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ABSTRACT

The role of sampling variability in ENSO composites of winter surface air temperature and precipitation

over North America during the period 1920–2013 is assessed for observations and ensembles of coupled

model simulations in which sea surface temperature anomalies in the tropical eastern Pacific are nudged to

those of the real world. The individual members of each model ensemble show a surprising amount of di-

versity in their ENSO composites, despite being constructed from the same observed set of 18 El Niño and 14

La Niña events. For a given model, this ensemble spread can only be due to sampling variability, that is,

aliasing of internal variability that is unrelated to ENSO, which in turn is shown to arise from internal at-

mospheric dynamics rather than coupled ocean–atmosphere processes. Analogous ensemble spread is evident

in 2000 synthetic ENSO composites based on observations using random sampling techniques. These syn-

thetic composites provide information on the range of spatial patterns and amplitudes associated with im-

perfect estimation of the forced ENSO signal in the observational record. In some locations, the amplitude of

the estimated ENSO signal can vary by more than a factor of two. This observational uncertainty necessitates

an approach to model assessment that considers not only the model’s forced response to ENSO, given by its

ensemble-mean ENSO composite, but also its representation of internal variability unrelated to ENSO. Such

an approach is used to reveal fidelities and shortcomings in the Community Earth System Model, version 1.

1. Introduction

The largest known source of seasonal climate forecast

skill over North America is El Niño – Southern Oscil-

lation (ENSO), the leading mode of interannual vari-

ability of the tropical ocean–atmosphere system (Shukla

et al. 2000; Tippett et al. 2012; L’Heureux et al. 2015).

ENSO affects North American climate through changes

in the large-scale atmospheric circulation driven by

anomalous deep convection and associated latent heat

release in the tropical Indo-Pacific (e.g., Bjerknes 1969;

Horel and Wallace 1981; Held et al. 1989). These in-

fluences generally maximize in boreal winter and early

spring when atmospheric conditions are favorable for

Rossby wave propagation from the tropics to the

Northern Hemisphere and when the SST anomalies in

the tropical Pacific are the largest (Ropelewski and

Halpert 1986; Larkin and Harrison 2005; Chiodi and

Harrison 2013; L’Heureux et al. 2015; and many others).

During ENSO’s positive phase (El Niño), anomalous

southerly winds advect warmer air over Alaska and

Canada while anomalous northerlies bring cooler air to

the southeastern United States, and a strengthened and

southward-shifted storm track brings above-normal

precipitation to the southern tier of the United States

and drier conditions to the Ohio and upper Mississippi

River valleys. Opposite conditions tend to prevail dur-

ing ENSO’s negative phase (La Niña). While the im-

pacts described above are typical of ENSO events, they

do not necessarily occur during every episode. A recent

case in point is the El Niño of 2015/16, which failed to

bring anticipated and much-needed rains to Southern

California and the U.S. Southwest desert, despite the

fact that it was as strong as the El Niño events of 1982/83

and 1997/98, which did bring copious amounts of pre-

cipitation to this region. Similarly, the strong El Niño
events of 1991/92 and 1987/88 also lacked many of the

expected impacts over North America, as did the strong

La Niña events of 1973/74 and 2007/08 (www.climate.

gov). These counterexamples are consistent with the
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fact that ENSO generally accounts for ,25% of the

variance of winter and spring climate anomalies over

North America, despite it being a dominant source of

predictability (not shown, but see www.climate.gov).

The canonical impacts of ENSO may be obscured

during any given El Niño or La Niña event by com-

peting influences from other sources of natural climate

variability. In addition, differences in the character

of each event (e.g., Rasmusson and Carpenter 1982;

Deser and Wallace 1987; Capotondi et al. 2015;

Takahashi and Martínez 2018) may affect their atmo-

spheric teleconnections and associated climate im-

pacts over North America (e.g., Garfinkel et al. 2013;

Johnson and Kosaka 2016). These issues motivate the

question: how well do we know ENSO’s canonical in-

fluence on North American climate? Empirical studies

typically attempt to isolate ENSO-forced signals by

compositing over a large number of events or by ap-

plying regression analysis to a long period of record.

With a sufficiently long dataset (i.e., a large enough

sample of ENSO events), the noise due to variability

that exists in the absence of ENSO will be minimized,

revealing the true forced response. To what extent is

the observational record adequate to identify the

forced response to ENSOwithout significant aliasing of

unrelated variability?

While empirical studies based on composite or re-

gression analysis almost always include an assessment of

statistical significance on the estimated ENSO signals,

this information does not necessarily convey the mag-

nitude of the uncertainty at each location, nor does it

convey the spatial pattern of the uncertainty. For ex-

ample, if the uncertainty arises from large-scale atmo-

spheric variability, then the ‘‘noise’’ imparted to

observationally derived ENSO signals will also be

characterized by large-scale spatial patterns. In view of

these issues, Deser et al. (2017, hereafter D17) proposed

an approach that integrates information on both pattern

and amplitude uncertainty that accompanies any em-

pirical estimate of ENSO response based upon limited

data. In addition, they showed the utility of this in-

tegrated perspective when evaluating the realism of

ENSO signals in climate models, which have the luxury

of much larger samples sizes. The focus of D17 was on

the NH atmospheric circulation response to ENSO in

boreal winter. Here we extend this approach to in-

vestigate the surface air temperature (SAT) and pre-

cipitation (PR) responses to ENSO over North

America. To be consistent with D17, we use the same

period of record (1920–2013) and random sampling

technique (with replacement) to construct synthetic

ENSO composites, each of which could have plausibly

happened had a different temporal sequence of natural

variability, unrelated to ENSO, occurred. These syn-

thetic ENSO composites provide important context for,

and uncertainty bounds on, the one composite that ac-

tually occurred. Issues related to ENSO diversity and

nonlinearity within these synthetic composites are also

addressed.

We also evaluate ENSO composites of SAT and

PR over North America from a multimodel ensemble

of coupled simulations (the same used in D17) whose

tropical eastern Pacific sea surface temperature anom-

alies (SSTA) are nudged to observations during 1920–

2013. Each model provides an ensemble of simulations

starting from slightly different initial conditions. For

each, we construct an ENSO composite using the same

set of events as in our observational analysis. The re-

sulting range of composites across the individual

members of a given model ensemble provides a direct

assessment of the uncertainties associated with any

single composite sample (i.e., the model’s ensemble

spread is the counterpart of the spread across the ob-

servationally based synthetic composites, for which

there is only one actual composite sample). That is,

each composite within a given model ensemble repre-

sents an estimate of the model’s true forced response

to ENSO combined with a different sampling of its

(unrelated) internal variability (throughout this paper,

we shall use the terms ‘‘internal’’ and ‘‘natural’’ in-

terchangeably). Using the uncertainties derived for the

observed ENSO composite, we discriminate between

true biases in the models’ forced response to ENSO

and apparent biases that arise from limited sampling of

non-ENSO-related natural variability. In this way, we

also evaluate whether the spread across the ensemble

members of a given model is realistic. We focus on

December–February (DJF), the season when ENSO

generally has its largest impact over much of North

America. We also briefly show results for February–

April (FMA).

The rest of this study is organized as follows. The

observational datasets, model simulations, and meth-

odology are described in section 2. Results are presented

in section 3, beginning with observed and simulated

ENSO composites of temperature and precipitation

(section 3a), evaluation of the forced ENSO response

and internal variability in Community Earth System

Model, version 1 (CESM1; section 3b), the range of

observationally based synthetic ENSO composites

(section 3c), comparison of ENSO composites across

models (section 3d), the contributions of ENSO non-

linearity (section 3e) and ENSO diversity (section 3f) to

the synthetic observational composites, and ending with

observed ENSO composites for late winter (section 3g).

Discussion and summary are provided in section 4.
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2. Data and methods

a. Observational data

We use SAT from Berkeley Earth Surface Tempera-

ture (BEST; Rohde et al. 2013) and PR from Global

Precipitation Climatology Centre (GPCC), version 7

(Schneider et al. 2014), both on a 18 latitude 3 18 lon-
gitude grid. In addition, we make use of sea level pres-

sure (SLP) and PR from the Twentieth Century

Reanalysis (20CR), version 2c (Compo et al. 2011), on a

28 latitude3 28 longitude grid, PR from ERA-20C (Poli

et al. 2016) on a 1.58 latitude 3 1.58 longitude grid, and

PR from the Global Precipitation Climatology Project

(GPCP), version 2.3 (Adler et al. 2003), on a 2.58
latitude 3 2.58 longitude grid. Our analysis is based on

the period 1920–2013, except for GPCP, which is based

on the years 1979–2013.

b. Model simulations

We use the same model simulations as D17, which are

briefly summarized here; additional information is pro-

vided in D17. First, we make use of a coordinated set of

tropical Pacific pacemaker experiments (referred to as

PACE) performed with three state-of-the-art coupled

climate models: CESM1; Climate Model, version 2.1

(CM2.1); and MIROC5. These experiments follow the

protocol of Kosaka and Xie (2013), in which monthly

SSTAs in theeastern tropical Pacific (108S–108N,1608–908W,

with a linearly tapering buffer zone of 108 in latitude

and 208 in longitude) are nudged with a 2-day damping

time scale to those from the NOAA Extended Re-

construction Sea Surface Temperature, version 3b

(ERSSTv3b), dataset; note that the SST mean state in

eachmodel is maintained. An ensemble of experiments

was conducted with each model (10 for CESM1 and

CM2.1, and 5 for MIROC5), produced by randomly

perturbing the initial atmospheric temperatures in

eachmember by a small (order 10214K) amount. These

coupled model simulations arguably provide the most

realistic setting for evaluating the models’ ENSO com-

posites, since only SSTAs in the eastern tropical Pacific

are nudged to observations, leaving the rest of the global

climate system free to respond in an appropriately cou-

pled manner (e.g., with two-way ocean–atmosphere in-

teraction; Alexander et al. 2002). Our analysis is based on

the 1920–2013 period common to each model.

We also make use of a companion 10-member en-

semble conducted with the atmosphere–land configu-

ration of CESM1 in which the observed SST evolution is

specified throughout the tropics (within 288 latitude

and a linearly tapering buffer zone to 358 latitude) and
the observed SST climatological seasonal cycle is pre-

scribed elsewhere [the so-called Tropical Ocean and

Global Atmosphere (TOGA) protocol]. While these

simulations have the advantage of a realistic tropic-wide

distribution of SST anomalies during ENSO (and a re-

alistic SSTmean state), they are more idealized than the

PACE experiments in the sense that they lack two-way

ocean–atmosphere coupling and extratropical SST var-

iability. All simulations (PACE and TOGA) include the

historical (and RCP8.5 after 2005) radiative forcing

protocols of CMIP5 (Taylor et al. 2012).

Last, we make use of a 2600-yr preindustrial control

simulation (1850 radiative conditions) of the atmosphere–

land configuration of CESM1 with a prescribed repeating

seasonal cycle of SSTs and sea ice conditions taken from

the long-term climatology of a companion 2200-yr pre-

industrial control run of the fully coupled CESM1 (see

Kay et al. 2015). This lengthy ‘‘atmosphere only’’ control

simulation provides robust statistics on the simulated level

of atmospheric circulation variability that exists in the

absence of ENSO and other SSTA forcing.

c. Methods

We use the same methodology as D17, of which a

summary is given below. We compute monthly anoma-

lies by subtracting the long-term monthly means based

on the period 1920–2013 from the corresponding month

of each year. We then form DJF and FMA averages

from the monthly anomalies and linearly detrend each

seasonal time series to reduce potential effects from

secular climate change. Following D17, we evaluate

statistical significance using a two-sided Student’s t test

at the 10% significance level as well as a random sam-

pling approach discussed below. We identify 18 El Niño
(EN) and 14 La Niña (LN) events during 1920–2013

according to the criterion that the observed detrended

DJFNiño-3.4 (58S–58N, 1208–1708W)SST index exceeds

1 standard deviation (s) or falls below 21 s, re-

spectively [using November–January (NDJ) in place of

DJF does not change the event selection]. We form

ENSO composites by subtracting the average of the 14

LN events from the average of the 18 EN events. Unless

noted otherwise, all results are based on DJF.

To evaluate the influence of sampling variability, we

form 2000 synthetic ENSO composites for observations

and for each model simulation by randomly sampling

with replacement from among the 18 EN events and the

14 LN events, always retaining 18 samples for the former

and 14 samples for the latter (these samples will neces-

sarily omit some events and repeat others). As shown in

D17, the majority of these ‘‘bootstrapped’’ ENSO com-

posites consist of 11–12 uniqueENevents and nine unique

LN events and a maximum repetition of three events

of either sign. We also form 2000 synthetic ENSO com-

posites for each model by drawing from all ensemble
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members simultaneously (resulting in a larger number of

unique events and lower repetition rate).

3. Results

a. Observed and simulated ENSO composites

The observed ENSO SAT composite shows a statis-

tically significant dipole pattern of positive anomalies

over much of Canada and Alaska (maximum values

;48C) and negative anomalies over the southeastern

United States (maximum amplitudes ;28C; Fig. 1,

lower right panel). This pattern is evident to some de-

gree in all of the CESM1 PACE simulations, although

the magnitudes and exact locations of significant SAT

anomalies vary considerably (Fig. 1). For example, the

warming over western Canada and Alaska is nearly

twice as large in simulation 8 compared to simulation 5,

and the cooling over the United States is located in the

Southeast (as observed) in simulation 1 and over the

Southwest in simulation 8. Notably, simulations 2 and 4

show weak (amplitudes ,1.58C) and generally in-

significant SAT anomalies throughout North America.

A similar level of diversity in ENSO SAT composites is

apparent in the GFDL and MIROC PACE (Figs. S1

and S2 in the online supplemental material) and

CESM1 TOGA (Fig. S3) ensembles, although the latter

shows generally larger amplitudes compared to its

PACE counterpart. Recall that each simulated com-

posite is based on the same set of ENSO events as the

FIG. 1. ENSOcomposites ofDJF SAT (8C) from each of the 10CESM1PACE simulations (labeled 1 through 10) and from (lower right)

observations. Each composite is based on the same set of 18 El Niño events minus 14 La Niña events during 1920–2013. Values not

significant at the 10% confidence level based on a two-sided t test are stippled.
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observed composite, highlighting the role of sampling

uncertainty.

The observed ENSO PR composite shows significant

positive anomalies over the southernmost U.S. states

and significant negative anomalies over southern

Ontario, Quebec, and the Ohio Valley–Upper South

(the region encompassing Ohio, Michigan, Indiana,

Kentucky, Tennessee, and West Virginia), as well as

interior British Columbia, Alberta, western Manitoba,

and parts of the U.S. Northwest (Fig. 2k). The CESM1

PACE ensemble generally reproduces this observed

pattern, but the amplitude and statistical significance of

the regional PR anomalies vary across themembers. For

example, California rainfall anomalies are considerably

weaker and more in line with observations in members

2, 5, and 10 compared to members 1, 4, 6, and 8. Simi-

larly, the spatial extent, amplitude, and significance of

drying over western Canada range considerably across

the simulations (note the contrast between members 2

and 8), as well as over the Ohio Valley–Upper South

(note the absence of drying in members 4, 9, and 10). A

similar level of diversity in ENSO PR composites is

evident in the other models and the CESM1 TOGA

ensemble (Figs. S4–S6).

These results highlight that a sample size of 18 EN

and 14 LN events may be insufficient to accurately

determine the ENSO-forced SAT and PR responses in

models because of the presence of unrelated internal

variability that may obscure the ENSO signal. They

also raise the related issue of how well the observed

response to ENSO is known, even with 94 years of data

(1920–2013). Finally, the results underscore the chal-

lenge of evaluating the ENSO response inmodels given

sampling uncertainty in both the observational target

FIG. 2. As in Fig. 1, but for PR (mmday21).
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and in each model simulation. We address these

issues next.

b. Evaluating CESM1’s response to ENSO

1) TEMPERATURE

The ensemble mean of the 10 CESM1 PACE ENSO

composites provides a robust estimate of the model’s

true response to ENSO, as it is based on a total of 180

EN events and 140 LN events. Accordingly, the

ensemble-mean SAT response is significant overmost of

the continent, with warming in Canada and Alaska

(maximum values .38C in the Yukon and Alaska) and

weaker-amplitude cooling over most of the contiguous

United States (Fig. 3a). The pattern and amplitude of

the ensemble-mean response is generally similar to the

observed composite except that the simulated warming

does not penetrate as far southeastward into the central

Canadian provinces and the north-central United States

(cf. Figs. 3a and 3b). (Note however that individual re-

alizations of the model, most notably simulations 1 and 8,

do show a more southerly extension than the ensemble

mean; recall Fig. 1). Differencing the observed composite

from the ensemble-mean composite reveals a significant

cold bias in the model’s ENSO response in the central

Canadian provinces and U.S. Upper Midwest; all other

regions show insignificant differences (Fig. 3c). Here,

differences are deemed statistically significant if the

value of the observed composite is lower than the 5th

percentile or greater than the 95th percentile of the

FIG. 3. (top row) ENSO composites of DJF SAT (8C) for (a) ensemble mean of the 10 CESM1 PACE simulations, (b) observations, and

(c) their difference. Stippling in (a) and (b) indicates values not significant at the 10%confidence level based on a two-sided t test. Stippling

in (c) indicates that the observed value lies outside of the 5%–95% values from the model’s 2000 bootstrapped composites, and red

contours (which occur only over Baja California) indicate the observed value lies outside any of the model’s bootstrapped composites.

(middle row) 5%–95% CIs (8C) on the SAT ENSO composites based on 2000 bootstrapped samples for (d) CESM1 PACE simulations,

(e) observations, and (f) their difference. Stippling in (f) indicates regions where the observed value falls within the spread of values from

the individual simulations. (bottom row) As in middle row, but for (g) the CAM5 atmospheric control simulation and (h) observations

after removing ENSO. (i) As in (c), but applying the observed CIs to the model simulations. See text for details.
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2000 model bootstrapped ENSO composite values

obtained by randomly sampling from among all 10

PACE ensemble members.

To properly evaluate whether themodel has a realistic

forced response to ENSO, one must also assess its in-

ternal variability. This is because a bias in the model’s

forced response might not be detected if the simulated

internal variability is overestimated (i.e., the spread

among ENSO composites is too large), or it might be

falsely detected if the simulated internal variability is

underestimated (i.e., the spread among ENSO com-

posites is too small). Here we assess the model’s internal

variability by comparing the spread between the 5th and

95th percentiles of the 2000 bootstrapped ENSO com-

posites for observations and CESM1 PACE (the latter

computed using all ensemble members).

The spatial distribution of the model’s confidence in-

tervals (CIs) (Fig. 3d) is similar to observations (Fig. 3e),

with the largest values extending southeastward from

Alaska toward the U.S. Great Lakes. However, their

amplitudes exceed the observed values in western

Alaska, the far western United States, and the eastern

third of the continent by up to 18–28C (nonstippled re-

gions in Fig. 3f). In these regions, the observed CI is less

than the minimum CI of any of the 10 PACE runs, in-

dicating that the model has enhanced variability com-

pared to the real world (the CIs for each PACE

simulation are shown in Fig. S7). The larger CIs in the

model might obscure a true bias in the model’s forced

response. To address this possibility, we apply the ob-

served CIs to the model’s ensemble-mean ENSO SAT

composite and reevaluate the significance on the dif-

ference between the SAT values from the ensemble-

mean composite and the observed composite (Fig. 3i).

The area with statistically significant differences ex-

pands slightly to encompass the southern Great Lakes

region compared to using the model’s CIs (cf. Figs. 3c

and 3i). This additional region is thus an area where

there is a true bias in the model’s forced ENSO re-

sponse, which had been obscured by the model’s over-

estimated CI. The model’s underestimated CIs over

far northeastern Canada do not affect assessment of

its forced ENSO response (cf. Figs. 3c and 3i). The

observed CIs will also be subject to uncertainty, in

analogy with the range of CIs across the individual

members of CESM1 PACE, but this has not been

investigated here.

Next, we make use of the 2600-yr atmospheric control

simulation of CESM1 to assess the contribution of in-

ternal atmospheric variability to the CIs in CESM1

PACE. To do so, we randomly select two groups of years

(with replacement) from the control run, one consisting

of 18 winters and the other of 14 winters. We then

average the SAT anomaly fields within each group and

take their difference, in analogy with howwe formed the

ENSO composites. We repeat this procedure 2000

times, and use these 2000 random samples to compute

the CIs. The CIs from the atmosphere-only control run

(Fig. 3g) are very similar to those from the coupled

model’s PACE simulations (Fig. 3d), indicating that

internal atmospheric variability accounts for most of the

uncertainty obtained from the model’s bootstrapped

ENSO composites. This means that the spread in ENSO

SAT composites across the members of the CESM1

PACE ensemble is primarily due to the superposition of

random (i.e., inherently unpredictable on interannual

time scales) internal atmospheric circulation anomalies

on the forced ENSO response.

While we cannot isolate the contribution of internal

atmospheric dynamics to the observed CIs, we can

evaluate the contribution of non-ENSO-related SAT

variability. To do this, we compute CIs by randomly

sampling from all 93 winters during 1920–2013 after

linearly regressing out the Niño-3.4 SST index (Fig. 3h)

or by computing CIs from the 61 ENSO-neutral years

(not shown). The CIs based on the ENSO residual

sample (Fig. 3h) are very similar to those on the ENSO

sample (Fig. 3e), indicating that internal atmospheric

variability likely underlies the uncertainty in the ob-

served ENSO composite in analogy with the model-

based results. We note that the differences between the

CIs from the atmospheric control simulation (Fig. 3g)

and the ENSO-residual observations (Fig. 3h) are even

smaller than those in Fig. 3f (not shown).

2) PRECIPITATION

The ensemble-mean PR composite in CESM1 PACE

shows statistically significant drying in British Columbia,

the U.S. Pacific Northwest, and the Ohio Valley, and

statistically significant wetting along the southern coast

of Alaska and throughout the southern United States,

with maximum amplitudes in California and the

Southeast (Fig. 4a). This pattern resembles the observed

composite (Fig. 4b), except for the lack of pronounced

drying in the Ohio Valley–Upper South; however, as

noted earlier, this region is subject to large member-to-

member variation (recall Fig. 2). The larger area of

statistically significant PR anomalies in the model

composite compared to observations is likely a result of

averaging over 10 times as many ENSO events. Differ-

encing the observed composite from the ensemble-mean

composite reveals that the model significantly over-

estimates the amplitude of the PR response to ENSO in

Southern California, Nevada, western Utah, and coastal

British Columbia, and significantly underestimates it in

the Ohio Valley–Upper South and Florida (Fig. 3c).
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The modeled (Fig. 4d) and observed (Fig. 4e) CIs on

the ENSO PR composites show similar patterns, with

the largest amplitudes along the Pacific coast (maximum

values;2–3mmday21) and the southeast United States

(maximumvalues;1–2mmday21). However, themodel’s

CIs are larger over most of the western United States

and the Ohio Valley, and smaller over portions of the

southeast United States (Fig. 4f) compared to obser-

vations. In these regions of overestimation (un-

derestimation), the minimum (maximum) CI of any of

the 10 CESM1 PACE simulations exceeds (is less than)

the observed CI, indicating that the model’s variability

is likely different from that of the real world in these

locations (see Fig. S8 for the CIs of each individual

simulation).

Applying the observed CIs to the model’s ensemble-

mean PR composite accentuates the statistical signifi-

cance of the model’s overestimated PR response to

ENSO in thewesternUnited States (California, Nevada,

Utah, western Colorado, and northwestern Arizona), as

the ensemble-mean composite PR values are found to

be larger than those in any of the 2000 observed boot-

strapped composite samples (area outlined in red in

Fig. 4i). Similarly, the model’s underestimated PR re-

sponse in the Ohio Valley and southern portions of

Ontario and Quebec becomes statistically significant

because of the smaller observed CIs. This additional

region is thus an area where there is a true bias in the

model’s forced ENSO response, which had been ob-

scured by the model’s overestimated CI.

Finally, internal atmospheric variability accounts for

almost all of the uncertainty on the model’s ENSO PR

response (cf. Figs. 4g and 4d). Likewise, non-ENSO-

related variability (which we posit stems mostly from

internal atmospheric variability) accounts for most of

the uncertainty on the observed ENSO PR composite

(cf. Figs. 4h and 4e).

c. Range of ENSO composites using bootstrapped
observations

How well do we know the spatial pattern and ampli-

tude of SAT and PR responses to ENSO in the real

FIG. 4. As in Fig. 3, but for PR (mmday21).
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world? As discussed above, the number of ENSO events

available for compositing during 1920–2013 may be in-

sufficient to accurately separate the ENSO-forced re-

sponse from unrelated climate variability. We make use

of the 2000 bootstrapped ENSO composites based on

observations to address this question. To begin, we show

nine of these composites selected at random for SAT

(Fig. 5) and PR (Fig. 6). In analogy with the 10 PACE

simulations shown in Figs. 1 and 2, these synthetic ob-

servational composites display a range of amplitudes

and patterns. This range arises from a combination of

the different sets of ENSO events in each observational

composite (recall the bootstrapping methodology out-

lined in section 2) and the different sample of climate

anomalies unrelated to ENSO in each composite (recall

that only the latter contributes to the spread within a

given model’s PACE simulations). Although the gen-

eral patterns are similar across the nine synthetic com-

posites, there is considerable variation in amplitude and

level of statistical significance. For example, statistically

significant warming (4–68C) over western Canada and

Alaska is found in one randomly selected composite

(Fig. 5i) but not in another (,28C; Fig. 5g). Similarly,

significant wetting occurs over Northern California

(.3mmday21) in one composite (Fig. 6g) but not in

another (,0.5mmday21; Fig. 6d), while pronounced

drying is widespread over theOhio Valley–Upper South

and southern Quebec in one composite (Fig. 6f) but not

in another (Fig. 6g).

Next, we perform a more systematic investigation of

the 2000 observational bootstrapped ENSO composites,

sorting them according to their area-weighted ampli-

tudes in selected regions of interest. For SAT, these

regions are the Northwest (NW: 548–708N, 1758–988W)

and Southeast (SE: 258–378N, 1028–858W) portions of

North America where the actual observed composite

shows significant warming and cooling, respectively. For

PR, we select the Pacific Northwest (PNW: 428–588N,

1258–1128W), Gulf states (GULF: 258–348N, 1008–
778W), and California (CA: 328–428N, 1258–1198W),

regions within which the majority of grid boxes show

significant rainfall signals in the actual observed com-

posite (drying for PNWandwetting for GULF and CA).

These regions are depicted in Fig. 7 (SAT) and Fig. 9

(PR). For illustration purposes, we display the 10th- and

90th-percentile composite samples based on each

FIG. 5. (a)–(i) Ten randomly selected bootstrapped ENSO composites of DJF SAT (8C) based on observations. Values not significant at

the 10% confidence level based on a two-sided t test are stippled.
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regional index. Table S1 lists the particular EN and LN

events and the number of times they are sampled for

each of the 10th- and 90th-percentile composite samples

for each regional index. A minimum of 11 distinct EN

events and 7 distinct LN events comprise each com-

posite sample, and no single event is sampled more than

4 times (Table S1).

Figures 7a and 7b (7c and 7d) show the observed SAT

bootstrapped ENSO composites that lie at the 10th

and 90th percentiles, respectively, based on the NW

(SE) SAT index. As expected, the index regions show

clear differences in SAT anomaly amplitude between

the lower- and upper-percentile composites on which

they are based. For example, the warming across

western Canada and Alaska ranges from;18–38C in the

10th-percentile NW composite (Fig. 7a) compared

to ;38–68C in the 90th-percentile NW composite

(Fig. 7b). Similarly, the cooling over the southeastern

United States reaches 238C in the 10th-percentile SE

composite (Fig. 7c) compared to 228C in the 90th-

percentile composite (Fig. 7d). In addition to these local

differences in SAT amplitude, there are differences in

magnitude, pattern, and statistical significance over the

rest of continent. For example, the 90th-percentile SE

composite, which has low-amplitude cooling over the

SE United States, shows high-amplitude warming over

western Canada and Alaska. This is in contrast to the

90th-percentile NW composite, which shows similar-

magnitude warming over western Canada and Alaska

but stronger and more widespread areas of significant

cooling over the southern United States compared to

the 90th-percentile SE composite. Similarly, the am-

plitude and spatial extent of the cooling over the

southernUnited States is comparable between the 90th-

percentile NW and 10th-percentile SE composites, yet

the warming over Canada and Alaska is much larger

and more widespread in the former compared to the

latter. These results illustrate that composite SAT am-

plitudes in one region may be decoupled from those in

another.

To the extent that our random sampling methodology

does not introduce additional diversity due to differ-

ences amongENSOevents (addressed below), the range

of ENSO SAT composites in Fig. 7 illustrates what na-

ture might have produced given a different sequence of

internal variability independent of ENSO. That is, even

with a sample of 18 EN and 14 LN events, the amplitude

and to a lesser extent the pattern of the North American

FIG. 6. As in Fig. 5, but for PR (mmday21).
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SAT response to ENSO are subject to considerable

uncertainty.

To what extent does the different composition of

ENSO events in each of the observed bootstrapped

composites shown in Fig. 7 contribute to their different

SAT anomalies? As a first step in addressing this ques-

tion, we show maps of the composite SST anomalies

in the tropical Pacific that accompany each SAT com-

posite (insets in Fig. 7). All four SST composites show

similar patterns and amplitudes, with positive anomalies

along the equator (maximum values ;38–48C in the

central basin 1658–1058W) flanked by weaker-amplitude

(,1 C) negative values to the Northwest and Southwest.

If anything, the 90th-percentile composite based on the

NW SAT index, which features higher-amplitude warm-

ing across Canada and Alaska, shows weaker SST

anomalies in the central equatorial Pacific compared to its

10th-percentile counterpart (cf. Figs. 7a and 7b). How-

ever, this difference is likely a result of random chance,

since there is no systematic relationship between the

Niño-3.4 SST and NW SAT indices across the 2000 ob-

served composite bootstrapped samples as shown by the

scatterplot in Fig. 8a. The large scatter indicates that the

precise pair of values of any particular composite, and

by extension the pair of spatial patterns shown in Figs. 7a

and 7b, is likely due to chance.

For example, for a given value of the NW SAT index

such as 3.18C, which is close to the value of the 90th-

percentile sample (3.28C), there is a wide range of

possible composite Niño-3.4 SSTA values (2.28 to

3.08C) across the 2000 bootstrapped ENSO composites

(Fig. 8a). Thus, the small difference in Niño-3.4 SST

values (0.28C) between the 10th- and 90th-percentile

NW SAT index composites is unlikely to be the cause of

FIG. 7. Tenth- and 90th-percentile bootstrapped ENSO composites of observed DJF SAT (8C) based on the (a),(b) NW and (c),(d) SE

SAT indices (index regions outlined in black). Values not significant at the 10% confidence level based on a two-sided t test are stippled.

Panel insets show the accompanying SST (8C) composites in the tropical Pacific.
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the approximately twofold difference in their NW SAT

values (1.688 vs 3.28C). Conversely, for a given value of

the Niño-3.4 SST index, say 2.68C, the NW SAT index

can range from 18 to 48C. Similar remarks apply to the

10th- and 90th-percentile composites based on the SE

SAT index (Fig. 8b). Finally, although there is a weak

linear dependence of the NW SAT index on the Niño-
3.4 SST index across the 2000 bootstrapped ENSO

composites (correlation coefficient 5 20.20), and to a

lesser extent of the SE SAT index on Niño-3.4 (corre-

lation coefficient5 0.01), removing this dependency via

linear regression analysis has virtually no effect on the

results (not shown), underscoring that differences

among the 2000 individual bootstrapped composites are

unlikely to be the result of sampling slightly different

sets of ENSO events.

To extend this analysis to all of North America, we

calculate the contribution to the observed CI that arises

from the linear dependence of the SAT composite

values at each grid box upon the Niño-3.4 composite

values across the 2000 bootstrapped samples. To obtain

this ‘‘ENSO contribution,’’ we first compute the CIs

using the 2000 SAT values of the bootstrapped composites

from which the composite Niño-3.4 SST index has been

linearly removed via regression analysis, and then

subtract it from the original CIs. This ENSO contri-

bution is ,0.58C at all grid boxes, corresponding

to ,5% of the total CI, except near the Great Lakes

and a few isolated locations where it can reach up to

5%–15% (Fig. S9).

Repeating these analyses for PR, Fig. 9 shows the

observed bootstrapped ENSO composites that lie at the

10th and 90th percentiles based on the PNW, GULF,

and CA PR indices defined above. All six composites

show similar spatial patterns, consisting of PR increases

over the Gulf states and along the Pacific coast of Can-

ada and Alaska, and PR decreases over the Pacific

Northwest and Ohio Valley–Upper South, similar to the

ensemble-mean composite (recall Fig. 4a). However,

theirmagnitudes and areas of statistical significance vary

considerably. For example, drying over the U.S. North-

west and Upper South is greater in amplitude and area of

significance in the 10th-percentile PNW composite com-

pared to its 90th-percentile counterpart (Figs. 9a and 9b,

respectively). Similarly, PR increases over the southern

United States are larger and extend farther north in the

FIG. 8. Scatterplots of ENSOcomposite values of theNiño-3.4 SST index against the (a)NWSAT index, (b) SE SAT index, (c) PNWPR

index, (d) GULF PR index, and (e) CA PR index based on 2000 observed bootstrapped samples. Blue and red symbols show the 10th- and

90th-percentile values, respectively, of each index. SAT and SST values are in 8C and PR values are in mmday21.
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90th-percentile GULF composite compared to the 10th-

percentile composite (Figs. 9d and 9c, respectively). Fi-

nally, the only case with significant wetting over all of

California is the one based on the 90th percentile of the

CA PR index (Fig. 9f). The 10th–90th percentile PR

range within each index region is20.60 to20.24mmday21

for PNW, 0.62 to 1.13mmday21 for GULF, and 0.03 to

1.43mmday21 for CA.

Similar tropical SSTA patterns accompany each PR

composite, with small variations in amplitude (panel

insets in Fig. 9). The 10th-percentile PNW composite

(which has larger drying over the Pacific Northwest)

FIG. 9. As in Fig. 7, but for observed PR (mmday21). Tenth- and 90th-percentile composites based on the (a),(b) PNW, (c),(d)GULF, and

(e),(f) CA PR indices (index regions outlined in black).
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shows slightly weaker SSTA in the central equatorial

Pacific (1608–1308W), compared to its 90th-percentile

counterpart (Figs. 9a and 9b, respectively). However,

this is likely a result of random chance since the PNW

index shows no systematic dependence on the Niño-3.4
SST index across the 2000 bootstrapped composite

samples (correlation coefficient 5 0.01; Fig. 8c). The

GULF and CA PR indices show slightly stronger de-

pendencies on Niño-3.4 SST (correlation coefficients of

0.51 and 0.30, respectively), confirming the visual im-

pression from the scatterplots (Figs. 8d,e) and consistent

with the slightly larger SSTA in the central equatorial

Pacific in the 90th-percentile composite sample (Figs. 9d

and 9f, respectively) compared to the 10th-percentile

sample (Figs. 9c and 9e, respectively). However, the

magnitude of the ENSO contribution to the CIs on the

observed PR composite is ,10% over the Gulf states

and California, and ,5% everywhere else except

southern Florida, where it reaches 20%–25% (Fig. S9).

Collectively, these results demonstrate that while

there is some effect associated with sampling different

sets of EN and LN events in the observed bootstrapped

composites, it does not make a large contribution to the

uncertainty in the SAT and PR ENSO composites, with

some regional exceptions as noted above. Thus, the di-

versity of amplitudes, patterns, and degree of statistical

significance among the ENSO composites shown in

Figs. 5–9 is primarily due to internal variability rather

than slightly different samples of ENSO events. In this

context, it is worth recalling the diversity in SAT and PR

composites across the individual members of the PACE

ensembles for which the set of ENSO events is identical.

d. Comparison across models

We summarize the amplitudes of the regional SAT

and PR indices across all 2000 bootstrapped ENSO

composites from observations and models in the histo-

grams shown in Figs. 10 and 11. The actual composite

values are shown as red bars: one for observations; 10 for

eachmember of the CESM1 PACE, CESM1TOGA, and

CM2.1 PACE ensembles; and five for each member of

theMIROC5 PACE ensemble. While the observed value

must lie in the middle of its bootstrapped samples by

construction, this need not be the case for themodels since

their bootstrapped samples were constructed by drawing

from among all ensemble members (although the average

across all members will lie at the peak of the distribution

of the bootstrapped samples for a given model). The

horizontalbluebar aboveeachdataset indicates the5%–95%

CI range based on the bootstrapped samples.

As expected based on the results already presented, the

CESM1 PACE ensemble shows a realistic mean value of

the NW SAT index but slightly overestimates the width of

its distribution (Fig. 10a). Also consistent with Fig. 1, two

of the CESM1 PACE ensemble members are obvious

outliers, falling in the lowest 1% of the distribution (by

chance). The width and mean value of the NW SAT his-

tograms based on the CM2.1 and MIROC5 PACE
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FIG. 10. Histograms of ENSO composite values of the (a) NW and (b) SE SAT indices (8C). Gray bars denote values from the 2000

bootstrapped samples and red bars indicate actual values. From top to bottom: PACE simulations from MIROC (5 members), GFDL

CM2.1 (10members) andCESM1 (10members), andCAM5TOGAsimulations (10members). Horizontal blue bar above each histogram

indicates the 5%–95% CI range based on 2000 bootstrapped samples.
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ensembles are similar to those from the CESM1 PACE

ensemble, but the individual members are more evenly

distributed across the range of bootstrapped samples than

those inCESM1 (Fig. 10a). TheNWSAThistogrambased

on the CESM1 TOGA ensemble is shifted to the right of

those based on observations and PACE simulations,

overestimating the observed value (2.48C) by more than

50% in the ensemblemean (3.78C). For the SESAT index,

the models generally show realistic distributions and CIs,

except for MIROC, which simulates an ensemble-mean

value close to zero that is significantly different from

the observed value of 21.28C (Fig. 10b). In all cases, the

widths of the distributions are considerably smaller for the

SE SAT index compared to the NW SAT index.

All model ensembles show realistic distributions for

PR in the PNW region, although MIROC5 is on the

drier side (Fig. 11a). There is more variation across

models for PR in the GULF and CA regions, with all

members of MIROC5 substantially overestimating the

observed wetting, although there is overlap between the

simulated and observed bootstrapped CIs (Figs. 11b,c).

The most realistic distributions for GULF are those

from CESM1 PACE and TOGA (Fig. 11b), while those

for CA are CESM1 TOGA and CM2.1 (Fig. 11c). Like

CESM1 PACE and TOGA, CM2.1 shows one member

that falls at the very dry end of the distribution for

GULF (Fig. 11b). The models generally simulate re-

alistic CIs for all three PR indices, with the possible

exception of CESM1 PACE for CA, which is consider-

ably larger than observed, although there is some

member-to-member variation (Fig. S8).

These portrayals of the bootstrapped ENSO com-

posites for selected regional climate indices highlight the

need for large model ensembles, since a single simula-

tion can alter the mean value, and to a lesser extent the

width, of the distribution just by chance, confounding

model evaluation and model intercomparison.

e. El Niño versus La Niña composites

Up to now, we have focused on the linear compo-

nent of ENSO. Here we examine whether there are any

appreciable nonlinearities aside from polarity by com-

paring observed composites of the 18 EN events and

the 14 LN events separately. For ease of comparison

with EN, we show the LN composite with inverted sign

(denoted 2LN). While the SAT composites show re-

gional differences in amplitude associated with a

southward displacement of the continental-scale dipole

pattern in EN (Fig. 12a) compared to 2LN (Fig. 12b),

these differences are not significant except near the

Great Lakes (Fig. 12c). Similarly, the PR composites

show local differences in magnitude associated with

southward-shifted dipoles over the eastern United
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FIG. 11. As in Fig. 10, but for the (a) PNW, (b) GULF, and

(c) CA PR indices (mmday21). Note the wider x-axis range in

(c) compared to (a) and (b).
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States and along the Gulf of Alaska in EN (Fig. 12d)

compared to 2LN (Fig. 12e), but none are significant

except those along the southern coast of mainland

Alaska (Fig. 12f). Our EN and LN composites are con-

sistent with the analogous one-sided regression maps in

Hoerling et al. (2001); however, that study did not assess

differences between their one-sided regressions.

f. Flavors of El Niño

To what extent might different ‘‘flavors’’ of El Niño
affect the range of SAT and PR anomalies across the

2000 observed bootstrapped composites? In particular,

if we sample only east Pacific (EP) or central Pacific

(CP) El Niño events [defined according to the consensus

method of Yu et al. (2012); see also Graf and Zanchettin

(2012) andYu et al. (2015)] in our ENSO composites, do

we obtain significantly different anomalies and CIs? To

address this issue, we construct two additional 2000-

member sets of bootstrapped composites, which differ

from the original set by restricting the random sampling

of all 18 El Niño events to those that fall in the EP

category (7) and to those that fall in the CP category

(11); nothing is changed for the sampling of La Niña
events. Note that we maintain a total of 18 El Niño (and

14 La Niña) events in these new CP and EP sets of

bootstrapped composites for consistency with the orig-

inal ‘‘all El Niño’’ bootstrapped composites.

The CI maps based on the 2000 CP and 2000 EP

bootstrapped composites are very similar in pattern and

amplitude for both SAT (Figs. 13a,b) and PR (Figs. 13c,d).

The slightly larger SAT CI values over Canada in CP

compared toEP are well within the range of what could be

expected by chance, at least according to the individual

members of CESM1 PACE, whose CIs are based on the

same set of ENSO events (Fig. S7). Similar results are

found by sampling only east Pacific nonconvecting (EPN)

or east Pacific convecting (EPC) El Niño events (Johnson

and Kosaka 2016) in our 2000 observed bootstrapped

ENSO composites (not shown). Taken together, the re-

sults shown above reinforce the notion that ENSO di-

versity, whether in the form of differences in magnitude,

nonlinearities between EN and LN, or different ‘‘flavors’’

of El Niño, does not have an appreciable effect on our

quantification of uncertainty on the observed ENSO SAT

and PR composites.

A separate but related question is whether the actual

observed CP and EP composites show significantly dif-

ferent SAT and PR anomalies. Both composites display

the familiar SAT dipole pattern across North America,

but EP exhibits larger statistically significant warming

FIG. 12. ObservedDJF SAT (8C) and PR (mmday21) composites for (a),(d) 18 El Niño events, (b),(e) 14 La Niña events (with reversed

sign), and (c),(f) their difference (El Niño 1 La Niña). Values not significant at the 10% confidence level based on a two-sided t test are

stippled.
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over Canada and Alaska compared to CP (maximum

values 48–58C vs 28–38C, respectively; Figs. 14a,b). In ad-

dition, the region of significant cooling is confined to the

southern tier of U.S. states in CP but penetrates into the

Mid-Atlantic states in EP. The area extending south-

eastward from northern Saskatchewan to the U.S. central

Atlantic coast shows statistically significant differences

between EP and CP, but the rest of Canada does not,

despite the nearly twofold difference in composite SAT

amplitudes (Fig. 14c). PR shows a very similar pattern

between the two sets of composites, with somewhat larger

amplitudes for EP compared to CP (Figs. 14e and 14d,

respectively), but these differences are not statistically

significant except at a few locations (Fig. 14f). SAT and

PR differences between EPN and EPC composites are

also generally not statistically significant over North

America, as shown by Johnson and Kosaka (2016).

g. Late-winter ENSO composites

While the primary focus of this study is on DJF, we

briefly report on FMA, as rainfall over Southern California

shows a larger ENSO signal in this season (L’Heureux et al.

2015; Jong et al. 2016). Repeating our observational

ENSO composites for late winter (shown in Fig. S10), we

confirm that in addition to Southern California, positive

PR anomalies occur with larger amplitudes (statistically

significant values of 0.2–0.5mmday21) in FMA compared

to DJF over the U.S. Southwest desert and portions of

Kansas, Nebraska, and South Dakota (cf. Fig. S10b with

Fig. 4b). The increased PR in FMA is accompanied

by stronger cooling (statistically significant amplitudes

of 18–28C) over Arizona, New Mexico, and parts of

Colorado and Kansas (Fig. S10a) compared to DJF

(Fig. 3b). Elsewhere, ENSO composite values are con-

siderably weaker in late winter than in midwinter, both

for PR and SAT. For example, warming over Canada and

Alaska is only half as strong in FMA compared to DJF,

and drying over the interior PacificNorthwest isweak and

insignificant in late winter.

4. Discussion and summary

This study has evaluated the role of sampling vari-

ability in ENSO composites of winter SAT and PR over

FIG. 13. CIs of 5%–95% on observed ENSO composites of DJF (a),(b) SAT (8C) and (c),(d) PR (mmday21) using only (a),(c) CP and

(b),(d) EP El Niño events during 1920–2013. See text for details.
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North America during the period 1920–2013 in obser-

vations and ensembles of ‘‘Tropical Pacific Pacemaker’’

coupled model simulations with CESM1, CM2.1, and

MIROC5. The individual members of each model en-

semble show a surprising amount of diversity in their

ENSO composites, despite the fact that they are con-

structed from the same observed set of 18 EN and 14 LN

events. For a givenmodel, this ensemble spread can only

be due to sampling variability, that is, aliasing of internal

variability that is unrelated to ENSO. In the case of

CESM1, for which a lengthy atmosphere-only control

simulation is available, we showed that this sampling

variability arises from internal atmospheric dynamics

rather than coupled ocean–atmosphere processes. Sim-

ilar ENSO composite spread is evident in an uncoupled

(atmosphere-only) model ensemble with observed time-

varying tropical SSTs prescribed at the lower boundary

(the CESM1 TOGA ensemble).

FIG. 14. Observed ENSO composites of DJF SAT (8C) and PR (mmday21) using only (a),(d) CP and (b),(d) EP El Niño events during

1920–2013, and (c),(f) their difference (CP–EP). Values not significant at the 10% confidence level based on a two-sided t test are stippled.

5008 JOURNAL OF CL IMATE VOLUME 31



Are the observed ENSO composites subject to a

similar level of uncertainty as those in the Pacemaker

ensembles? What might the observed ENSO composite

have looked like under a different permutation of nat-

ural variability unrelated to ENSO? To address these

questions, we constructed 2000 synthetic ENSO com-

posites from the observations using random sampling

techniques. These synthetic composites provide in-

formation on the range of spatial patterns and ampli-

tudes associated with imperfect estimation of the forced

ENSO signal. The observed SAT composite shows a

statistically significant dipole pattern of positive anom-

alies over western Canada and Alaska and negative

anomalies over the southeastern United States. But al-

though all 2000 synthetic ENSO composites show posi-

tive SAT values in the NW and negative SAT values in

the SE, their amplitudes vary by approximately a factor

of 2.5 between the 5th- and 95th-percentile composite

samples (1.38 to 3.48C for the NW and 20.78 to 21.78C
for the SE). The observed PR composite shows signifi-

cant wetting over the Gulf states and parts of California,

Arizona, and New Mexico, and significant drying over

the Ohio Valley–Upper South and parts of the interior

Pacific Northwest. However, the 5%–95% uncertainty

range on themagnitudes of these regional composite PR

anomalies is substantial: 0.55mmday21 to 0.89mmday21

in the GULF; 20.15mmday21 to 20.69mmday21 in

the PNW (and also the Ohio Valley–Upper South);

and 20.07mmday21 to 11.18mmday21 in CA. While

previous studies highlight that the strong EN events of

1957/58, 1982/83, and 1997/98 each brought copious

amounts of rainfall to CA (Siler et al. 2017; Lee et al.

2018), our results are not unduly influenced by the number

of times these events are sampled in our synthetic com-

posites. In particular, these three events account for

,16% of the ENSO events sampled in 89% of the syn-

thetic ENSO composites, consistent with the results

shown in Figs. 8, 9, and S9, andmake up 9% and 12.5% of

the events sampled in the 10th- and 90th-percentile PR

composites based on CA PR, respectively (Figs. 9e,f).

Although the synthetic ENSO composites based on

observations are necessarily constructed from different

combinations of EN and LN events, differences in mag-

nitude of the composite Niño-3.4 SST index make only a

minor (,5%) contribution to their spread over most of

North America, with slightly higher values (up to 10%)

for SATnear theGreat Lakes and PRover California and

portions of the SE United States, and up to 25% for PR

over central Florida. Removing this dependence on the

composite Niño-3.4 values results in a slight (i.e., on the

order of a few grid boxes) expansion of the regions cov-

ered by robust ENSO signals, but does not quantitatively

affect the results (Fig. S11). Other forms of ENSO

diversity, such as nonlinearities between EN and LN or

different ‘‘flavors’’ of El Niño (EP vs CP), also do not

appreciably affect our quantification of uncertainty on the

observed ENSO SAT and PR composites.

Our results have implications for ENSO reconstruc-

tions based on paleoclimate proxy records of SAT and

PR over North America. In particular, such ENSO re-

constructions will also be subject to uncertainties asso-

ciated with sampling variability, even if the proxies are

perfect indicators of winter climate anomalies. Judicious

choices of proxy record locations based on the un-

certainties provided here may help to narrow this range;

another ameliorating factor may be if the proxy records

integrate climate signals over a broader seasonal win-

dow, as this may help to reduce aliasing from natural

variability unrelated to ENSO (although it may also

weaken the ENSO signal).

Our results have broad implications for how to eval-

uate the realism of ENSO signals in models. In partic-

ular, uncertainty in the pattern and amplitude of the

observed ENSO composite necessitates an approach to

model assessment that considers not only the model’s

forced response to ENSO, but also its representation of

internal variability unrelated to ENSO. In the Pace-

maker ensembles, we can determine the forced response

by averaging ENSO composites across all members of a

given model. Using the 2000 synthetic ENSO compos-

ites constructed for each model simulation and for ob-

servations, we can discriminate between true model

biases in the forced ENSO response and apparentmodel

biases that arise from limited sampling of internal vari-

ability unrelated to ENSO.

Applying this approach to the CESM1 Pacemaker

ensemble, we find that the model significantly over-

estimates internal variability (and hence ENSO com-

posite spread) of SAT over Alaska and parts of the

eastern and southwestern United States, and also sig-

nificantly overestimates (underestimates) internal vari-

ability of PR over the western (southeastern) United

States. Taking these differences in internal variability

into account, we are able to reveal true biases in the

model’s forced ENSO response, including a significant

underestimation of warming over the central Canadian

provinces and U.S. Upper Midwest, a significant un-

derestimation of wetting (drying) over Florida (Ohio

Valley–Upper South), and a significant overestimation

of wetting (drying) over California and Nevada (coastal

British Columbia). Somewhat different model biases in

the forced ENSO response are apparent in the un-

coupled CESM1 TOGA ensemble for reasons discussed

in the appendix. Observational uncertainty in tropical

SSTs used as boundary forcing for themodels represents

an additional potential source of discrepancy between
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the observed and simulated ENSO composites, and

merits investigation.

In summary, even with nearly a century of observa-

tions, quantification of the canonical influence of ENSO

on North American climate is subject to considerable

uncertainty due to aliasing of unrelated climate vari-

ability. This observational uncertainty must be properly

accounted for when evaluating ENSO responses in

climate models. In particular, discriminating between

true model biases in the forced response to ENSO, and

apparent model biases that arise from limited sampling

of internal variability unrelated to ENSO, is essential.
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APPENDIX

CESM1 Pacemaker versus TOGA Simulations

Are there any systematic differences in ENSO com-

posites from the coupled (PACE) and uncoupled

(TOGA) simulations with CESM1, and if so, why? The

spread across the 2000 bootstrapped ENSO composites is

very similar between TOGA and PACE, for both SAT

(cf. Fig. A1a and Fig. 3d) and PR (cf. Fig. A1b and Fig. 4d),

consistent with the dominant role of internal atmospheric

variability on ENSO composite uncertainty discussed in

section 3b. However, the ensemble-mean ENSO com-

posite (i.e., the forced response to ENSO) differs some-

what between TOGA and PACE. In particular, the

ensemble-mean SAT composite shows oppositely signed

biases, with TOGA significantly overestimating the

observed warming over northern Canada by up to 38C,
and PACE significantly underestimating it over south-

central Canada by about the same amount (Fig.A2). Thus,

neither model configuration is clearly superior in terms of

SAT amplitude, although the spatial pattern is more re-

alistic in TOGA than PACE [the pattern correlation (r) of

the ensemble-mean SAT composite against the observed

SAT composite is 0.91 in TOGA compared to 0.75 in

PACE, and the lowest r of any of the individual TOGA

ensemble members (0.82) exceeds the highest r from any

of the individual PACE ensemble members (0.81)]. The

TOGA ensemble-mean PR composite shows realistic

magnitudes of wetting over Southern California and

Nevada and drying over coastal British Columbia,

areas where PACE was biased high; however, TOGA

overestimates the drying over parts of Oregon, Wash-

ington, and Montana and underestimates it in interior

British Columbia, areas where PACE was not signifi-

cantly biased (Fig. A3). While the spatial pattern of the

TOGA ensemble-mean PR composite bears a closer

resemblance to the observed PR composite than does

PACE (r 5 0.76 for TOGA and 0.63 for PACE), there

is overlap between the lowest pattern correlation in

TOGA (0.64) and the highest in PACE (0.68) across

the individual ensemble members.

In summary, there are systematic differences in the

ENSO-forced SAT and PR responses between the

TOGA and PACE configurations of CESM1, with

TOGA showing an improved representation of the

spatial pattern but not amplitude of SAT, and of the PR

FIG. A3. As in Fig. A2, but for PR (mmday21).
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magnitudes over Southern California and Nevada

and coastal British Columbia, compared to PACE. A

10-member CESM1 ensemble with specified observed

time-evolving SSTs (and sea ice) over the entire globe

yields virtually identical results to TOGA (not shown);

thus, the differences between PACE and TOGA are

unlikely to result from ENSO-related SST anomalies in

the extratropics.

What is the origin of the systematic differences in

ENSO responses between TOGA and PACE? To ad-

dress this question, it is helpful to view the surface

climate impacts of ENSO within the context of the

large-scale atmospheric circulation that drives them.

The ensemble-mean ENSO composites of SLP from

TOGA and PACE show negative anomalies over the

North Pacific, with maximum values of 8–10 hPa near

FIG. A4. ENSO composites of DJF PR (mmday21) and SLP (hPa; contours) for the (a) CESM1 TOGA ensemble mean, (c) CESM1

PACE ensemble mean, (e) observations (20CR), and differences between (b) TOGA ensemble mean and observations, (d) PACE en-

semblemean and observations, and (f) TOGAand PACE ensemblemeans. Contour interval is 2 hPa, with negative values dashed and the

zero contour thickened. Stippling in (a),(c),(e),(f) indicates SLP values not significant at the 10% confidence level based on a two-sided

t test. Stippling in (b),(d) indicates that the observed SLP value lies outside of the 5%–95% values from the model’s 2000 bootstrapped

composites.
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the Aleutian Islands, similar to observations (Figs. A2

and A3; see also D17). However, the orientation of the

isobars is more zonal in PACE compared to the NW–SE

tilt evident in observations and TOGA. The SLP dif-

ference between TOGA and PACE indicates onshore

flow of mild maritime air into western Canada, which

may account for the greater warming (Fig. A2f) and

wetting (Fig. A3f) in this region in TOGA relative to

PACE. Farther south, the offshore flow component in

TOGA compared to PACE is likely responsible for the

reduced wetting over California and neighboring states

(Fig. A3f).

The circulation differences in TOGA and PACE, in

turn, may be linked to differences in their tropical PR

responses via Rossby wave dynamics as shown in Fig. A4.

The tropical PR response in TOGA shows wetting over

the central Pacific and drying over the far western Pacific,

similar to observations but with reduced amplitude

(Figs. A4a,e). Here, the observed tropical PR composite

is based on 20CR, but similar results are found using

GPCP (limited to the satellite period starting in 1979) and

ERA20C (Fig. A5). In PACE, this entire pattern is shif-

ted to the west and more equatorially confined, with

maximumwetting over the western equatorial Pacific and

maximum off-equatorial drying over the eastern Indian

Ocean (Fig. A4c). This westward displacement likely

reflects the influence of mean-state biases in the fully

coupled CESM1, in particular a westward-extended equa-

torial SST ‘‘cold tongue’’ that anchors a narrow ‘‘double

ITCZ’’ on either side of the equator (not shown; similar

mean-state biases are found in CM2.1 and MIROC5).

Thus, the PACE protocol is not a panacea because of the

influence of mean-state biases on CESM1’s response to

observed SSTA. The difference in tropical PR responses

between TOGA and PACE shows negative values in

the western Pacific of up to 210mmday21 and weaker-

amplitude positive values in the central Pacific (Fig. A4f).

This is accompanied by an arching SLPwave train over the

North Pacific that appears to emanate from the negative

precipitation center in thewestern tropical Pacific, possibly

indicative of a ‘‘short wavelength’’ Rossby wave response.

This circulation response, in turn, drives the surface cli-

mate response differences noted above.
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