. According to this meas-
ure, the condition for a useful prediction is not simply low 
ensemble spread; predictions can be equally useful when 
the ensemble mean signal is large.

3 � Results

3.1 � Precursors of 2‑year La Niña

We used the long control simulation to explore precursors 
of 2-year LN. In this section we solely focus on predictors 
based on equatorial dynamics and thus explore lead-lag 
relationships between the Niño-3.4 SST index and the zonal 
mean thermocline depth index, Z̄′

TC
, which tracks the ther-

mocline discharge and recharge. We selected a total of 536 
El Niño events simulated by CESM1 regardless of whether 
they transition into La Niña or not. In other words, we did 
not consider “a priori” information, such as, whether: (1) 
El Niño evolves into La Niña, or (2) La Niña lasts 2 years. 
The only criterion to select the events is that the Niño-3.4 
SST index exceeds 0.5 standard deviations at the peak of El 
Niño during the December-January-February (DJF) season. 
The analysis thus includes a subset of El Niño events that 
start as a weak warming peaking to full amplitude 1 year 
later as discussed in Sect. 2.5. We discuss the implications 
of these events below.

The predictand in this analysis is the magnitude of the 
Niño-3.4 SST index two years after the peak of the selected 
El Niño events. Niño-3.40 can be positive or negative 
depending on whether El Niño or La Niña conditions occur 
2  years later. 2-year LN events are identified when Niño-
3.40 is negative and less than −0.5 standard deviations. We 
perform a lag-correlation analysis between Niño-3.40 and 
the magnitude of the zonally averaged Z

TC
 anomalies and 

the Niño-3.4 SST index through the evolution of the simu-
lated ENSO events for lead times from 24 to 6 months. All 
correlation coefficients presented in this section are statisti-
cally significant with 99% confidence.

(1)PPU(t) =
1

1 + s2(t)∕⟨x⟩2(t)
,

We begin the analysis with a “recharge” predictor, 
defined as Z̄′

TC
 6 months after the first peak of La Niña 

(Z̄�−6
TC

, where the numeral superscript denotes the time 
lag in months between the predictor and the predictand). 
This predictor is based on the notion that La Niña events 
are terminated by a deepening of the thermocline which 
reduces the entrainment and upwelling of cold subsur-
face waters (Neelin et  al. 1998). This deepening of the 
thermocline typically occurs 6 months after the peak of 
La Niña and is sometimes described as a “recharge” of 
heat content of the equatorial Pacific. We find that this 
precursor is significantly correlated (r = 0.48) with Niño
-3.40 (Fig. 4a). Note that Niño-3.40 can either be positive 
(El Niño), neutral, or negative (La Niña) as shown by the 
red, gray, and blue shading in (Fig. 4a). This correlation 
indicates that La Niña is more likely to end (Niño-3.40
> −0.45 K) when the recharge is high (Z̄�−6

TC
 > 0 m), and 

conversely, more likely to persist (Niño-3.40 < −0.45 K) 
when the recharge is low or absent (Z̄�−6

TC
 < 0 m).

The “recharge” predictor provides information 6 
months in advance. However, other predictors earlier 
in the evolution of ENSO events could provide longer 
lead time information on the duration of La Niña. For 
instance, the magnitude of the recharge is related to the 
preceding La Niña   and therefore could provide a 12 
month lead-time predictor. This “La Niña” predictor, the 
magnitude of La Niña during the first year (Niño-3.4−12), 
exhibits a relatively weak correlation (r = 0.12) with 
Niño-3.40 (Fig. 4b). The fact that this correlation is posi-
tive is consistent with the idea that a stronger La Niña 
will tend to persist longer than a weaker one (Hu et  al. 
2013); however this correlation is lower than that for the 
“recharge” predictor: thus longer-lead time forecasts may 
not be more skillful. Note that in this and the Z̄�−6

TC
 predic-

tor, we consider a subset of 320 events in which La Niña 
already peaked for a first year following El Niño.

Predictors could be found earlier in the evolution of 
ENSO events. For example, DD14 proposed that the mag-
nitude of the thermocline anomalies 6 months prior to the 
onset of La Niña could be related to its magnitude on the 
second year (i.e. Niño-3.40). This predictor would provide 
information on the return of La Niña with 18 month lead 
times. Our analysis of the CESM1 control shows a signifi-
cant correlation (r = 0.46) between a Z̄�−18

TC
 “discharge” pre-

dictor and Niño-3.40 (Fig. 4c). For this predictor we focus 
the analysis on a subset of El Niño events with neutral or 
negative Niño-3.4 SST index during July after the peak. 
This additional condition rules out El Niño events that 
return for a second year. Note that these events happen both 
in nature and in CESM1 as discussed in Sect. 2.5. Our find-
ing of a significant correlation between Z̄�−18

TC
 and Niño-3.40 

suggests that the return of La Niña could be predicted 18 
months in advance.
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Thermocline anomalies associated with the discharge 
are driven by the preceding El Niño. Thus we also explored 
correlations between Niño-3.40 and the magnitude of 
the preceding El Niño   given by a Niño-3.4−24 predictor 
(Fig. 4d). The correlation between these quantities is lower 
(r = −0.35) than for the discharge predictor. However, the 
scatter plot shows that the strongest El Niño events (Niño
-3.4−24  > 3 K) are virtually always followed by 2-year 
LN events (Niño-3.40 < −0.45 K). These results suggest 
that strong El Niño events could lead to skillful 24-month 
lead time forecasts of 2-year LN. Note that these 18- and 
24-month lead time predictions are performed before the 
initial onset of La Niña. Therefore in these calculations we 

considered all El Niño events regardless of whether they 
are followed by La Niña or not.

The correlations shown by the “Peak El Niño” and “Dis-
charge” predictors with the Niño-3.4 SST index during 
the 2nd year may not be sufficiently high to warrant skill-
ful predictions of 2-year LN. However, the scatter plots 
show very few events with neutral or El Niño conditions 
on the second year when the predictors show large magni-
tude (Fig. 4c, d). This suggests that the likelihood of 2-year 
LN increases with the magnitude of the predictors. For 
instance, 94% of all simulated events with discharge values 
of −40 m ± 5 m become 2-year LN (Table 1). Similarly, 
92% of all events with peak El Niño amplitude of 3 ± 0.5 
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Fig. 4   Scatterplots showing correlations between the Niño-3.4 index 
on the year following the first peak of La Niña (Niño-3.40, y-axis) and 
the following predictors (x-axis): a heat content recharge 6 months 
after the first year peak of La Niña (Z̄�−6

TC
 ), bNiño-3.4 index during 

the first year peak of La Niña (Niño-3.4−12), c the heat content dis-
charge during the transition between El Niño to La Niña (Z̄�−18

TC
 ), 

and d the Niño-3.4 index at the peak of the El Niño event preceding 
La Niña (Niño-3.4−24). The heat content discharge and recharge are 

measured as the negative and positive zonally averaged thermocline 
depth anomalies (Z̄′

TC
) respectively. Niño-3.40values (y-axis) less than 

−0.45 K indicate return of La Niña conditions on the second year 
(blue shading), whereas values larger than 0.45 K indicate El Niño 
conditions during the second year (red shading). Correlation coeffi-
cient r between the predictor and the predictand are indicated in each 
panel. Orange dots correspond to the events selected for the “perfect 
model” forecast experiments
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K become 2-year LN. Events initiated by a strong El Niño 
are not common (they happen less than 10% of the time in 
the long control), however, when they happen, their long 
term evolution will be highly predictable. The percentage 
of 2-year LN drops to 35 and 44% for the lowest values of 
the discharge (−10 ± 5 m) and peak El Niño amplitude (1 
K ± 0.5). For these values of the predictors the frequency 
of occurrence of neutral, El Niño  and La Niña conditions 
on the second year are about the same magnitude, therefore 
predictors of this magnitude would lack predictive skill for 
2-year LN.

Lastly, we note that the peak amplitude of El Niño and 
the associated discharge are highly correlated (r = −0.90). 
The high correlation confirms that these predictors are not 
independent, since ENSO dynamics predicts that stronger 
El Niño events would drive a stronger discharge. This tight 
relationship, however, may allow skillful predictions as 
early in the evolution of an ENSO event as the peak of the 
El Niño phase. In the next subsections we present ensemble 
forecasts initialized at the peak of El Niño and at the dis-
charge and discuss and compare their skill.

3.2 � Role of initial conditions

3.2.1 � Discharge

Next we turn our attention to the perfect model forecasts in 
order to more quantitatively explore the role of the “Dis-
charge” and “Peak El Niño” predictors. We begin with the 
18-month lead forecasts for the three (strong, moderate and 
weak) discharge predictor cases. All three forecasts start 
on July with the Niño-3.4 SST index near neutral condi-
tions characteristic of the discharge phase. In all cases, the 
ensemble mean Niño-3.4 SST index shows La Niña’s first 
peak around January, 6 months after the forecast start date, 
as well as a second peak during the subsequent January, 18 
months after the forecast start date (Fig. 5, left; blue lines). 

The “strong” case predicts the strongest La Niña on the 
second year, with ensemble mean Niño-3.4 SST index of 
−1.37 K on January of the second year (model year 1457) 
(Fig.  5a), while the other cases show similar values of 
−1.05 and −0.94 K respectively, suggesting weaker 2-year 
LN relative to the “strong” case (Fig. 5c, e).

In all cases, the ensemble members track the control 
very closely during the first 6  months and diverge much 
faster during late summer and early fall of the second year 
(Fig.  5, left; green lines). We more quantitatively discuss 
the predictability and error growth of these forecasts by 
computing the spread (Fig.  7a) and PPU (Fig.  7c), which 
we discuss in more detail in Sect. 3.3. Despite the increas-
ing forecasts spread suggested by the diverging trajectories 
of the individual members, the strong case shows only one 
member above the La Niña threshold during January of 
the second year (Fig.  5a, green line above the blue back-
ground). In contrast, the moderate and weak cases show 4 
and 5 members above the La Niña threshold, respectively 
(Fig.  5c, green lines above the −0.45 K dashed line). We 
computed the probability of 2-year LN as the percentage of 
members predicting Niño-3.4 SST index under the −0.5 K 
threshold during January of the second year (Table 2). We 
find that the probability of predicting 2-year LN increases 
for forecasts with a larger initial discharge. This occurs 
because the value of the predictable signal, captured by the 
ensemble-mean, is sufficiently negative such as most mem-
bers remain under the La Niña threshold. Conversely, the 
probability of predicting neutral or El Niño  i.e. an unreli-
able forecast, is larger when the initial discharge is weaker.

These forecasts start from conditions characterized 
by an anomalously shallow thermocline, shown by Z̄′

TC
 

index values of −35, −24, and −12 m, respectively. Note 
that these values (given by the starting point of the red 
lines in Fig.  5b, d, f) are slightly less negative than the 
peak shoaling (given by the minima of Z̄′

TC
, gray lines 

in the same figures). The different events of the control 

Table 1   Percentage of events 
in the control simulation 
showing La Niña, neutral, and 
El Niño conditions on January 
of the second year for different 
values of the El Niño peak and 
discharge predictors

ENSO events are binned according to their predictor values prior to computing the percentages. The central 
value of each bin is given in the second column

Control simulation

Predictor name Predictor 
amplitude

% La Niña % neutral % El Niño % of 
total 
events

Discharge −40 m 94 6 0 10
−30 m 75 24 1 22
−20 m 60 27 13 35
−10 m 35 42 23 33

El Nino peak amplitude 3 K 92 6 2 16
2 K 71 27 2 25
1 K 44 36 18 59
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Fig. 5   Evolution of the Niño
-3.4 index (left) and the zonal 
mean thermocline index (Z̄�

TC
) 

(right) in forecasts initialized 
from ocean conditions charac-
terized by discharge conditions 
(i.e. negative Z̄′

TC
) ranging from 

strong (top), moderate (middle), 
and weak (bottom). The Niño
-3.4 SST and Z̄′

TC
 indices are 

computed as described in Fig. 4 
and Sect. 22.4. Positive Z̄′

TC
 

indicate a deeper thermocline 
(recharge) and negative Z̄′

TC
 

indicate a shallower thermocline 
(discharge)
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Table 2   Percentage of 
members in the perfect model 
forecasts showing La Niña, 
neutral, and El Niño conditions 
on January of the second year

Perfect model forecasts

Initial state Forecast name Predictor 
amplitude

% La Niña % neutral % El Niño

Discharge Strong −41 m 90 10 0
Moderate −33 m 77 23 0
Weak −17 m 57 33 10

El Nino peak Strong 3.1 K 97 3 0
Moderate 2.6 K 63 37 0
Weak 1 K 57 33 10
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simulation show discharge peaking from April to July 
(not shown). We selected initial conditions in July to 
ensure that all cases are initialized after the peak dis-
charge. The ensemble-mean Z̄′

TC
 shows the thermocline 

slowly returning to neutral depth throughout the duration 
of La Niña in all three cases (Fig. 5, right; red lines). The 
index shows that the thermocline hovers around neutral 
depths during the first peak of La Niña   deepening dur-
ing the following summer, returning to neutral conditions 
during the second year peak of La Niña. Note, that the 
Z̄
′
TC

 plumes track the control very closely until the first 
peak of La Niña (Fig.  5, right; lilac lines) starting to 
spread out afterwards.

3.2.2 � El Niño peak

We continue with the analysis of the 24-month lead fore-
casts for the three (strong, moderate and weak) “Peak El 
Niño” cases. All three forecasts start in January when the 
Niño-3.4 SST index reaches its maximum value at the peak 
of El Niño. In all three forecasts, the ensemble mean Niño
-3.4 SST index shows negative values associated with the 
peak of La Niña the following January, 12 months after the 
forecast start date, along with a second peak the following 
January, 24 months after the forecast start date (Fig. 6, left; 
blue lines). The “strong” case predicts the strongest second 
year La Niña, with ensemble mean Niño-3.4 SST index of 

Fig. 6   As in Fig. 5, but for 
“Peak El Niño” forecasts
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−1.44 K in January of the second year (model year 1457) 
(Fig. 6a), while the other cases show values of −0.87 and 
−0.63 K respectively, suggesting weaker 2-year LN rela-
tive to the “strong” case (Fig. 6c, e). During the first year 
of the forecasts, the Niño-3.4 SST plumes do not track the 
control as closely as in the “Discharge” forecasts (Fig.  6, 
left; green lines). Despite this larger initial error growth, 29 
out 30 members of the “strong” case and 26 out of 30 of 
the “moderate” case predict the return of La Niña with a 24 
month lead time.

We find that the probability of predicting 2-year LN 
increases for forecasts initialized from strong El Niño, 
which is explained by the larger predictable signals given 
by the ensemble mean. However, we also find that the like-
lihood of a 2-year LN forecasts are comparable to the cor-
responding “Discharge” cases despite the longer lead time 
(Table  2). The temporal evolution of the spread explains 
why these forecasts remain as skillful. We find that the 
spread of these forecasts increases rapidly during the first 
6 months, but then decreases reaching values similar to 
the “Discharge” forecasts by January of the second year 
(Fig. 7b) and PPU (Fig. 7d). This, explains why these fore-
casts appear to be as reliable as the corresponding “Dis-
charge” cases.

All three cases of the 24-month lead forecasts exhibit 
a similar evolution for the ensemble-mean Z̄′

TC
 (Fig.  6, 

right; red lines), with the initial thermocline discharge 
rebounding to slight positive values after the onset of 
La Niña. After then, the “moderate” and “weak” cases 

show Z̄′
TC

 plumes with positive values consistent with the 
recharge phase (Fig.  6, right; lilac lines). The “strong” 
case shows Z̄′

TC
 plumes close to zero for the second year. 

Lastly, the Z̄′
TC

 plumes show little error grow during the 
first year for all cases. This suggest that the initial error 
growth of SST anomalies may be decoupled from the 
error growth of the thermocline anomalies, thus allowing 
for long lead predictability.

We conclude the analysis of the role of initial condi-
tions by comparing the 18- and 24-month lead forecasts 
with the statistical predictors from the control simula-
tion and from observational data. We find that the three 
“Discharge” cases exhibit ensemble-mean Niño-3.40 val-
ues that are linearly related to the magnitude of the ini-
tial discharge (Z̄�−18

TC
; Fig.  8a, dark blue dots), consistent 

with the correlation between these predictors seen in the 
CESM1 control (Fig.  8a, gray dots). Observational data 
also show significant correlations between Niño-3.40 and 
Z̄
�−18
TC

 (r = 0.44 with 95% confidence; Fig.  8a, magenta 
dots). The three “Peak El Niño” cases are also consist-
ent with the CESM1 control, both regarding the rela-
tionship of the ensemble-mean Niño-3.40 with the mag-
nitude of the preceding El Niño, Niño-3.4−24, and the 
scatter (Fig. 8, blue and light blue dots respectively). The 
observed data, shows a similar correlation (r = −0.27) 
and scatter (Fig.  8, magenta dots). The scatter of the 
CESM control, the perfect model forecasts, and obser-
vations, agree in suggesting that strong El Niño events 
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Fig. 7   Scatterplots showing correlations between the Niño-3.4 index 
on the year following the first peak of La Niña (Niño-3.40, y-axis) 
and: a the heat content discharge and b the magnitude of the preced-
ing El Niño (y-axis). Data are from the CESM1 control simulation 
(gray dots), perfect model forecasts (light blue dots), and ocean rea-
nalysis data (magenta). The heat content discharge is measured as the 
zonally averaged thermocline depth anomalies (Z̄′

TC
) during the tran-

sition between El Niñoto La Niña(Z̄�−18
TC

 ). Nino-3.40 values (y-axis) 

less than −0.45 K indicate return of La Niña conditions on the second 
year (blue shading), whereas values larger than 0.45 K indicate El 
Niño conditions during the second year (red shading). Orange dots 
indicate the forecasted events selected from the control simulation. 
Dark blue dots indicate the ensemble-mean forecasts. Correlation 
coefficient r between the predictor and the predict and are indicated 
for both the CESM1 control simulation (gray) and the ocean reanaly-
sis data (magenta)
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are likely to be followed by 2-year LN. In contrast, these 
lines of evidence suggest that weak El Niño events lead 
to less predictable 2-year LN.

The “moderate” and “weak” cases show a range of out-
comes (Fig.  8, light blue dots) that is distributed within 
the scatter of the control run (Fig. 8, light blue dots). The 
“strong” cases, in contrast, do not map onto the distribu-
tion of the control, possibly because strong El Niño and 
their associated discharge are not sampled with sufficient 
frequency in the control. In other words, the “strong” fore-
casts show that the control run does not provide complete 
information of the outcomes associated with these extreme 
events. In these cases the perfect model forecasts provide 
more complete information on the amplitude of 2-year LN 
events. For instance, both strong cases have members pre-
dicting extreme Niño-3.40 values < −2.5 K, suggesting that 
very strong 2-year LN events are possible, but extremely 
unlikely.

3.3 � Predictability and error growth

The 18-month lead time forecasts show fast error growth, 
measured by the ensemble spread, from July to September, 
remaining constant afterward until July of the following 
year (Jul−6), when the error resumes the growth at about the 
same rate as the previous year (Fig. 7a). The seasonality of 
the spread suggests that error growth is governed by a mech-
anism active during late summer and early fall. The spread 
of the “Peak El Niño” forecasts evolves differently. All three 
El Niño forecasts show fast error growth during the first six 
months, followed by a decline in error growth (Fig. 7b). The 
“strong” and “moderate” cases show constant spread for an 
additional year that remains lower than the corresponding 
discharge forecasts (Fig. 7a, red and blue lines). The “weak” 
El Niño case, in contrast, resumes the error growth, which 
exceeds the spread of the corresponding discharge case 
by January of the second year (Jan0; Fig.  7a, green). This 

Fig. 8   Temporal evolution of 
the spread (top) and potential 
prediction utility (PPU) (bot-
tom) of the Niño-3.4 index in 
forecasts initialized a during 
the discharge phase and b at the 
peak of the preceding El Niño 
event. The dashed black line 
indicates January of the second 
year (Jan0). The initial 6 months 
of the El Niño forecasts are not 
shown (shaded gray) because 
the PPU becomes zero when the 
ensemble-mean Niño-3.4 index 
goes to zero during the transi-
tion from El Niño to La Niña 0
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is consistent with the results from the weak El Niño fore-
cast, which show largest scatter for the amplitude of the 2nd 
year La Niña (Fig. 8b). It remains unclear why all El Niño 
forecasts show decreasing spread from Jul−18 to Jul−6. The 
reduction in spread could be indicative of the following two 
processes. First, initial error growth may not be driven by 
coupled process, therefore the coupled system may not be 
affected by the initial spread. Second, that the thermocline 
anomalies are not affected by this uncoupled variability, and 
once the system goes into La Niña, the spread decreases 
because the uncoupled variability decreases.

We computed the PPU of the Niño-3.4 SST indices as 
a measure of the usefulness of each ensemble forecast. 
PPU values near one are indicative of useful predictions, 
while values near zero indicate that the ensemble predic-
tions lack skill. All forecasts start with PPU close to 1, 
which decays slowly until about Jan0, when all cases show 
values higher than 0.7 (Fig.  7c) indicative of useful fore-
casts. PPU quickly decays after the target forecast date 
of Jan0, indicating that the forecasts lose their usefulness 
beyond 18-month lead times. Each case, however, decays 
at a different rate. The strong discharge case shows the larg-
est PPU values, which stays at about 0.85 by Jan0, whereas 
the weak discharge case shows lower values of about 0.75, 
consistent with a link between PPU and the magnitude of 
the initial discharge.

In contrast, not all “Peak El Niño” forecasts remain use-
ful at 24 month lead times. The “strong” and “moderate” 
cases show values of PPU larger than 0.7 by Jan0 (Fig. 7d, 
red and blue lines), indicative of useful forecasts. The 
“weak” case, in contrast, shows much smaller PPU val-
ues throughout the forecasts reaching values under 0.4 by 
Jan0 (Fig. 7d, green line). The strong El Niño case shows 
the largest PPU values, whereas the weak case shows the 
lowest values, suggesting a link between PPU and the mag-
nitude of the preceding El Niño. Note that by normalizing 
the spread by the square of the ensemble-mean, as is done 
in the PPU measure (Eq. 1), there is no longer a seasonal 
modulation of the error growth. This simply suggests that 
both the spread and the ensemble-mean have a similar sea-
sonality, possibly because they are both controlled by the 
seasonality of the equatorial Pacific climate.

We further explored the processes causing error growth 
by analyzing the spatio-temporal evolution of predicted 
SST anomalies over the equatorial Pacific and Indian 
basins. Here we discuss results only from the moderate dis-
charge and El Niño cases because they are representative of 
all other cases, particularly since the spread of the Niño-3.4 
SST index evolves similarly in each type of forecast (Fig. 7, 
top). The ensemble-mean SST anomalies evolve similarly, 
with slightly larger amplitudes in the “Discharge” case 
compared to the “Peak El Niño” case (Fig. 9a, c). In par-
ticular, negative SST anomalies begin in the eastern Pacific 

around Jun−19 and subsequently propagate westward over 
the following year, peaking around Jan−12 (Fig. 9, left). The 
negative SST anomalies persist in the central and western 
Pacific over the following year, and then re-emerge in the 
eastern Pacific around December (Dec−1).

Both cases also show a similar evolution of the ensem-
ble-mean SST anomalies in the Indian Ocean (IO), with 
weak negative (positive) SST anomalies over the eastern 
(western) basin around September of the first year (Sep−16). 
This pattern reverses during the second year, when the 
eastern (western) IO shows stronger positive (negative) 
SST anomalies. These SST anomalies show the same pat-
tern and September–October–November (SON) seasonality 
as Indian Ocean Dipole (IOD) events observed in nature 
(Webster et  al. 1999; Saji et  al. 1999). However, the sim-
ulated evolution of IO SST anomalies, with a negligible 
warming over the eastern IO during the first La Niña year 
and a strong warming on the second year, is not supported 
by observations, which show strong negative IOD events 
during both years (not shown).

Despite the similarity of their ensemble-mean SST 
anomalies, the two cases exhibit pronounced differences in 
the spatial evolution of the SST spread (Fig. 9, right). Both 
cases show the largest initial error growth in the eastern 
equatorial Pacific with values up to 0.4 K during January 
of the first year for the discharge case (Fig. 9b, Jan−12) and 
over 0.6 K during July for the El Niño case (Fig. 9d, Jul−18). 
Additional differences between the two cases arise as the 
forecasts evolve. The spread of the discharge forecasts 
increases during the second year reaching values over 0.6 
K at the peak of the second year La Niña (Fig. 9b, Jan0). 
In contrast, the spread of the El Niño forecasts decreases 
after the second year with values remaining below 0.5 K 
at the peak of the second year La Niña (Fig. 9d, Jan0). An 
additional similarity between the cases is the large forecast 
spread over the eastern Indian Ocean during September of 
the first and second years. The seasonality and spatial pat-
tern of these maxima in the SST spread suggest a role for 
climate variability associated with the IOD. The eastern IO 
exhibits the largest spread at the beginning of the forecasts; 
however, we explore whether this error growth has an influ-
ence on the ENSO forecasts in the next subsection.

3.4 � Role of Indian Ocean variability

Several studies suggest that IO variability associated with 
dipole events could influence the evolution of ENSO 
events (Saji and Yamagata 2003; Kug and Kang 2006; 
Kug et  al. 2006; Ohba and Ueda 2007; Yamanaka et  al. 
2009; Annamalai et al. 2010; Izumo et al. 2010). There-
fore the large forecasts spread seen over the eastern IO 
could be playing a role in the spread over the Pacific 
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(Fig. 9). Moreover, this SST spread over the IO shows a 
maximum around September, which could be related to 
the seasonality of the spread of the Niño-3.4 SST index 
(Fig. 7a, b). We performed an additional set of forecasts 
in order to test this link. In these forecasts we prescribed 
climatological SSTs in the eastern Indian Ocean (75◦

E–105◦E 9◦S–1◦N). This effectively disables the vari-
ability associated with the eastern lobe of the IOD and 
therefore the forecasts show negligible ensemble-mean 

and spread over the eastern equatorial IO. Beyond this 
difference, disabling the IOD does not lead to substantial 
differences in the evolution of the forecasts in the equa-
torial Pacific (not shown). Disabling the IOD also does 
not lead to obvious changes in the spread of the Niño-3.4 
SST index (Fig. 10). These results suggests that the evo-
lution of the La Niña forecasts is largely uncoupled from 
the strong IOD variability as suggested by the study of 
Ohba and Watanabe (2011).

Fig. 9   Spatiotemporal evolu-
tion of equatorial sea-surface 
temperature (SST) anomalies 
predicted by CESM1 in the 
moderate discharge (top) and El 
Niño (bottom) cases. Ensemble 
mean (left) and spread (right) 
of the predicted SST anomalies. 
The forecast start date is marked 
by the solid horizontal lines. 
SST anomalies before these 
dates are from the control simu-
lation. In this and subsequent 
figures, Jan−12 and Jan0 indicate 
the peaks of the first and second 
years of La Niña. Jan−24 indi-
cates the peak of the preceding 
El Niño. SST anomalies are 
averaged over the 5◦S-5◦N 
equatorial band over the Pacific 
Ocean and over 10◦S-0◦over the 
Indian Ocean
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3.5 � Role of other modes of variability

We explore additional mechanisms responsible for error 
growth using output from the perfect model forecasts. We 
identify additional predictors via lagged-correlation analy-
sis of various anomaly fields [sea level pressure (SLP), 
wind stress, thermocline depth and SST] with the depar-
tures of the Niño-3.4 SST index from the ensemble-mean 
at the Jan−12 and Jan0 peaks. Data from 60 “Discharge” 
forecasts and 60 moderate and strong “Peak El Niño” 
forecasts were combined in each calculation. These cases 
show similar error growth (Fig.  7, top), thus we expect 
that will be governed by similar processes, allowing us 
to combine their data and thus increase the statistical sig-
nificance of the analysis. We removed the ensemble mean 
anomaly from each member’s predicted SLP, wind stress, 
thermocline depth, and SST anomalies in order to focus 
the analysis on the departures from the ensemble mean (i.e. 
ensemble-spread).

We first analyze processes within the equatorial Pacific 
related to the spread of the 2-year LN forecasts in both 
the “Discharge” and “Peak El Niño” cases. We focus our 
analysis on the correlations during months preceding the 
strong error growth prior to the second year peak, as shown 
by the spread of the Niño-3.4 SST index (Fig. 7, top). The 
correlation analysis shows that the spread of the Niño-3.4 
SST index is positively correlated with the spread of zonal 
wind stress, �′

x
, over the western equatorial Pacific during 

the previous April (Apr−9, Figs.  11a, 12a, shading). Both 
cases show concurrent correlations with the Z′

TC
 spread 

characterized by a pattern of positive correlations extend-
ing across the equatorial Pacific (Figs. 11e, 12e, contours). 
The Z′

TC
 correlation patterns evolve with time and by July 

their magnitude becomes largest over the eastern equatorial 
Pacific (Figs. 11f–h, 12f–h, shading). Positive SST correla-
tions appear in the eastern equatorial Pacific around June 

and continue to increase and propagate westward by July 
(Figs. 11f–h, 12f–h, contours).

Overall, the evolution of these correlation patterns is 
consistent with the dynamics of the equatorial Kelvin 
waves triggered by wind fluctuations over the western 
equatorial Pacific. The positive Z′

TC
 and SST correlations in 

June and July also suggest that these Kelvin waves influ-
ence SSTs over the eastern equatorial Pacific. Moreover, 
as the westward propagation of the SST anomalies appear 
to reinforce the initial zonal wind anomalies over the west-
ern side of the basin, as shown by the positive �′

x
 correla-

tions (Figs. 11d, 12d, shading). We extended this analysis 
to months before Apr−9, however no significant correlations 
where found. This suggests that variability prior to first La 
Niña peak has little influence on the spread of the second 
year forecasts.

The relationship between �′
x
, Z′

TC
, and SSTA revealed 

by the correlation analysis strongly suggests that coupled 
instabilities within the equatorial waveguide contrib-
ute to forecast spread. However, the analysis is unclear 
regarding the drivers of the initial wind stress variabil-
ity. We identify subtle differences in the location of the 
initial zonal wind stress anomalies. The “Discharge” 
forecasts show initial �′

x
 correlations centered around 

10◦N (Fig.  11a, shading). This �′
x
 variability coincides 

with SST variability over the subtropical north Pacific 
(Fig.  11e, shading) reminiscent of the “seasonal foot-
printing” mechanism (Chang et  al. 2007; Vimont et  al. 
2001, 2003, 2009). We note that the �′

x
 correlations do 

not fully project on the equatorial waveguide, thus may 
be unable to explain the Z′

TC
 variability revealed by cor-

relations (Fig.  11e, contours). However, off-equatorial 
wind variability could trigger equatorial Kelvin waves via 
the so-called “trade wind-induced charging” mechanism 
proposed by Anderson et  al. (2013), and thus generate 
SST spread in the Niño-3.4 region (Fig.  11h, shading). 

Fig. 10   Temporal evolution of 
the spread of the Niño-3.4 index 
in forecasts initialized a during 
the discharge phase and b at the 
peak of the preceding El Niño 
event. Dashed lines indicate the 
spread of forecasts where the 
IOD is inactive
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In contrast, the “Peak El Niño” forecasts show corre-
lated wind variability centered on the western equatorial 
Pacific (Fig. 12a, shading), which could effectively trig-
ger Kelvin waves, as suggested by the Z′

TC
 correlations 

(Fig. 12e, contours), generating SST variability over the 
Niño-3.4 region (Fig. 12h, shading).

Additional predictors outside the equatorial waveguide 
were explored focusing on the summer season prior to both 
the first and second peaks. Note that in this analysis we also 
focus on the mechanisms leading to spread of the first year 
forecasts, as they could show similarities with the mecha-
nisms generating spread at the second year peak. Prior to 
performing the lag-correlation analysis, we regressed each 
member’s anomaly fields on the corresponding May−8 
value of the zonally averaged Z′

TC
. This procedure allows 

us remove the effect of the equatorial processes discussed 
above and focus on additional processes. The resulting cor-
relation maps for July prior to the first peak (Jul−18) show 
few areas over the tropics correlated with the Niño-3.4 SST 
spread 6 months later (Fig. 13a). The sole exception is the 
southeastern (SE) tropical Pacific, where SLP anomalies 
show significant negative correlations. The negative corre-
lation between SLP anomalies persists during August and 
September when SSTs also start to be positively correlated, 
showing the largest values over the SE Pacific (Fig. 13b, c).

The negative correlations indicate that negative SLP 
anomalies in the SE Pacific are related to positive depar-
tures of the Niño-3.4 SST index relative to the ensemble 
mean. This suggests that low SLP anomalies are associ-
ated with Niño-3.4 SST forecasts that are warmer than the 
ensemble mean, and conversely high SLP anomalies with 
cooler La Niña forecasts. The correlations between SST 
and Niño-3.4 index are initially stronger off the equator 
(Fig. 13b) and then become stronger in the eastern equato-
rial Pacific (Fig. 13c). A similar evolution of SLP and SST 
anomalies is found for the second year (Fig.  13, bottom), 
suggesting that a common mechanism influences the error 
growth of the La Niña forecasts during the first and second 
years. The second year exhibits negative SLP correlations 
associated with positive SST correlations over the central 
north Pacific from May to July (Fig 13d–f). In addition, 
positive SLP correlations are found over the western equa-
torial Pacific during June and July (Fig 13e, f).

The El Niño forecasts show similar evolution of SLP and 
SST correlations, with the only difference that the anoma-
lies in the north Pacific are also present during the first year 
(Fig. 14, left). The spatial pattern and temporal evolution of 
these negative and positive SLP and SST correlations sug-
gests that circulation anomalies over the SE and NE Pacific 
contribute to the spread of Niño-3.4 SSTs. These SST 

Fig. 11   Correlation coefficient 
of zonal wind stress (left 
shading), thermocline depth 
(contours) and sea-surface 
temperature (right shading) 
with the peak Niño-3.4 SST 
spread in the “Discharge” 
forecasts. Correlation coeffi-
cients with 95% statistical 
confidence are shown. The 
rectangle indicates the region 
used to compute the �x

WeqPac
−9

 

index used in the statistical 
prediction model (Eq. 2)
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anomalies first emerge in the SE Pacific and then propa-
gate equatorward. The negative SLP correlation suggests 
that a cyclonic anomaly in the SE Pacific is associated with 
warming over the eastern equatorial Pacific, resulting in a 
Niño-3.4 forecast that is warmer than the ensemble mean. 
Conversely, an anticyclonic anomaly in the SE Pacific is 
associated with cooling over the eastern equatorial Pacific, 
resulting in a Niño-3.4 forecast that is colder than the 
ensemble mean. In all cases the magnitude of the negative 
correlation increases with time as the positive SST correla-
tions emerge, indicating that SST anomalies are driven by 
circulation anomalies. Moreover, the correlation maps do 
not show evidence for large-scale wave train patterns prior 
to the occurence of the SLP correlations, suggesting that 
local internal atmospheric dynamics are more likely to con-
tribute to variability in the southeast trade winds. A similar 
mechanism could be invoked to explain the SLP and SST 
correlation results over the NE Pacific.

The spatial pattern and temporal evolution of these cor-
relations are consistent with the South Pacific Meridional 
Mode (Zhang et al. 2014), according to which, fluctuations 
in the strength of the SE trades associated with regional-
scale cyclonic anomalies can have an influence on the 
equatorial Pacific. According to this mechanism, trade 
wind variability associated with monthly and sub-monthly 

fluctuations of the atmospheric circulation in the mid-lat-
itude South Pacific can initiate SST anomalies in the SE 
Pacific which can then propagate westward and equator-
ward through the wind–evaporation–SST (WES) feedback 
mechanism (Xie and Philander 1994). Moreover, the initial 
SLP pattern, not only shows negative correlations over the 
tropical SE Pacific, but also a lobe of positive correlations 
farther south. This SLP dipole resembles the Pacific-South 
American (PSA) pattern, the leading mode of internal 
atmospheric variability over the South Pacific. This mode 
plays an important role in modulating the trade winds and 
sea surface temperature (SST) in the southeast tropical 
Pacific (Okumura 2013). These fluctuations in the trade 
winds, in the presence of ocean dynamics, can be amplified 
by the positive Bjerknes feedback, altering the evolution of 
the La Niña forecasts.

3.6 � Multivariate statistical prediction models

We conclude the study with a systematic evaluation of 
predictors in the long control simulation. Here we com-
bine our understanding on the subsurface ocean predictors 
developed in Sect. 3.2 with the atmospheric predictors sug-
gested from the results in Sect. 3.5. We formulated a series 
of multi-variate regression models of Niño-3.40 by linearly 

Fig. 12   As in Fig. 11, but for 
“Peak El Niño” forecasts
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combining these predictors with the thermocline predictors 
discussed in the first part of our study. The model show-
ing the highest correlations (r = 0.85 ± 0.04; error given at 
99% confidence level) with Niño-3.40 is:

where Z̄�−18
TC

 and Z̄�−6
TC

 are the “discharge” and “recharge” 
predictors discussed in Sect.  3.1, �x

WeqPac
−9

 is an index of 

zonal wind variability in the western equatorial Pacific, and 
SLP−6

SEPac
 is an index of SLP variability in the SE Pacific. 

The �x
WeqPac

−9
 index is defined as the zonal wind stress 

anomalies averaged over the western equatorial Pacific 
(120◦E–160◦W 30◦N–10◦S) and shows peak correlation 
(r = 0.63) with Niño-3.40 at a lead time of 9 months. The 
SLP−6

SEPac
 index is defined as the SLP anomalies averaged 

over the SE Pacific (120◦W–80◦W 30◦S–10◦S) and shows 
peak correlation (r = −0.70) with Niño-3.40 at a lead time 
of 6 months. The a

i
 constants in (Eq. 2) are computed using 

least-squares linear regression. Table  3 summarizes the 

(2)
Niño − 3.4

0 = a
1
Z̄
�−18
TC

+ a
2
𝜏
x

WeqPac
−9 + a

3
Z̄
�−6
TC

+ a
4
SLP

−6
SEPac

+ a
5
,

results from this analysis and provides more details on the 
definitions and lags of the different predictors.

Additional indices were considered, however these 
predictors did not increase the correlation significantly 
(Table  3). An index of SLP anomalies over the central 
north Pacific (180◦–140◦W 10◦N–20◦N) is highly corre-
lated with Niño-3.40 (r = −0.40) at a lead time of 6 months. 
However, including this SLP−6

NPac
 predictor in Eq. 2 does not 

lead to a statistically significant increase in the correlation 
with Niño-3.40. We also considered the Dipole Mode Index 
(DMI) (Saji et al. 1999) during September of the first year 
(DMI−3), which is highly correlated (r = −0.61) with Niño
-3.40; however, including this predictor in Eq.  2 does not 
improve the correlation.

We also explored the role of SSTs over the tropical 
Atlantic. We found that SST anomalies averaged over the 
equatorial Atlantic (0◦–20◦E 5◦S–5◦N), the so-called ATL3 
SST index (Zebiak 1993), is correlated (r = −0.36) with 
Niño-3.40 with a lag of 12 months, suggesting that tropi-
cal Atlantic SSTs could have an influence on the evolu-
tion of La Niña. Including this ATL3−12 predictor in 

Fig. 13   Correlation coefficient 
of SLP (shading) and SST 
(contours) anomalies with the 
peak Niño-3.4 SST spread in the 
“Discharge” forecasts. Months 
prior to strong error growth 
are shown. Correlations with 
the spread of the Niño-3.4 SST 
index during the first year peak 
(Niño-3.4−12, left) and second 
year peak (Niño-3.40, right). 
Correlation coefficients with 
95% statistical confidence are 
shown. The rectangles indicate 
the regions used to compute 
the DMI−3, SLP−7

WeqPac
, SLP−6

SEPac
 

and SLP−6
NPac

 indices used in 
the statistical prediction model 
(Eq. 2)
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Fig. 14   As in Fig. 13, but for 
forecasts initialized at El Niño 
peak

Table 3   Indices considered as predictors of the magnitude of the Niño-3.4 SST index on the second year (Niño-3.40)

The first five columns provide information on each predictor. The sixth column shows the correlation coefficient (r) between each predictor with 
Niño-3.40. The seventh column shows r values of the linear multi-variate model combining all the predictors listed in the table from top (Z̄�−18

TC
 ) 

to the given predictor. Bold r values indicate when the increase in r relative to the previous model is statistically significant with 99% confidence

Predictor rmodel

ID Name Variable Area Lead (months) rNiño−3.40

Z̄
�−18
TC

Discharge Thermocline depth 140◦W–80◦W 5◦S–5◦N 18 0.46 0.46

�
x

WeqPac−9
Coupled instabilities Zonal winds 140◦E–160◦W 5◦S–5◦N 9 0.63 0.65

Z̄
�−6
TC

Recharge Thermocline depth 140◦W–80◦W 5◦S–5◦N 6 0.46 0.73

SLP
−6
SEPac

S. Pacific meridional mode Sea level pressure 120◦W–80◦W 30◦S–10◦S 6 −0.70 0.85

DMI−3 Indian Ocean Dipole Sea-surface temperature 80◦E–107◦E 10◦S–0◦ 3 −0.58 0.85
Niño-3.4−12 1st year La Niña Sea-surface temperature 120◦W–170◦W 5◦S–5◦N 12 0.12 0.85

SLP
−7
WeqPac

Western equatorial Pacific Sea level pressure 120◦W–180◦ 10◦S–10◦N 6 0.20 0.85

SLP
−6
NPac

N. Pacific meridional mode Sea level pressure 180◦–140◦W 10◦N–20◦N 6 −0.40 0.83

ATL3−12 Atlantic Niño Sea-surface temperature 0◦–20◦E 5◦S–5◦N 12 −0.36 0.83
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Eq. 2 does not lead to a substantial increase in correlation 
(r = 0.83 ± 0.08) mainly because ATL3−12 is also corre-
lated (r = −0.28) with Z̄�−18

TC
. In general, these predictors 

are highly correlated with Z̄�−18
TC

, which is related to the 
magnitude of preceding El Niño: thus the bulk of the pre-
dictable information on the duration of La Niña is already 
included in Z̄�−18

TC
.

4 � Discussion

The purpose of this study was to assess the predictabil-
ity of the duration of La Niña out to 2 year lead times in 
a perfect-model setting. In particular, we explored predict-
ability as a function of ocean initial state during different 
phases of ENSO. We performed ensembles of forecasts 
starting from two different types of initial states. The first 
state occurs during the transition from El Niño to La Niña, 
during which the equatorial Pacific is characterized by 
near-zero SST anomalies and a shallower than normal ther-
mocline. In this state the thermocline has not fully adjusted 
to prior wind anomalies and therefore provides a source of 
predictability for the evolution into La Niña state. The sec-
ond state occurs at the peak of El Niño, when the source of 
predictability is the associated westerly wind anomaly, the 
driver of the delayed thermocline shoaling responsible for 
the onset of La Niña. The main objective of our study was 
to explore how different magnitudes of these “discharge” 
and “Peak El Niño” predictors control the reliability and 
skill of forecasts of 2-year La Niña.

Our results show that the forecasts initialized with the 
largest discharge and peak El Niño amplitudes exhibit the 
largest skill at predicting a 2-year La Niña event (accord-
ing to the PPU metric). The higher skill in these cases 
stems from the larger magnitude of the initial conditions, 
which leads to a larger predictable signal thoughout the 
first 2 years of the forecast. The forecast spread, in contrast, 
appears to be independent of the magnitude of the initial 
conditions. Our results show that CESM1 can produce con-
sistent forecasts of La Niña for the first and second years 
(up to 24 month lead time), mainly because the ensemble-
mean signal has sufficiently large amplitude to overcome 
the forecast spread. The forecasts become significantly less 
skillful and reliable beyond the second year peak, despite 
robust ensemble-mean signals showing La Niña condi-
tions for an additional (third) year. For instance, the El 
Niño event selected for the “strong” cases was followed by 
a 3-year La Niña (Figs. 5, 6, gray lines). However, only 13 
in 30 members predicted a 3-year La Niña, rendering the 
forecast considerably less reliable. This occurs because the 
spread grows over time, dominating the decreasing ensem-
ble-mean signal. Our conclusion that the ensemble-mean 
component has a larger contribution to prediction utility 

than the ensemble spread is consistent with previous stud-
ies showing that ensemble spread is not a good indicator 
of skill (Kirtman et al. 1997). This is a well known differ-
ence with weather prediction, where ensemble spread is the 
main determinant of potential forecast skill. Because the 
ENSO system could be viewed as a stochastically forced 
damped linear system, the forecasts would also be con-
trolled by the magnitude of the initial conditions. In other 
words, the ensemble-mean component of the PPU, in con-
trast to ensemble-spread, is related to the initial conditions, 
as shown by Kleeman (2002) using a simplified ENSO 
model.

We used the perfect model forecasts to investigate how 
early in the evolution of an ENSO event can the duration of 
La Niña be skillfully predicted. The fact that the discharge 
and the peak El Niño amplitude are highly correlated allows 
the forecasts initialized at the peak of an El Niño event 
to remain as skillful as those initialized at the discharge, 
despite being initialized six months earlier. Particularly, we 
find that the forecasts initialized at the peak of strong El 
Niño events are more skillful, measured by the PPU value 
at target date of Jan0, as forecasts initialized during their 
discharge phase. Because of the tight El Niño–discharge 
relationship, particularly for strong El Niño events, the pre-
dictability (in a PPU sense) of the “Peak El Niño” and the 
“Discharge” forecasts will have the same contribution from 
the ensemble-mean signal and the differences in PPU will 
arise from differences in the spread. Note that the strong 
“Peak El Niño” ensemble forecast has a PPU of 0.90 by 
the target date of Jan0, while the strong “Discharge” fore-
cast has a lower PPU of 0.85 (Fig. 8, bottom, red curves), 
indicating that the former forecast is more skillful despite 
the longer lead time. The higher PPU of the “Peak El 
Niño” forecasts relative to the “Discharge” occurs because 
these forecasts have lower spread by Jan0 (Fig. 8, top, red 
curves). The lower Jan0 spread in the “Peak El Niño” fore-
casts (relative to the “Discharge” forecasts) maybe related 
to the seasonality and state of ENSO. Further investigation 
of the seasonality of the spread and dependence on ENSO 
state is beyond the scope of this study and will be left for 
future work.

In a linear ENSO system, strong events would drive a 
commensurate response of the delayed thermocline feed-
back, thus leading to events with the same duration. Our 
results, in contrast, suggest that the predictability of La 
Niña duration (in a PPU sense) is consistent with processes 
governed by persistence, such that, events driven by large 
initial perturbations will take longer to decay. However, 
the enhanced persistence of La Niña should not be inter-
preted as the effect of thermodynamic damping; rather it 
is caused by nonlinearities in dynamical feedbacks as pro-
posed by DD14. The nonlinearity of the delayed thermo-
cline feedback is caused by two processes. First, strong El 
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Niño events have much larger wind anomalies than La Niña 
events and therefore drive much larger discharge (Frauen 
and Dommenget 2010; Choi et al. 2013). The recharge, in 
contrast, is driven by the magnitude of the La Niña wind 
anomalies, which are proportionally weaker. The second 
process involves coupling between the thermocline and the 
mixed layer. DD14 propose that shoaling of the thermocline 
during the discharge has a much larger influence on SSTs 
because the thermocline can continuously shoal, effec-
tively entraining cold thermocline waters into the mixed 
layer. This effect is not limited—in fact becomes more pro-
nounced—as the thermocline becomes shallower (e.g. in 
response to strong El Niño events). In contrast, deepening 
of the thermocline decouples the thermocline waters from 
the mixed layer. In this case, strong recharge and associ-
ated positive thermocline depth anomalies become increas-
ingly ineffective at detraining cold waters from the mixed 
layer. This asymmetry appears to be more pronounced in 
the central Pacific where the climatological mixed layer is 
shallower than the thermocline.

We speculate that this nonlinearity could also lead to 
threshold behavior in the evolution of 2-year LN. This 
idea is motivated by the fact that the perfect model fore-
casts do not completely map onto the Z̄�−18

TC
Niño-3.40 space 

defined by the events of the control. A sizable fraction of 
La Niña events simulated in the control are preceded by 
weak discharge, last 1 year, and are followed by moderate 
and strong El Niño in the second year (Fig. 8a, gray dots 
over the region approximately defined by Z̄�−18

TC
 > −20  m 

and Niño-3.40 > 0.45 K). In contrast, none of the ensemble 
members initialized from weak discharge conditions lead to 
El Niño on the second year as seen in many events from the 
control. Instead, most of the perfect model forecasts predict 
La Niña conditions for a second year (17 out of 20) and a 
lesser fraction (3 out of 20) show neutral conditions in the 
second year (Fig. 8a, right blue dots). We cannot rule out 
that our ensemble size is insufficient to fully describe the 
range of events simulated in the control simulation. How-
ever, it is also possible that the forecasts undergo a bifurca-
tion depending on the magnitude of the discharge, result-
ing in forecasts with a more pronounced tendency to evolve 
into 2-year LN, as in our case, or forecasts with a tendency 
to evolve into neutral or El Niño. It is also possible that this 
threshold behavior is controlled by decadal variability, and 
our selected events coincided with periods more conducive 
to 2-year LN. Both hypotheses deserve further exploration 
since they could lead to additional sources of predictability.

The discharge-recharge asymmetry is reflected in the 
correlation between the magnitude of the discharge (Z̄�−18

TC
) 

and the value of the Niño-3.4 SST index (Niño-3.40) 18 
months later. La Niña events preceded by strong discharge 
must last 2  years in order for the recharge to drive SST 
anomalies back to neutral. Our analyses of the CESM1 

control and perfect model forecasts show that the initial 
conditions characterized by large-amplitude Z̄�−18

TC
 virtually 

always lead to a 2-year LN. The large PPU of these cases 
suggests that operational forecasts, which are generally less 
skillful due to initial condition uncertainty and model drift, 
could still provide reliable forecasts of 2-year La Niña. 
Conversely, our analysis of observational data indicates that 
the Z̄�−18

TC
 and Niño-3.4−24 predictors could be used to deter-

mine the return of La Niña. For instance, the La Niña fol-
lowing the 1997/98 El Niño is one of three observed events 
falling in the area of the Niño-3.4−24-Niño-3.40 space where 
CESM1 would have predicted a 2 year duration. The first 2 
years of this La Niña event could have been predicted using 
the correlation between the peak El Niño amplitude and 
the magnitude of the 2-year La Niña. Note, however, that 
other events, such as the 2010–2012 La Niña, lie in a statis-
tical regime where both the CESM1 control and the perfect 
model forecasts are less reliable. Last, the limited number 
of events with subsurface reanalysis data precludes a more 
robust assessment of this relationship in observations.

The evolution of the spread of the Niño-3.4 SST index 
suggest that the processes causing error growth are mod-
ulated by both the state of ENSO and the seasonal cycle. 
The forecasts initialized during the “discharge” phase show 
error growth during late boreal summer and fall, and no 
error growth during the rest of the calendar year. Similar 
behaviour has been reported in July-initialized forecasts 
of El Niño onset performed with CCSM4, a previous ver-
sion of our model (Larson and Kirtman 2015). Our correla-
tion analysis of the forecast spread shows that most of the 
forecast error is associated with (1) coupled instabilities in 
the equatorial Pacific and (2) trade wind variability associ-
ated with the South Pacific meridional mode. Our analysis 
shows that coupled instabilities are triggered by stochastic 
wind variability in boreal spring (March/April), influencing 
Niño-3.4 SSTs via Kelvin waves one or two seasons later 
(i.e. during boreal and fall summer). Variability in the trade 
winds is caused with winter-time atmospheric variability 
in the Southern Hemisphere, which is stronger during aus-
tral winter (boreal summer). This extratropical variability 
influences Niño-3.4 SSTs via mixed-layer processes tak-
ing about a season to have an impact on the central equa-
torial Pacific SSTs and thus on forecasts error. These two 
processes together could explain the large Niño-3.4 spread 
during boreal summer and fall. The subsequent plateau of 
forecast spread occurs because coupled instabilities subside 
during boreal fall when the equatorial Pacific is seasonally 
colder, and also during austral summer because atmos-
pheric variability in the SE Pacific is seasonally weaker.

The forecasts initialized at the peak of El Niño show the 
largest spread in the first 3 months, which then stabilizes 
at a lower level throughout the subsequent 2 years. This 
initial forecast error does not appear to impact the skill of 
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the 2-year LN predictions, which overall exhibit less spread 
than the “discharge” forecasts, particularly during the tar-
get forecast season (DJF of the second year). The decrease 
in spread after spring may be caused by the emergence of 
La Niña and the suppression of convective instability by 
negative SST anomalies. This suggests that the more pre-
dictable thermocline anomalies are able to “pull through” 
the predictability barrier, resulting in skillful forecasts. 
While exploring these seasonal and state dependencies of 
the error growth would require a much larger number of 
forecasts, our results suggest that the spring predictability 
barrier may be less influential when initializing at specific 
ENSO phases. This results agree with a recent study sug-
gesting that thermocline precursors during the onset of El 
Niño can also overcome predictability loss during boreal 
spring (Larson and Kirtman 2016).

We find two key processes causing error growth in the 
predictions of 2-year LN. The first one involves coupled 
instabilities within the equatorial Pacific. Our correlation 
analysis of the perfect model forecasts shows that these 
instabilities are initiated around April when stochastic wind 
variability over the western Pacific triggers ocean Kelvin 
waves. These waves reach the eastern equatorial Pacific two 
months later initiating the spread of SST anomalies. This 
result agrees with recent studies showing the importance of 
high frequency wind variability over the western equato-
rial Pacific in the evolution of El Niño events (McPhaden 
and Yu 1999; Thompson and Battisti 2001; Fedorov et al. 
2003; Chiodi and Harrison 2015; Larson and Kirtman 
2015). According to these studies, Kelvin waves triggered 
by westerly wind bursts over the western Pacific can influ-
ence SSTs over the eastern as seen in our La Niña fore-
casts. We find that April prior to peak 2-year La Nina is 
an important window for coupled instabilities to impact the 
final forecasts spread. This result agrees with the study of 
Larson and Kirtman (2016), which using a previous version 
of the model, showed that March is when stochastic zonal 
wind stress is more effective at initiating coupled instabili-
ties that have a lasting influence forecast error.

The second mechanism involves atmospheric variabil-
ity over the SE Pacific in agreement with previous obser-
vational studies suggesting that the Southern Oscillation 
could also be a trigger of ENSO events (van Loon and 
Shea 1985; Trenberth and Shea 1987). The spatial pattern 
and temporal evolution of these correlations are consist-
ent with the South Pacific Meridional Mode (Zhang et al. 
2014). According to this mechanism, trade wind variabil-
ity associated with the monthly and sub monthly cyclonic 
variability in the extra tropical SE Pacific can initiate SST 
anomalies in the SE Pacific which can then propagate west-
ward and equatorward through the wind–evaporation–SST 
(WES) feedback (Xie and Philander 1994). In our forecasts, 
this mechanism is initiated around July by mid-latitude 

atmospheric variability, which influences the spread of 
equatorial SSTs by August.

Both mechanisms appear to be active during the evo-
lution of 2-year LN, however with a less disruptive effect 
than during the onset of El Niño, because of the more pre-
dictable influence of the thermocline dynamics discuss in 
this study. Our statistical model derived from the control 
simulation suggest that both processes could play a compa-
rable role in altering the evolution of 2-year LN. The extent 
to which forecasts of 2-year LN events might be improved 
by considering these additional predictors is left for future 
work.

Our correlation analysis also reveals SLP and SST pat-
terns in the North Pacific reminiscent of the meridional 
mode and seasonal “foot printing” mechanisms (Chang 
et  al. 2007; Vimont et  al. 2001, 2003, 2009). However, it 
remains unclear whether these processes influence the evo-
lution of the forecasts. Off-equatorial wind variability asso-
ciated with these mechanisms could be initiating coupled 
instabilities leading to spread in the “discharge” forecasts. 
The “Peak El Niño” forecasts do not show evidence for this 
link. Moreover, our predictor analysis of the long control 
did not reveal statistically significant correlation between 
indices of north Pacific SST or SLP variability and 2-year 
LN. Further research is needed to elucidate whether these 
modes of variability play a key role on the evolution of 
La Niña forecasts or not. Similarly, SST variability in the 
Indian and tropical Atlantic show correlations with 2-year 
LN; however these predictors are also correlated with the 
peak magnitude of the preceding El Niño and thus do not 
provide additional independent information. Our experi-
ments with disabled IOD confirm that this mode does not 
play a role in the error growth, in agreement with a previ-
ous study showing that IO variability accelerates the transi-
tion from El Niño to La Niña, but does not play a role in the 
termination of La Niña (Ohba and Watanabe 2011).

5 � Conclusions

We assessed the predictability of the duration of La Niña 
using CESM1, a climate model that simulates realistic 
ENSO characteristics, including the multi-year duration of 
La Niña. CESM1 skillfully predicts the return of La Niña 
for a second year in forecasts initialized from ocean states 
characterized by a strong discharge of the equatorial ther-
mocline or by a strong El Niño. The high model skill, as 
measured by PPU, stems from larger ensemble-mean sig-
nals, particularly since the spread evolves independently of 
the magnitude of the initial conditions. Thus, initial con-
ditions with weaker anomalies lead to less skillful fore-
casts, mainly because the ensemble-mean signal becomes 
weaker and is more influenced by error growth. Our results 
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show that the predictability of La Niña duration is consist-
ent with a process governed by persistence of thermocline 
depth anomalies, wherein large thermocline depth anoma-
lies will decay over multiple years. The enhanced persis-
tence of La Niña should not be interpreted as the effect of 
thermodynamic damping; rather it is caused by nonlineari-
ties in dynamical feedbacks as proposed by DD14.

The high skill demonstrated by the CESM1 perfect-
model forecasts suggests that useful operational forecasts 
of the duration of La Niña in nature may be feasible. The 
magnitude of the thermocline discharge in the equatorial 
Pacific could be used as an observational diagnostic of the 
likelihood of a 2-year LN event. For instance, the La Niña 
following the 1997/98 El Niño is among very few observed 
events falling in the range of Z̄�−18

TC
 values where CESM1 

would have consistently predicted a 2 year duration. The 
first 2 years of this 3-year La Niña event could therefore 
have been predicted using the statistical relationship put 
forward in this study. Our results also suggest that the real-
ism of ENSO simulations could be critical for achieving 
these long-range predictions. Therefore improvements in 
the simulated characteristics of ENSO may lead to further 
improvements in predictability. Due to the disproportionate 
impact of La Niña on drought throughout the world, such 
further research could result in concrete and direct societal 
benefits.
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