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Abstract. Disentangling the effects of internal variability and anthropogenic forcing on regional climate trends
remains a key challenge with far-reaching implications. Due to its largely unpredictable nature on timescales
longer than a decade, internal climate variability limits the accuracy of climate model projections, introduces
challenges in attributing past climate changes, and complicates climate model evaluation. Here, we highlight
recent advances in climate modeling and physical understanding that have led to novel insights about these key
issues. In particular, we synthesize new findings from large-ensemble simulations with Earth system models,
observational large ensembles, and dynamical adjustment methodologies, with a focus on European climate.

1 Introduction

1.1 Internal variability and forced climate change

The climate system is highly variable in both space and time.
This variability originates from processes within the cou-
pled ocean–atmosphere–cryosphere–land–biosphere system
and from external influences such as solar and orbital cycles,
volcanic eruptions, and anthropogenic emissions of green-
house gases and sulfate aerosols. A primary source of inter-
nally generated variability is the atmospheric general circula-
tion, which produces familiar day-to-day and week-to-week
weather fluctuations. The non-linear nature of atmospheric
dynamics limits predictability to less than a few weeks; be-
yond this timescale, atmospheric motions may be considered
to be random stochastic processes, often termed “weather
noise” (e.g., Lorenz, 1963; Leith, 1973; James and James,
1992). It is important to note that such weather noise imparts
variability on a continuum of timescales, from sub-monthly
to decadal and longer (e.g., Madden, 1975; Deser et al., 2012;
Thompson et al., 2015).

Another important source of internally generated variabil-
ity is the coupling between the ocean and atmosphere. Large-
scale air–sea interactions give rise to distinctive patterns (or

“modes”) of variability on interannual and longer timescales,
including phenomena such as the El Niño–Southern Oscilla-
tion (ENSO; Wang et al., 2017), Pacific decadal variability
(PDV; Newman et al., 2016), and Atlantic multi-decadal vari-
ability (AMV; Zhang et al., 2019). Like the atmospheric gen-
eral circulation, these coupled modes are governed by non-
linear dynamical processes which limit their predictability.
For example, forecast skill is generally limited to 1–2 years
for ENSO (Jin et al., 2008; DiNezio et al., 2017; Wu et al.,
2021), 5 years for PDV (Teng and Branstator, 2011; Meehl et
al., 2016; Gordon and Barnes, 2022), and 10 years for AMV
(Griffies and Bryan, 1997; Trenary and DelSole, 2016; Yea-
ger et al., 2018). Beyond these predictability time horizons,
internally generated variability can be thought of as a roll
of the dice, introducing unavoidable uncertainty to climate
model projections, especially at local and regional scales
(e.g., Deser et al., 2012, 2014, 2020a).

Not only does the unpredictable internal variability cause
irreducible uncertainty in future climate projections, but it
also confounds interpretation of the historical climate record.
For example, internal variability may partially obscure the
regional climate response to external forcings including in-
dustrial greenhouse gas emissions, stratospheric ozone de-
pletion, and volcanic eruptions (Wallace et al., 2013; Schnei-
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der et al., 2015; Lehner et al., 2016; McGraw et al., 2016).
In some areas, climate trends driven by internal processes
may even outweigh those due to anthropogenic influences
over the past 30–60 years (Deser et al., 2012, 2016, 2017a;
Wallace et al., 2013; Swart et al., 2015; Lehner et al., 2017).
It is important to note that such internally generated multi-
decadal trends need not originate from slow processes within
the ocean or coupled ocean–atmosphere system; indeed, ran-
dom fluctuations in the atmospheric circulation independent
of oceanic influences have been shown to drive a large frac-
tion of long-term precipitation and temperature trends over
North America and Eurasia (Deser et al., 2012; McKinnon
and Deser, 2018). The co-existence of internal and anthro-
pogenic factors necessitates a probabilistic approach to de-
tection and attribution of the human contribution to extreme
weather events.

The prevalence of internal climate variability also com-
plicates model evaluation efforts, since the simulated tem-
poral sequence of (unpredictable) internal variability need
not match observations, even if the model’s physics are re-
alistic. Furthermore, the brevity of the instrumental record
provides only a limited sampling of internal variability, hin-
dering robust model evaluation. Thus, climate models may
show an apparent bias with respect to observations, but this
could be entirely attributable to sampling issues rather than
indicative of a true bias due to incorrect model physics. Ap-
parent model bias due to sampling uncertainty must be kept
in mind when assessing the fidelity of simulated modes of in-
ternal variability (e.g., Wittenberg, 2009; Deser et al., 2017;
Capotondi et al., 2020; Fasullo et al., 2020; McKenna and
Maycock, 2021), transient climate sensitivity (Dong et al.,
2020; Andrews et al., 2022), and signal-to-noise properties
of initial-value predictions and forced responses (e.g., Scaife
and Smith, 2018; Smith et al., 2020; Klavans et al., 2021). In
particular, even with 100 years of data, sampling uncertainty
is a limiting factor for evaluating ENSO properties in climate
models, including its global atmospheric teleconnections and
associated climate impacts (Deser et al., 2017, 2018; Capo-
tondi et al., 2020) and forced changes thereof (Stevenson et
al., 2012; Maher et al., 2018; O’Brien and Deser, 2023). This
issue is particularly acute for model assessment of modes
of decadal variability such as PDV and AMV due to the
paucity of samples in the short instrumental record (Deser
and Phillips, 2021; Fasullo et al., 2020).

1.2 Initial-condition large-ensemble simulations with
Earth system models

To overcome the issue of sampling uncertainty, a recent
thrust in climate modeling is to run a large number of simu-
lations (30–100) with the same coupled model and the same
radiative forcing protocol (historical and/or future scenario)
but vary the initial conditions. The initial-condition varia-
tion can be accomplished by introducing a random pertur-
bation to the atmosphere of the order of the model’s numer-

ical rounding-off error (e.g., 10−14 K in the case of atmo-
spheric temperatures; Kay et al., 2015), or it can be done
by selecting a different ocean state from a long control run
of the coupled model or a combination of the two (Deser et
al., 2020a; Rodgers et al., 2021). Regardless of the method
used, the initial-condition perturbation serves to create en-
semble spread once the memory of the initial state is lost,
typically within a month for the atmosphere and a few years
to a couple of decades for the ocean (Yeager et al., 2018).
The ensuing ensemble spread is thus solely attributable to
random internal variability (e.g., the butterfly effect in chaos
theory; see Lorenz, 1963, and Tél et al. 2020). Because the
temporal sequences of internal variability unfold differently
in the various ensemble members once the memory of the
initial conditions is lost, one can estimate the forced com-
ponent at each time step (at each location) by averaging the
members together, provided the ensemble size is sufficiently
large. The internal component in each ensemble member is
then obtained as a residual from the ensemble mean. Note
that a larger ensemble may be needed for some aspects of the
forced response than others, depending on the relative mag-
nitudes of the forced response and internal variability (Milin-
ski et al., 2020). For example, forced changes in ocean heat
content may be readily detected with just a few members
(Fasullo and Nerem, 2018), while forced changes in atmo-
spheric circulation (Deser et al., 2012) or precipitation and
temperature extremes (Tebaldi et al., 2021) may require 20–
30 members. Detecting forced changes in the characteristics
of internal variability itself, such as its amplitude, spatial pat-
tern, and remote teleconnections, may necessitate even larger
ensembles (Milinski et al., 2020; Bódai et al., 2020, 2022;
O’Brien and Deser, 2023).

Initial-condition large ensembles (LEs for short) have
proven to be enormously useful for separating internal vari-
ability and forced climate change on regional scales in mod-
els and for providing robust sampling of models’ internal
variability by pooling together all of the ensemble mem-
bers (e.g., Deser et al., 2012; Kay et al., 2015; Maher et al.,
2019; Deser et al., 2020a; Lehner et al., 2020). They have
also been used to assess externally forced changes in the
characteristics of simulated internal variability, including ex-
treme events for which large sample sizes are crucial (e.g.,
Tebaldi et al., 2021; O’Brien and Deser, 2023). Addition-
ally, they have served as methodological test beds for eval-
uating approaches to the detection and attribution of anthro-
pogenic climate change in the (single) observational record
(e.g., Deser et al., 2016; Barnes et al., 2019; Sippel et al.,
2019; Santer et al., 2019; Bonfils et al., 2020; Wills et al.,
2020). Until the advent of LEs, it was problematic to iden-
tify the sources of model differences in the Coupled Model
Intercomparison Project (CMIP) archives due to the limited
number of simulations (generally < 3) for each model (i.e.,
structural uncertainty was confounded with uncertainty due
to internal variability). This concern has been largely alle-
viated thanks to the recent availability of LEs with multiple
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Earth system models (e.g., Deser et al., 2020a; Lehner et al.,
2020).

1.3 Observationally based large ensemble

Just as in a model LE, the sequence of internal variability in
the real world could have unfolded differently. That is, the
observational record traces only one of many possible cli-
mate histories that could have happened under the same ex-
ternal radiative forcing. For example, El Niño and La Niña
events could have occurred in a different set of years, and
positive or negative regimes of PDV and AMV could have
taken place in different decades. This concept of alternate
chronologies, sometimes referred to as the theory of parallel
climate realizations (Tél et al., 2020) or the notion of contin-
gency (Gould, 1989), has major implications that call for a
reframing of perspective. For example, it means that a single
model simulation of the historical period need not match the
observed record, even if the model is “perfect” in its physi-
cal representation of the real world’s climate. However, the
statistical characteristics of the model’s internal variability
must agree with those of the real world, taking into account
sampling uncertainty (uncertainty due to limited sampling in
the short observational record). Thus, while a single ensem-
ble member need not match observations, the ensemble as
a whole should encompass the instrumental data, provided
there are enough members to adequately span the range of
possible sequences of internal variability (Suarez-Guttierez
et al., 2021).

Another implication of the concept of parallel climate re-
alizations is that the climate trends we have experienced are
not the only ones that could have occurred under the same
radiative forcing conditions. In analogy with a model LE, the
observational record is just one “member” of a larger set of
possible “members”, each with a different (and largely un-
predictable) chronology of internal variability. Although one
cannot replay the tape of history, one can construct an obser-
vational LE by generating alternate synthetic sequences of
internal variability from the instrumental data. Conceptually,
this involves removing an estimate of the forced component
from the data and then randomizing the residual (internal)
variability in time. Importantly, the randomization procedure
must be done in a way that preserves the statistical properties
of the observed variability including its variance, temporal
autocorrelation, and spatial patterns. The resulting synthetic
sequences of internal variability derived from the observa-
tional record can then be added back to the time-evolving
forced response obtained from a climate model LE.

The development of statistically based observational LEs
is just beginning, with recent efforts targeting surface cli-
mate fields (McKinnon et al., 2017; McKinnon and Deser,
2018, 2021) and carbon dioxide fluxes across the air–sea in-
terface (Olivarez et al., 2022). Here, we focus on the work
of McKinnon and Deser (2018, 2021), who constructed an
observational LE for global sea level pressure (SLP) and ter-

restrial precipitation and temperature based on ∼ 100 years
of monthly gridded instrumental data. To test the skill of
their method, they applied it independently to each member
of a climate model LE and then compared the results to the
“true” statistical properties of the model’s internal variability,
based on the full set of ensemble members. According to this
test, their approach was found to be accurate to within 10 %–
20 % at most locations. They then constructed a large (1000
member) ensemble of plausible parallel worlds of what the
observational record might have looked like had a different
sequence of internal variability unfolded by chance. Their
observational LE has been used for many applications, in-
cluding the evaluation of internal variability in climate model
LEs, assessment of uncertainty in observed 50-year climate
trends, and quantification of extreme precipitation risk over
the Upper Colorado River basin, a critical water resource for
the western U.S. (McKinnon and Deser, 2018, 2021).

1.4 Dynamical adjustment

Determining the forced contribution to observed changes in
climate remains an ongoing challenge. Most detection and at-
tribution methods rely on climate models to provide a set of
spatial and temporal “fingerprints” of forced climate change
that are distinct from patterns of internal variability (Hegerl
et al., 2007; Santer et al., 2019; Sippel et al., 2019). These
model-based fingerprints are then used to assess the propor-
tion of observed climate change that is due to external forc-
ing. However, model shortcomings may limit the accuracy
of such methods. Thus, it is also desirable to develop com-
plementary approaches to attribution that do not rely on cli-
mate model information. Two such methods, linear inverse
modeling (Newman, 2007) and low-frequency pattern anal-
ysis (Wills et al., 2020), leverage the assumption that forced
climate change evolves slowly compared to the timescales of
internal variability. However, decadal shifts in regional an-
thropogenic aerosol emissions (Deser et al., 2020b; Persad et
al., 2018), in addition to decadal changes in solar and vol-
canic activity and the rate of greenhouse gas rise, present
challenges to this assumption and may complicate interpre-
tation of the results.

A complementary, physically based approach to isolat-
ing the externally forced response in observations without
reliance on climate model information is the technique of
dynamical adjustment. This method aims to remove the in-
fluence of atmospheric circulation variability from observed
temperature and precipitation data, thereby revealing the
thermodynamically induced component of observed climate
change (Wallace et al., 2013; Smoliak et al., 2015; Deser et
al., 2016; Guo et al., 2019). According to the current genera-
tion of coupled climate models, the forced component of ex-
tratropical atmospheric circulation changes is small relative
to internal variability (Deser et al., 2012; Shepherd, 2014).
If models are correct in this regard, then dynamical adjust-
ment can be used to parse the relative contributions of in-
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ternal dynamics and forced thermodynamics to observed cli-
mate changes at middle and high latitudes (Wallace et al.,
2013; Deser et al., 2016). A variety of dynamical adjustment
algorithms has been developed and tested within the frame-
work of a model LE (Deser et al., 2016; Lehner et al., 2017,
2018; Smoliak et al., 2015; Guo et al., 2019; Merrifield et al.,
2017; Terray, 2021a; Sippel et al., 2019). These protocols are
all based on statistical associations between patterns of SLP
and temperature or precipitation deduced from long obser-
vational records. Generally, the data are high-pass filtered or
detrended so as to avoid aliasing any potential forced compo-
nent onto the statistical relationships. These procedures gen-
erally work best for large-amplitude SLP anomaly patterns
and are more effective for temperature than precipitation due
to higher levels of noise in the latter (Guo et al., 2019).

2 Data and methods

We make use of a state-of-the-art 100-member LE conducted
with the National Center for Atmospheric Research (NCAR)
Community Earth System Model version 2 (CESM2), de-
scribed in Rodgers et al. (2021). This publicly available LE
resource is unprecedented for its combination of large en-
semble size, high spatial resolution (approximately 1◦ in
both latitude and longitude), and length of simulation (1850–
2100). Each ensemble member is driven by the same radia-
tive forcing scenario (historical from 1850–2014 and SSP3–
7.0 from 2015–2100) but begins from a different state on
1 January 1850, which is taken from a long preindustrial con-
trol simulation. We analyze linear trends in air temperature,
precipitation, and sea level pressure over the past 50 years
(1972–2021) and projected for the next 50 years (2022–
2071). It should be noted that memory of the initial state is
negligible by the middle of the 20th century for the quantities
we analyze; thus, diversity in trends amongst the individual
ensemble members is solely due to different random samples
of internal variability, which are superimposed upon a com-
mon forced response.

For consistency with the 100-member CESM2 LE, we
make use of the first 100 members of the observational LE
(OBS LE) constructed by McKinnon and Deser (2018) to il-
lustrate the diversity of past 50-year trends consistent with
the statistical spatiotemporal properties of internal variabil-
ity in the observational record. For the purpose of comparing
directly to the CESM2 LE, we have added the model’s forced
trend to the internal trend of each OBS LE member. The
OBS LE is based on the Berkeley Earth Surface Temperature
(BEST) dataset (Rohde et al., 2013), the Global Precipitation
Climatology Centre (GPCC) dataset (Schneider et al., 2014),
and the Twentieth Century Reanalysis version 2c (20CR) sea
level pressure (SLP) dataset (Compo et al., 2011).

We apply the dynamical adjustment methodology of Deser
et al. (2016), based on SLP-constructed circulation ana-
logues, to monthly temperature and precipitation during

1900–2021, using the same observational datasets as in the
OBS LE. The reader is referred to Deser et al. (2016), for de-
tails of the methodology, and to Lehner et al. (2017, 2018),
Guo et al. (2019), and Terray (2021a), for additional applica-
tions.

For each ensemble member of the CESM2 and OBS LEs,
we form monthly anomalies by subtracting the long-term
means for each month individually and then form seasonal
averages (December–February) of the monthly anomalies.
We compute 50-year trends of the wintertime anomalies us-
ing linear least-squares regression analysis. All results shown
in this study are original findings.

3 European climate trends

We begin by illustrating the diversity of winter temperature
and precipitation trends over Europe during the past 50 years
(1972–2021) in the CESM2 and OBS LEs (Sect. 3.1 and
3.2) and projected for the next 50 years (2022–2071) in the
CESM2 LE (Sect. 3.3). We then provide a more quantitative
view of the relative contributions of forced climate change
and internal variability to past and future climate trends us-
ing a variety of signal-to-noise metrics, with comparison be-
tween the CESM2 and OBS LEs (Sect. 3.4). We summarize
the CESM2 LE results by showing the expected range of
trend outcomes in Sect. 3.5. Finally, we apply the technique
of dynamical adjustment to estimate the forced component
of observed temperature trends (Sect. 3.6) and then use this
estimate in conjunction with the OBS LE to produce a purely
observational estimate of the plausible range of temperature
trend outcomes over the past 60 years (Sect. 3.7).

3.1 Past trends (1972–2021) in the CESM2 LE

The CESM2 model simulates a wide range of wintertime
temperature trend patterns for the past 50 years due to the
combined effects of internal variability and forced response,
as illustrated by the first 28 members of the LE (Fig. 1). Re-
call that the only reason that these trend maps are not iden-
tical is because of random differences in internal variabil-
ity between the members. While moderate warming is seen
over most of the European continent in the majority of cases,
as expected, some members show regions of considerably
greater temperature increase (in excess of 1 ◦C per decade;
for example, members 1, 10, and 18), while others exhibit
weak cooling in some locations (for example, members 17,
23, and 26; Fig. 1). The relative contributions of internal
variability and forced response can be readily discerned by
comparing the individual member trends with the ensemble-
mean trend (see EM panel in Fig. 1). The observed trend (see
OBS panel in Fig. 1) bears a close resemblance to the model’s
forced trend in both amplitude and spatial pattern. This cor-
respondence may be coincidental, as individual members of
the CESM2 LE also resemble the forced response (for ex-
ample, members 6 and 21), or it may suggest that the model
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Figure 1. Winter air temperature trends (◦C per decade) for the period 1972–2021, as simulated by the first 28 members of the CESM2 large
ensemble (number in the lower left of each panel denotes the ensemble member) and the 100-member ensemble mean (panel labeled EM).
Observed trends are shown in the lower right (panel labeled OBS).

overestimates the amplitude of internally generated 50-year
trends relative to forced trends. The OBS LE results shown
below will shed some light on these two possibilities.

Like temperature, precipitation trends also vary consider-
ably across ensemble members (Fig. 2). While the ensemble-
mean trend shows modest increases in precipitation through-
out Europe (except for the southernmost fringes), internal
variability can evidently overwhelm the forced response in

individual simulations. For example, some members show
drying over large parts of the continent, while others depict
enhanced wetting in the same regions (compare, for exam-
ple, members 22 and 28, which show nearly opposite pat-
terns). Observed precipitation trends are generally positive,
except over Spain, Portugal, southern France, and other parts
of the western Mediterranean (Fig. 2). The observed precipi-
tation increases, while of the same sign as the model’s forced
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Figure 2. As in Fig. 1 but for precipitation (mm d−1 per decade).

response, are approximately twice as large in many areas.
Again, the interpretation of the observed trends is ambigu-
ous, since there are individual members that resemble obser-
vations (for example, member 1).

3.2 Past trends (1972–2021) in the OBS LE

The individual members of the OBS LE show a qualita-
tively similar diversity in the 50-year temperature trends as
the CESM2 LE (Fig. 3). Like CESM2, some members show
weak cooling in some areas, while others show widespread

moderate or strong warming. This suggests that the resem-
blance between the observed trend and the model’s forced
response may be purely coincidental. Precipitation trends
in the OBS LE also display large contrasts between mem-
bers, similar to CESM2 (Fig. 4). For example, nearly oppo-
site patterns are found between members 6 and 11 (or 8 and
9). Trend amplitudes also vary considerably across the OBS
LE, with larger magnitudes in some members (for example,
members 3 and 20) compared to others (e.g., members 21
and 13). While no single member of the 28 OBS LE samples
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Figure 3. As in Fig. 1 but for the observational large ensemble of McKinnon and Deser (2018), with the ensemble mean from the 100-
member CESM2 large ensemble. See text for details.

shown matches the model’s forced trend, member 21, with
its relatively muted trends, comes close.

3.3 Future trends (2022–2071) in the CESM2 LE

As expected, temperature trends projected for the next
50 years show larger amplitudes than those for the past
50 years in the CESM2 LE (Fig. 5). This is due to the fact
that the forced (ensemble-mean) component of warming in-
creases as greenhouse gas emissions accelerate. In most re-

gions, the forced warming trend increases by approximately
0.2 ◦C per decade in the future compared to the past. No-
table exceptions are Iceland and the British Isles, which show
less warming in the future due to a circulation-induced forced
cooling trend (see Sect. 3.5). Despite a larger forced compo-
nent, temperature trends projected for the next 50 years still
show a wide range of amplitudes across individual members
of the CESM2 LE. For example, member 13 is striking for its
muted warming (generally < 0.5 ◦C per decade) across Eu-
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Figure 4. As in Fig. 2 but for the observational large ensemble of McKinnon and Deser (2018), with the ensemble mean from the 100-
member CESM2 large ensemble. See text for details.

rope (and absolute cooling over the UK and Iceland), while
member 28 shows highly amplified warming, with values ex-
ceeding 1.3 ◦C per decade over western Russia.

Forced trends in precipitation are projected to amplify over
the next 50 years, with greater wetting over northern Eu-
rope and drying over southern Europe and the Mediterranean
(Fig. 6). In addition, the region with a forced drying trend
is projected to expand northward into Spain, Italy, and the
Balkans. While the forced pattern of future drying in the

south and wetting in the north is generally evident in most of
the simulations shown, there are notable differences in am-
plitude across the members. For example, member 28 shows
precipitation trends in excess of 0.1 mm d−1 per decade over
most of northern Europe, while member 11 shows positive
precipitation trends of less than half of this amount. Mem-
bers 27 and 28 illustrate that the midsection of the Euro-
pean continent may become wetter or drier, depending on the
unpredictable sequence of internal variability that unfolds.
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Figure 5. As in Fig. 1 but for the period 2022–2071.

Thus, internal variability can still make a sizable contribution
to the projected patterns and amplitudes of winter precipita-
tion trends over the next 50 years.

3.4 Signal-to-noise metrics and model evaluation

In the previous section, we conveyed a qualitative impression
of the possible range of 50-year trends due to the superposi-
tion of internal variability and forced climate change in the
CESM2 and OBS LEs. Here, we provide a more quantitative
view, beginning with a comparison of the standard deviation

(σ ) of trends over the period 1972–2021 computed across
the ensemble members of each LE. In the CESM2 LE, the
ensemble σ of temperature trends increases from southwest
to northeast, with minimum values (0.05–0.10 K per decade)
over Spain and northern Africa and maximum values (0.30–
0.35 0.5 ◦C per decade) over northwestern Russia (Fig. 7a). A
similar pattern is found in OBS LE, with some regional dif-
ferences in amplitude (Fig. 7b). In particular, the ensemble
σ values are significantly smaller (20 %–40 %) over Scandi-
navia, Germany, and Poland and significantly larger (20 %–
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Figure 6. As in Fig. 2 but for the period 2022–2071.

40 %) in areas near the Mediterranean and Black seas in the
OBS LE compared to the CESM2 LE (Fig. 7c). For precipi-
tation trends, the two LEs show similar patterns of ensemble
σ , with largest amplitudes generally along the west coasts
(0.10–0.25 mm d−1 per decade) and over southwestern Eu-
rope (values 0.05–0.10 mm d−1 per decade; Fig. 7d and e).
However, CESM2 LE significantly underestimates the OBS
LE by more than 40 % along the Mediterranean and Black
seas and parts of Russia and significantly overestimates the

OBS LE by 20 %–40 % in many areas of western Europe
(Fig. 7f).

Next, we assess the relative magnitude of the forced and
internal components of trends by computing a signal-to-noise
ratio defined as the CESM2 ensemble-mean trend divided
by the σ of trends across the 100 members of each LE.
This signal-to-noise ratio provides a metric of the likelihood
that the ensemble-mean (e.g., forced) trend might be over-
whelmed by the internally generated trend in any given en-
semble member (and, by extension, the real world). Assum-
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Figure 7. Standard deviation of 50-year trends (1972–2021) across 100 members of the CESM2 large ensemble (a, d) and 100 members
of the observational large ensemble (b, e), and their difference (c, f) for winter air temperature (a–c; ◦C per decade) and precipitation (d–f;
mm d−1 per decade). Stippling in panels (c) and (f) indicates that the differences are statistically significant at the 95 % confidence level
according to an f test.

ing that the 100-member set of 50-year trends follows a nor-
mal distribution (not shown; see related results in Deser et al.,
2012; Thompson et al., 2015; Deser et al., 2020a), a signal-
to-noise ratio greater than one (two) indicates that the magni-
tude of the ensemble-mean (forced) trend is larger than (more
than twice as large as) that of a typical (e.g., 1 standard de-
viation) internal trend, and a signal-to-noise ratio less than
one indicates that the amplitude of a typical internal trend
exceeds the magnitude of the forced trend. In the CESM2
LE, the signal-to-noise ratio of forced temperature trends
over the past 50 years generally ranges from 1.5–2 over cen-
tral and northern Europe and from 2–3 over southern Europe
(Fig. 8a). Forced precipitation trends over the past 50 years
exhibit much lower signal-to-noise ratios than temperature,
with values generally < 1 and nearly always < 1.5 (Fig. 8d).

How much do model biases in the ensemble σ shown
previously affect the signal-to-noise of the model’s forced
trends? We address this question by using the OBS LE σ

values in place of the model’s σ values in the signal-to-noise
calculation (note that the signal in the two LEs is identi-
cal by construction). This substitution results in an enhance-
ment of the signal-to-noise ratio of past forced temperature
trends over southern Europe and a reduction in the signal-to-
noise ratio over Scandinavia, Germany, and Poland, with a
net increase from 38 % to 60 % in the area with values > 2

(Fig. 8b). The impact of model biases in the ensemble trend σ
is much less pronounced for precipitation than temperature,
with signal-to-noise values in all locations remaining below
2 (Fig. 8e).

As expected, signal-to-noise values are higher for forced
trends in the future than in the past. A total of 97 % of the area
of the continent (excluding Iceland and Greenland) shows a
signal-to-noise value > 2 for forced temperature trends dur-
ing 2022–2071 (Fig. 8c), compared with 38 % for trends dur-
ing 1972–2021. Forced precipitation trends in the future re-
main uncertain, with only 2 % of the land area showing a
signal-to-noise value > 2 (Fig. 8f).

Another way to view the relative impacts of internal vari-
ability and external forcing on trends is by computing the
fraction of ensemble members at each location that shows a
positive trend (e.g., warming or wetting). This metric con-
veys the likelihood of having a positive (or negative) trend in
any single ensemble member, which is analogous to the sin-
gle realization of the real world. At nearly all locations, more
than 95 % of ensemble members in the CESM2 LE show
warming in both the past and future periods, with slightly
lower percentages (85 %–95 %) over western Scandinavia
and parts of Great Britain (and < 75 % over Ireland, Scot-
land, and Iceland in the future; Fig. 9a and c). Similar per-
centages are obtained when the internal component of past

https://doi.org/10.5194/npg-30-63-2023 Nonlin. Processes Geophys., 30, 63–84, 2023



74 C. Deser and A. S. Phillips: Effects of internal variability and anthropogenic forcing on European climate

Figure 8. Signal-to-noise ratio of forced trends in winter (a–c) air temperature and (d–f) precipitation based on the 100-member CESM2
large ensemble during 1972–2021 (a, d), the observational large ensemble during 1972–2021 (b, e), and the CESM2 large ensemble during
2022–2071 (c, f). See text for details.

temperature trends in the OBS LE is used in place of the
model’s internal trends, with some reduction (75 %–95 %)
over Scandinavia, northern Russia, Germany, and Poland
(Fig. 9b).

The sign of the trend in any given ensemble member is
more uncertain for precipitation than for temperature. The
highest chances (> 85 %) of a positive precipitation trend are
found over the northernmost third of the continent, excluding
Norway, both in the past and future (Fig. 9d and f). Similarly
high chances of a negative precipitation trend (equivalent to
< 15 % of a positive trend) occur in areas near the Mediter-
ranean Sea but only in the future. The central portion of the
continent shows roughly equal chances of having a positive
or negative trend, both in the past and future. The area with
a > 85 % chance of a positive precipitation trend in the past
50 years expands southward into northern France, Germany,
and areas bordering the Baltic Sea when internal variability
is derived from the OBS LE compared to the CESM2 LE
(Fig. 9e).

Taken together, the results shown in Fig. 9 indicate that
warming is virtually guaranteed at nearly all locations, both
in the past 50 years and the next 50 years, according to the
CESM2 LE. However, the sign of the precipitation trend
(past and future) is robust only over the northern tier of the
continent and only in the future over the Mediterranean re-
gion. The model results for past trends are found to be gen-

erally credible, as measured against the OBS LE, with some
overestimation in north–central Europe.

3.5 Range of outcomes and the role of the atmospheric
circulation

As the saying goes, “climate is what we expect; weather
is what we get”. This adage is also applicable to cli-
mate change, where “human-induced climate change is what
we expect; internal variability plus human-induced climate
change is what we get” (Deser, 2020). Here, we illustrate
“what we expect” and the range of “what we get” for past
and future 50-year trends in the CESM2 LE, using the en-
semble mean for what we expect and two contrasting ensem-
ble members for the range of what we get. We select the con-
trasting members from the bottom and top 5th percentiles of
the distribution of 100-member trends averaged over the Eu-
ropean continent for each period separately. This selection
criterion is somewhat arbitrary and neither necessarily cap-
tures the wide range of trend amplitudes that may occur at
a single location or sub-region, nor does it portray the full
range of spatial patterns that occur within the ensemble.

There is a large range in temperature trend outcomes (what
we get) for both the past 50 years and the next 50 years,
as depicted by the warm and cool end-members (Fig. 10).
For past trends, the warm end-member shows temperature
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Figure 9. The percentage of ensemble members with a positive trend in winter (a–c) air temperature and (d–f) precipitation trends based on
(a, d) the 100-member CESM2 large ensemble during 1972–2021, (b, e) the 100-member observational large ensemble during 1972–2021,
and (c, f) the 100-member CESM2 large ensemble during 2022–2071.

increases of 0.9–1.1 ◦C per decade over the eastern portion
of the continent (Fig. 10b), while the cool end-member dis-
plays muted warming (< 0.3 ◦C per decade) and even slight
cooling through the midsection of the continent (Fig. 10d).
Clearly, the forced trend (what we expect), which depicts
moderate warming (0.2–0.6 ◦C per decade) across the con-
tinent does not tell the whole story (Fig. 10c). Analogous
results are found for trends projected over the next 50 years;
the warm member shows temperature increases of 1.0–1.5 ◦C
per decade over west–central Russia (Fig. 10f), while the
cool member depicts< 0.2 ◦C per decade warming over most
of the continent (Fig. 10h), which is in marked contrast to
the forced trend which ranges from 0.3–0.6 ◦C per decade
(Fig. 10g). As discussed previously, the observed tempera-
ture trend map resembles the model’s ensemble mean, but
this could be by chance (Fig. 10a). In terms of European
averages, the observed trend (0.36 ◦C per decade) is nearly
coincident with the median value of the model’s trend dis-
tribution, which has a 5th–95th percentile range of 0.13–
0.60 ◦C per decade for past 50 years of trends (Fig. 10e).
Curiously, the model’s median trend value for Europe as a
whole increases only slightly in the future compared to the
past, while the 5th–95th and 25th–75th percentile ranges nar-
row (Fig. 10e). Further work is needed to understand why
this is the case.

As mentioned in Sect. 1.4, previous work has shown that
internal variability in the large-scale atmospheric circulation
causes much of the member-to-member differences in tem-
perature trends in model LEs. Here, we provide a qualitative
indication of the circulation influence by superimposing SLP
trends upon the maps in Fig. 10. In the case of past trends,
the warm member shows a positive North Atlantic Oscilla-
tion (NAO)-like pattern (Hurrell et al., 2003), with negative
SLP trends centered near Iceland and positive SLP trends
centered over the Mediterranean (Fig. 10b). This SLP pattern
is indicative of stronger westerly/southwesterly flow, which
brings relatively warm maritime air over the continent. The
cool member shows a largely opposite flow configuration (al-
beit with longitudinal shifts in the SLP centers of action),
which advects relatively cold air from the east over the con-
tinent (Fig. 10d). In comparison, the forced response shows
negligible atmospheric circulation change (Fig. 10c). Strik-
ing contrasts in circulation are also found for the future pe-
riod, with a large positive NAO-like trend pattern in the warm
member and a blocking continental high in the cool member
(Fig. 10f and h). Future trends in SLP also contain a modest
forced component indicative of enhanced westerlies over the
continent (Fig. 10g).

The wet and dry end-members also show striking regional
contrasts in both precipitation and circulation (Fig. 11). For
example, for past trends, the wet member shows precipita-
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Figure 10. A range of outcomes. Trends in winter air temperature (color shading; ◦C per decade) and sea level pressure (SLP) (contours;
contour interval of 0.25 hPa per decade; negative values dashed) for the period (a–d) 1972–2021 and (e–h) 2022–2071. Panel (a) shows
observed trends (1972–2021), and remaining panels show simulated trends from the 100-member CESM2 large ensemble. (c, g) Ensemble
mean. (b, f) Warm end-member. (d, h) Cool end-member. See text for details. Note that panels (a) and (c) are identical to the OBS and EM
panels in Fig. 1, respectively. (e) Distribution of European-averaged trends for 1972–2021 (blue) and 2022–2071 (green) from the CESM2
large ensemble (the box outlines 25th–75th percentile range, whiskers mark the 5th–95th percentile range, the horizontal white line denotes
the median value, and the black circle marks the observed value).

Figure 11. As in Fig. 10 but for precipitation (mm d−1 per decade). Note that panels (a) and (c) are identical to the OBS and EM panels in
Fig. 2, respectively.
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tion increases of 0.2–0.3 mm d−1 per decade over France,
southern Germany, Portugal, and the UK and precipitation
declines over northern Norway and along the Mediterranean
Sea (Fig. 11b). A nearly opposite pattern is found for the dry
member (Fig. 11d). These contrasting precipitation trends
can be understood in the context of the overlying atmo-
spheric circulation changes, with wetter areas coinciding
with anomalous westerly/southwesterly flow and drier ar-
eas located under blocking anticyclones. Analogous patterns
are found for future trends, with pronounced increases in
precipitation over western Europe associated with the low-
pressure trend centered over the British Isles in the wet mem-
ber (Fig. 11f) and generally reduced precipitation in the dry
member associated with the blocking high centered over
southern Europe (Fig. 11h).

3.6 Unmasking forced climate change in observations
via dynamical adjustment

The empirical method of dynamical adjustment introduced
in Sect. 1.4 can be used to estimate the circulation-induced
component of observed temperature anomalies; this dynam-
ically induced contribution can then be subtracted from the
original anomaly to obtain the thermodynamically induced
component as a residual. Since this method uses no infor-
mation from climate models, it provides an independent esti-
mate of the thermodynamic component of observed tempera-
ture trends, which can be compared with the forced response
simulated by climate model LEs.

Figure 12 shows the decomposition of observed
December–February (DJF) temperature trends into their
dynamical and residual thermodynamic contributions. For
this example, we have used the 60-year period 1962–2021,
when observed SLP trends are more than twice as large as
those during 1972–2021 on a per-decade basis (compare
SLP contours in Figs. 10a and 12a). Observed SLP trends
during the past 60 years show a pronounced positive NAO-
like pattern, with maximum negative values of −1.25 hPa
per decade near Iceland and maximum positive values of
+0.75 hPa per decade west of Spain (Fig. 12a). Enhanced
westerly/southwesterly flow associated with this pattern
advects warm air, raising surface temperatures by 0.1–0.3 ◦C
per decade (with maximum warming over northern Europe),
according to the dynamical adjustment algorithm (Fig. 12b).
Removing this dynamically induced component from the
total trend reveals the residual thermodynamic contribution
to the observed warming trend (Fig. 12c). This observed
thermodynamic trend is much closer in amplitude (and
arguably pattern) to the model’s forced response, as given by
the CESM2 LE ensemble-mean trend (Fig. 12d), than is the
total observed trend. Furthermore, the lack of an appreciable
forced SLP trend in CESM2 indicates that the model’s
forced temperature trend is thermodynamically driven. The
level of agreement between the observed thermodynamic
temperature trend and the model’s forced thermodynamic

trend leads to the following two powerful conclusions:
(1) The model’s forced temperature trend is realistic, and
(2) removing the circulation-induced component from the
observed trends can effectively reveal the influence of
anthropogenic forcing. Analogous results have been found
for North America (Deser et al., 2016).

Precipitation is an inherently noisier field than tempera-
ture in both time and space, making it challenging to extract
the forced signal via dynamical adjustment; indeed, only one
previous study has attempted a dynamical adjustment of ob-
served precipitation trends (Guo et al., 2019). Keeping in
mind that the estimate of the circulation-induced component
of precipitation trends may be less robust than for tempera-
ture, we present the results as a proof of concept. Observed
precipitation trends during 1962–2021 are mainly driven by
changes in atmospheric circulation, with a small thermo-
dynamic residual component (Fig. 13). This residual com-
ponent bears some resemblance to the forced response in
CESM2, particularly in terms of amplitude (∼ 0.05 mm d−1

per decade; Fig. 13d). Notable areas of agreement in the sign
of the trends include drying over much of southern Europe
and wetting over parts of northern Europe; central Europe
shows less agreement in polarity. This is unsurprising, since
this region was found to have a lower signal-to-noise ratio
than other areas.

3.7 Toward an observationally based range of outcomes

We conclude by bringing together the results of the observa-
tional LE and dynamical adjustment to produce a fully ob-
servationally based estimate of the range of the past 60 years
of trends in temperature and precipitation. To the best of our
knowledge, this is first time that these two approaches have
been combined. Specifically, we add the internal component
of trends from each member of the OBS LE to the thermo-
dynamic residual trend (the estimate of the observed forced
response) obtained from dynamical adjustment. As before,
we select two contrasting ensemble members from the tails
of the distribution based on Europe-wide averages to illus-
trate the range of trend outcomes. The warm end-member
shows pronounced temperature increases over the northern
two-thirds of the continent, with maximum values in excess
of 0.9 ◦C per decade, while the cool end-member warms less
than 0.2 ◦C per decade in most areas and even cools slightly
over Ukraine and neighboring countries (Fig. 14b and d, re-
spectively). These divergent temperature trends are associ-
ated with contrasting SLP trends, with a positive, NAO-like
pattern in the warm member and a negative (and eastward-
shifted) NAO pattern in the cool member (Fig. 14b and d).
Qualitatively, this range of trend outcomes for both tem-
perature and SLP is remarkably similar to that obtained di-
rectly from the CESM2 LE, with some regional differences
in the location of cooling in the cool end-member (Fig. 14e
and g). There is no guarantee that the patterns and ampli-
tudes of trends sampled in our selected end-members will
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Figure 12. Decomposition of (a) observed winter air temperature trends (1962–2021; ◦C per decade) into (b) dynamical and (c) residual
thermodynamic contributions, using the dynamical adjustment procedure of Deser et al. (2018), based on constructed circulation analogues
(see text for details). Contours in panel (a) show observed sea level pressure (SLP) trends (contour interval of 0.25 hPa per decade; negative
values dashed), contours in panel (b) show the observed SLP trends estimated from the constructed circulation analogues, and contours in
panel (c), based on the difference between panels (a) and (b), are near zero and not shown. Panel (d) shows the ensemble-mean temperature
and SLP trends from the 100-member CESM2 large ensemble (note that only the zero contour shows up in panel d).

Figure 13. As in Fig. 12 but for precipitation (mm d−1 per decade).

agree between the model and observationally based results,
since there are many configurations that produce extremes
in Europe-wide averages (not shown). That there is a strong
qualitative resemblance between them is a testament to both
the realism of the model’s forced response and internal vari-
ability and the efficacy of the OBS LE and dynamical adjust-
ment approaches.

Precipitation trends in the wet and dry end-members are
also similar between the model and observationally based
results (Fig. 15). The wet members show widespread in-
creases in precipitation over southern and central Europe
(maximum values of 0.2–0.4 mm d−1 per decade) and dry-
ing over the northern UK and parts of Scandinavia (Fig. 15b
and e). Largely opposite patterns prevail in the dry members
(Fig. 15d and g). The contrasting precipitation trends in the
wet and dry end-members are associated with opposite flow
configurations, with regions of drying corresponding to high
pressure, and vice versa.

4 Summary and open questions

Disentangling the effects of internal variability and anthro-
pogenic forcing on regional climate trends remains a long-
standing issue in climate sciences. Recent advances in cli-
mate modeling and physical understanding have led to new
insights about this topic and provided an improved source
of information on the future risks of weather extremes asso-
ciated with human-induced climate change. Here, we have
highlighted new findings for European winter climate based
on the following complementary tools: Earth system model
large-ensemble simulations, an observationally based large
ensemble, and an empirical approach for removing the in-
fluence of atmospheric circulation variability from observed
temperature and precipitation data, which is termed dynami-
cal adjustment.

The new 100-member CESM2 large ensemble shows that
internal climate variability imparts considerable uncertainty
to past and future 50-year trends in winter temperature and
precipitation over Europe. Such uncertainty is irreducible
due to the lack of predictability of the simulated internal vari-
ability on decadal timescales. A novel synthetic large ensem-
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Figure 14. As in Fig. 10 but for the period 1962–2021. The top row (a–d) is based on the observational large ensemble combined with the
residual thermodynamic component of observed trends. The bottom row (e–g) is based on the 100-member CESM2 large ensemble. See text
for details.

Figure 15. As in Fig. 14 but for precipitation (mm d−1 per decade).
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ble constructed from the statistical characteristics of internal
variability in the observational record exhibits quantitatively
similar levels of uncertainty in the past 50 years of trends as
the CESM2 LE, reinforcing the credibility of the model’s in-
ternally generated trends. Additionally, the results of our dy-
namical adjustment procedure applied to observations shows
good agreement between the observed thermodynamic resid-
ual trend component and the model’s forced thermodynamic
trend, further underscoring the realism of CESM2. Finally,
we have combined internal variability in trends from an ob-
servational large ensemble with an observational estimate
of the forced trend (the thermodynamic residual component
obtained from dynamical adjustment) to show what the ob-
served range of past trends in European temperature and pre-
cipitation could have been. Because it does not rely on cli-
mate model information, this observationally based range of
trend outcomes provides a powerful test for the range of sim-
ulated trends in a model large ensemble. To the best of our
knowledge, this is the first time that such a synthesis of the
two purely observational methods has been undertaken.

Many outstanding questions remain regarding the relative
influences of internal climate variability and anthropogenic
forcing on regional climate change in models and the real
world. Fortunately, promising new tools are being developed
to help address these challenges. For example, innovative
machine learning methods may be able to improve upon ex-
isting techniques for constructing observational large ensem-
bles. Such methods have shown good results as statistical
emulators of model-based LEs, but their application to the
observational record remains to be pursued (Beusch et al.,
2020). Similarly, neural network approaches to dynamical
adjustment may offer increased skill compared to conven-
tional methods (Davenport and Diffenbaugh, 2021) but have
yet to be applied with the aim of separating forced and inter-
nal components of observed trends. Complementary physi-
cally based approaches such as linear inverse modeling and
low-frequency pattern analysis, mentioned in Sect. 1.4, also
offer promise for estimating the forced response in observa-
tions without reliance on climate models and should be pur-
sued more widely.

We have relied on the fact that the CESM2 LE (like other
models of its class; see Deser et al., 2020a, and references
therein) simulates a negligible forced atmospheric circula-
tion trend over the past 50–60 years to interpret our observed
dynamical adjustment results (i.e., we have equated the ob-
served dynamically induced trend with the internal compo-
nent, and the observed thermodynamic residual trend with
the forced component). If the model is erroneous in this re-
gard, then our interpretation of our decomposition of ob-
served trends into internal dynamical and forced thermody-
namic components is flawed. Indeed, recent work suggests
that climate models may be less predictable on seasonal-to-
decadal timescales than the real world, particularly in terms
of the large-scale extratropical atmospheric circulation (the
so-called signal-to-noise paradox; e.g., Scaife et al., 2014;

Eade et al., 2014; Scaife and Smith, 2018). But whether
the results from such initial-value predictability studies carry
over to the models’ forced atmospheric circulation responses
to anthropogenic emissions remains an open question. Fi-
nally, a recent study by Strommen et al. (2022) finds that
the inclusion of stochastic parameterizations amplifies the
simulated atmospheric circulation response to sea surface
temperature and Arctic sea ice anomalies. Such stochas-
tic parameterizations may represent unresolved air–sea cou-
pling processes in coarse-resolution climate models such
as CESM2. Emerging efforts to develop mesoscale–eddy-
resolving global coupled climate models may provide more
definitive answers to this elusive challenge in the near future.
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