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[1] The magnitude of sea surface temperature variability
in the NINO3.4 region of the equatorial Pacific on decadal
and longer timescales is assessed in observational data,
state-of-the-art (Coupled Model Intercomparison Project
5) climate model simulations, and a new ensemble of
paleoclimate reconstructions. On decadal to multidecadal
timescales, variability in these records is consistent with the
null hypothesis that it arises from “multivariate red noise”
(a multivariate Ornstein-Uhlenbeck process) generated
from a linear inverse model of tropical ocean-atmosphere
dynamics. On centennial and longer timescales, both a
last millennium simulation performed using the Community
Climate System Model 4 (CCSM4) and the paleoclimate
reconstructions have variability that is significantly stronger
than the null hypothesis. However, the time series of
the model and the reconstruction do not agree with
each other. In the model, variability primarily reflects a
thermodynamic response to reconstructed solar and volcanic
activity, whereas in the reconstruction, variability arises
from either internal climate processes, forced responses
that differ from those in CCSM4, or nonclimatic proxy
processes that are not yet understood. These findings imply
that the response of the tropical Pacific to future forc-
ings may be even more uncertain than portrayed by state-
of-the-art models because there are potentially important
sources of century-scale variability that these models do not
simulate. Citation: Ault, T. R., C. Deser, M. Newman, and J.
Emile-Geay (2013), Characterizing decadal to centennial variabil-
ity in the equatorial Pacific during the last millennium, Geophys.
Res. Lett., 40, 3450–3456, doi:10.1002/grl.50647.

1. Introduction
[2] Climate variations originating in the tropical Pacific

disrupt global water and energy cycles [e.g., Trenberth et al.,
1998], with consequences for humans and ecological sys-
tems throughout the world [e.g., Stenseth et al., 2002]. On
interannual timescales, these variations reflect the influence
of processes associated with El Niño/Southern Oscillation
(ENSO). As an interannual phenomenon, ENSO’s statistics
are well observed, and its causes are fairly well understood
[e.g., Trenberth and Caron, 2000; Neelin et al., 1998]. On
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longer timescales, however, variability in the tropical Pacific
is less well-characterized, due in part to the limited duration
and paucity of most observational records [e.g., Deser et al.,
2004]. Investigating such low-frequency variability requires
gleaning information from diverse sources including instru-
mentally based products, paleoclimate archives, and global
climate model simulations.

[3] Characterizing decadal-to-centennial (“dec-cen”) cli-
mate fluctuations in the tropical Pacific is critical to under-
standing how the region may evolve with human-induced
climate change. If dec-cen variability is substantial and
forced by external influences on Earth’s climate, then future
changes may be correspondingly prominent and even pre-
dictable to the extent that future forcing trajectories can
be known. On the other hand, if dec-cen variability is
internally generated, then future changes will be strongly
governed by the interplay between external forcing and
internal variability.

[4] It is clear from paleoclimate archives that dec-
cen variability in the tropical Pacific may be more
prominent than instrumental records alone reveal [e.g.,
Cole et al., 1993; Urban et al., 2000; Cobb et al.,
2003; Conroy et al., 2008; Ault et al., 2009; Tierney
et al., 2010; Li et al., 2011]. It is less clear, however,
how external influences and internal processes generate
variability at these timescales. Climate modeling stud-
ies suggest both components are important: the dura-
tion of the seasons, solar intensity, and volcanic activity
have all fluctuated in the past, and climate simulations
appear sensitive to those forcings [e.g., Emile-Geay et al.,
2007, 2008; Ammann et al., 2007]. On the other hand, dec-
cen variability may be internally generated as a residual of
energetic interannual variability [Vimont, 2005; Ault et al.,
2009; Wittenberg, 2009; Newman et al., 2011b], or from
ocean-atmosphere interactions that occur too slowly to be
considered part of the canonical timescales explained by
ENSO theory. For example, using the Zebiak-Cane (ZC)
model [Zebiak and Cane, 1987], Clement and Cane [1999]
show that multidecadal and longer timescales of variabil-
ity emerge in a very long (150,000 years) control run
as a consequence of nonlinearities in the system. Tropi-
cal Pacific dec-cen variability also emerges without any
external forcing in atmospheric general circulation models
(GCMs) coupled to a simple thermodynamic “slab” ocean
[Dommenget and Latif, 2008; Clement et al., 2011], and it
arises in unforced fully coupled GCMs from deterministic
processes [e.g., Meehl and Hu, 2006; Wittenberg, 2009].

[5] In this study, we evaluate the magnitude of trop-
ical Pacific dec-cen variability in an extensive suite of
data sets including instrumentally based products, climate
model simulations from the Climate Model Intercompari-
son 5 (CMIP5) archive, and a newly published ensemble
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of paleoclimate reconstructions [Emile-Geay et al., 2013a,
2013b] (hereafter referred to as EG13a,b). In each of these
data sets, the magnitude of dec-cen variability is evalu-
ated against the null hypothesis that it is not different from
“multivariate red noise” (commonly known as a multivari-
ate Ornstein-Uhlenbeck process). This expectation is simply
an extension of the more familiar univariate red noise null
hypothesis applied to a vector of time series. We generate
multivariate red noise using a linear inverse model (LIM)
of tropical ocean-atmosphere dynamics [Newman et al.,
2011a, 2011b]. The LIM is empirically derived from late
20th century observational data and as such serves as a
benchmark for the magnitude of dec-cen variability that may
arise from random permutations of the space-time covari-
ance structures that underlie modern tropical Pacific climate.
To our knowledge, this is the first attempt at extending the
linear, stochastically forced paradigm of ENSO variability
[e.g., Penland and Sardeshmukh, 1995] to characterize the
nature of fluctuations in the equatorial Pacific during the last
millennium.

2. Data and Methods
[6] We use the NINO3.4 index, defined as the average

sea surface temperature (SST) from 170ıW–120ıW and
5ıS–5ıN, to characterize ENSO variability in instrumental
products, paleoclimate reconstructions, and model simula-
tions. All NINO3.4 indices reflect 3 month boreal winter
(December-January-February; DJF) means to focus on the
part of the year when the interannual signal is strongest [e.g.,
Rasmusson and Carpenter, 1982].

[7] Instrumental SST data originate from the Kaplan et al.
[1998] data set (1856–2011), the ERSSTv3 data set [Smith
et al., 2008] (1854–2011), and the HadSST2 data set
(1870–2010) [Rayner et al., 2003], which was interpolated
as described in EG13a to produce “HadSST2i.”

[8] Reconstructed NINO3.4 SST time series were esti-
mated from a network of paleoclimate records described in
EG1a,b. Briefly, these reconstructions were generated from
multiple different observational products using a hybrid
“regularized expectation-maximization” (RegEM) “trun-
cated total least squares” (TTLS) methodology described
by Mann et al. [2008]. Although an alternative reconstruc-
tion method was also employed in EG13a (composite plus
scale), its fidelity on dec-cen timescales was shown to be
demonstrably worse than RegEM’s, and we therefore focus
only on the results obtained from RegEM (see the sup-
porting information). The paleoclimate data used for the
reconstruction include tree-ring records from Asia, Indone-
sia, and both American continents; coral records from the
Red Sea, Indian Ocean, tropical Pacific, and Caribbean Sea;
ice core records from Asia and South America; sediment
cores from the East Coast of Africa and the Cariaco Basin
(Venezuela); and a speleothem record from the Arabian
peninsula. As in EG13b, we compare this reconstruction
with two recent studies [Wilson et al., 2010; Mann et al.,
2009], which both employed RegEM and used some of
the same underlying proxy data to reconstruct SST in the
equatorial Pacific.

[9] Simulated SSTs are from the following sources:
[10] 1. A long (1300 year) control integration of the

Community Climate System Model Version 4 (CCSM4)
[Gent, 2011; Deser et al., 2011]. Solar and greenhouse gas
(GHG) forcings for this simulation were held constant at

1850 levels. The atmosphere was simulated on a 0.9ı latitude
and 1.25ı longitude grid, and the ocean was simulated on
a nominal 1ı by 1ı grid. Despite remarkable improvements
in ENSO representation in CCSM4 over CCSM3 [Gent,
2011], its amplitude remains overestimated with respect to
observations [Deser et al., 2011].

[11] 2. A CCSM4 “last millennium” integration. For this
simulation, the model was run with time-evolving external
forcing components (i.e., solar and volcanic activity, land
use change, and GHG increases) from 850 C.E. through
2005 C.E. These components follow the Paleoclimate Model
Intercomparison Project III (PMIP3) protocols for last mil-
lennium experiments described in Schmidt et al. [2012].
Their implementation in CCSM4 is documented by Landrum
et al. [2012].

[12] 3. Six 20th century CCSM4 century integrations,
run at the same resolution as the last millennium simulation
and the preindustrial control [Meehl et al., 2012].

[13] 4. An ensemble of 24 “pre-industrial” control sim-
ulations from state-of-the art models that are currently
available as part of the CMIP5 project (see Table S1). Impor-
tantly, these experiments were run without external changes
to the boundary conditions. This set of integrations allows
us to examine the magnitude of dec-cen variability across
a wide range of models with different parameterizations,
resolutions, and physics.

[14] 5. Runs from six models that contributed “last
millennium” simulations to the CMIP5 archive. Like the
CCSM4 simulation, these runs were forced with externally
varying boundary conditions, although not necessarily the
same ones used in the CCSM4 simulation (see Schmidt et al.
[2012] for a review of all last millennium forcing options).
As different time domains were selected by the individual
modeling groups to simulate the last millennium, we only
considered the 1000 to 1850 C.E. period of overlap from the
individual runs.

[15] 6. A 150,000 year unforced simulation of the ZC
model [Zebiak and Cane, 1987; Karspeck et al., 2004],
which we divided into 150 nonoverlapping 1000 year
segments to create a 150-member ensemble. The ZC
model is one of intermediate complexity that simulates
ENSO through simplified ocean/atmosphere physics and
nonlinear thermodynamic coupling between the ocean
and atmosphere. Its geographic domain is restricted to
29ıS–29ıN and 124ıE–80ıW, which isolates the tropical
Pacific. Including output from this model allows us to assess
the potential role of nonlinear air-sea coupling in generating
dec-cen variability. In this model, as in CCSM4, ENSO is
too energetic [Zebiak and Cane, 1991].

[16] Time series of the primary NINO3.4 data sets con-
sidered here are shown in Figure 1. The figure also shows
globally averaged downward solar flux annual anomalies at
the top of the atmosphere from the CCSM4 last millennium
simulation. These anomalies reflect the combined influences
of solar and volcanic activity as well as other radiative
forcing terms.

[17] Power spectra of the NINO3.4 time series were esti-
mated using the multitaper method [Thomson, 1982]. We
used a time-bandwidth parameter of four, which allows for
the application of seven tapers to estimate robust spectra
at the cost of some bandwidth resolution. Our findings are
consequently most relevant to the underlying shape of the
spectrum and not necessarily to any narrow-band features.
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d) CCSM4 last millennium simulation (Landrum et al., 2012)
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Figure 1. Time series of NINO3.4 SST anomalies from the following: (a) the HadSST2i reconstruction of Emile-Geay
et al. [2013a, 2013b] with coverage from 1150 C.E. through 1995 C.E., (b) one realization of the 100-member, stochas-
tically forced, LIM ensemble, (c) the CCSM4 control simulation, and (d) the forced CCSM4 last millennium simulation.
In Figures 1a–1d, gray curves show boreal winter (DJF) anomalies, and black lines show 25 year moving averages. (e)
The time series of radiative anomalies in the CCSM4 last millennium simulation. The black triangles on Figures 1a and 1d
denote major volcanic eruptions with total aerosol injections estimated to be as large or larger than Pinatubo.

Confidence limits for NINO3.4 spectral densities were esti-
mated from the LIM simulations (see section 3) by sorting
each realization’s NINO3.4 spectrum at each frequency.

3. Null Hypothesis
[18] We evaluate the magnitude of dec-cen variability

in NINO3.4 indices against the null hypothesis that it is
not different from what would be produced by multivari-
ate red noise generated by the LIM of Newman et al.
[2011a, 2011b]. This LIM captures key statistics of trop-
ical Pacific variability from 1960 to 2000, including the
shape of the NINO3.4 power spectrum on interannual
to decadal timescales [Penland and Sardeshmukh, 1995;
Newman et al., 2011a, 2011b].

[19] The LIM assumes that tropical Pacific dynamics can
be approximated by a system evolving according to the

following Langevin equation of a multivariate Ornstein-
Uhlenbeck process:

dx
dt

= Lx + Fs (1)

where x is an ocean state vector (e.g., evolving maps of
variables important to the system), L is a linear operator (a
matrix), and Fs is a white noise representation of the seasonal
and spatial statistics of atmospheric weather [e.g., Newman
et al., 2011a]. From equation (1), it is clear that our null
hypothesis has the same mathematical form as univariate red
noise, except that x is a vector of time series (hence, the term
multivariate red noise). We suggest that equation (1) is a bet-
ter null hypothesis for the spectrum of climate variability
than its univariate analog because power spectra calculated
from the individual elements of x may have peaks that
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arise from evolving, asymptotically damped anomalies [e.g.,
Kleeman, 2010], yet do not reflect deterministic nonlinear or
nonstationary processes.

[20] The variables chosen for the ocean state vector
(x in equation (1)) are seasonal anomalies of SST, sea surface
salinity (SSS), 20ıC isotherm depth (a proxy for the thermo-
cline depth), and wind stress in the tropics (25ıS to 25ıN).
Importantly, the LIM is developed from late 20th century
data using only the zero lag and one season (3 month) lag
covariance matrices of x, so that any variability arising on
longer timescales is solely a consequence of seasonal covari-
ance and autocovariance structures that are present in the
observations (for details on constructing a LIM, see Penland
and Sardeshmukh [1995]). The LIM was run 100 times at
monthly resolution for 1000 years to generate a large ensem-
ble of climates with statistics nearly identical to those of the
late 20th century.

4. Results
[21] Several qualitative features distinguish dec-cen vari-

ability in the individual records from one another (Figure 1).
In the reconstruction, the 25 year running mean fluctuates on
decadal to multicentury timescales. From the 12th through
17th centuries, its values are close to modern values, but dur-
ing the 18th century, they are about half a degree lower on
average. Some variations in the 25 year running mean of one
representative member of the LIM ensemble are also evi-
dent, whereas the CCSM4 control appears to exhibit almost
no variability on these timescales. The forced CCSM4 sim-
ulation exhibits several major drops in the 25 year mean
during the second half of the 13th century, the late 15th cen-
tury, and the early 19th century. These drops correspond well
with large volcanic eruptions used to force the model (black
triangles). The reconstruction, in contrast, does not appear
to exhibit any consistent anomalies at the times of these
eruptions.

[22] We compare NINO3.4 power spectra from observa-
tions, reconstructions, and models with the LIM in Figure 2.
On interannual through centennial timescales, the LIM
simulates variability that encompasses the spectra of the
three instrumental data sets and of the reconstructions. As
expected, it does not capture the excessively energetic inter-
annual peak in variance simulated by CCSM4 during the
20th century (because it is a LIM based on 20th cen-
tury observations, not CCSM4). At centennial and lower
frequencies, spectral densities in both the reconstructions
and the last millennium simulation are well above what
the LIM generates (Figure 2b), and they are in remark-
ably good agreement with each other despite the lack of
temporal agreement between the two series (Figure 11 and
correlations in Table S1).

[23] The LIM ensemble also appears to capture much of
the interannual variability simulated by the unforced ZC and
CMIP5 ensembles (Figures 2c–2d), although the ZC 5 year
spectral peak exceeds the upper limit (Figure 2c). Simi-
larly, several of the control simulations exhibit interannual
variability beyond the upper bounds of the LIM ensemble
(Figure 2d). Despite this, on timescales longer than about
20 years, the CMIP5 ensemble is almost entirely within the
range of, or slightly below, the LIM simulations, whereas
some of the ZC simulations (about 27%) exhibit dec-cen
variance beyond that of the LIM.

[24] Centennial (200 to 1000 year) timescales of vari-
ability from all data sets considered here are compared in
Figure 2e. Centennial variability in the EG13a,b reconstruc-
tions ranges from well above the upper bound of the LIM
for the ERSSTv3 and HadSST2i reconstructions to only
nominally above it for the Kaplan product. Although the
NINO3 reconstruction of Mann et al. [2009] agrees well
with the EG13a,b range, the Wilson et al. [2010] reconstruc-
tions do not. Instead, they exhibit centennial variability that
is below the lower bound of the LIM, possibly reflective
of how low-frequency fluctuations were removed from the
underlying data (complete spectra of these reconstructions
are shown in Figure S1). As in Figure 2, about 27% of the
ZC runs have variability above the upper limits of the LIM,
with only one CMIP5 control simulation that is nominally
above it (GFDL-CM3; Figure S2). The CMIP5 simula-
tions of the last millennium are generally more energetic on
centennial timescales than their respective control integra-
tions, although many fall within the LIM confidence limits
despite being forced by time-varying boundary conditions
(Figure 2e and Figure S3).

[25] In the supporting information, we present additional
analyses to clarify the sensitivity of our main results to
certain methodological details. For example, an alternative
technique for estimating the power spectrum (the Blackman-
Tukey method) yields qualitatively similar results to those
shown in Figure 2 (Figure S4), as does using a LIM devel-
oped from the ERSSTv3 data set (Figure S5). Likewise,
the power spectrum of the EG13a,b reconstruction during
the preindustrial era (1150 to 1850 C.E.) is nearly identical
to the full reconstruction (Figure S6). However, we found
that the CCSM4 NINO3.4 spectra are somewhat less ener-
getic when computed over time periods that exclude the
1850–2005 interval (Figure S5).

[26] Finally, there is necessarily reconstruction uncer-
tainty, which is explored extensively in EG13a,b. Evidence
presented in those studies suggests that dec-cen variability
in the NINO3.4 reconstruction is likely underestimated, due
in part to the “regression dilution problem,” which trades
variance for bias and is inherent to all regularized regression-
based methods [Frost and Thompson, 2000; Tingley et al.,
2012]. Additional analyses in our supporting information
illustrate that dec-cen variability is not systematically con-
nected with any one proxy type (Figures S7 and S8) or
region (Figure S9). In addition, the time evolution of the
dec-cen fluctuations in the reconstruction are not the prod-
uct of any one site (Figure S10). These results support the
arguments made in EG13a,b that the magnitude of dec-cen
variability in the reconstructions cannot be explained by
known methodological, proxy, or other nonclimate factors.
Thus, the fortuitous agreement in the magnitude of variabil-
ity on centennial and longer timescales in the reconstruction
and the CCSM4 last millennium simulation remains to be
explained.

5. Summary and Discussion
[27] We have assessed dec-cen variability in model,

instrumental, and paleoclimate representations of NINO3.4
variability using an empirical multivariate red noise model
(a LIM) as a benchmark. Decadal to multidecadal variabil-
ity during the past millennium may not require exogenous
mechanisms, but rather result from different permutations of
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Figure 2. NINO3.4 power spectra from: (a) the CCSM4 20th century ensemble (light blue) and the instrumental data
(brown); (b) an ensemble of NINO3.4 reconstructions (green), the CCSM4 control run (light blue), and the CCSM4 last
millennium simulation (light orange); (c) an ensemble of unforced Zebiak-Cane simulations (gold); and (d) unforced CMIP5
simulations (light blue). See Figures S2 and S3 for individual CMIP5 model runs. In all panels, the distribution of variance
generated from the LIM ensemble is shown in gray with black lines marking the upper and lower bounds. The range
encompassed by the reconstructions is shaded in Figures 2b and 2d, while the individual spectrum from each product is
shown in Figure 2c for clarity. (e) Mean densities of NINO3.4 spectra on centennial (200 to 1000 year) timescales are
shown. Gray shading indicates the range simulated by the LIM. Symbols, from left to right, represent estimates from the
following products: the three reconstructions of Emile-Geay et al. [2013a] (squares); the RegEM-based reconstructions
of NINO3 [Mann et al., 2009] and NINO3.4 [Wilson et al., 2010] (circles: the two Wilson et al. [2010] reconstructions
differ in their predictor networks, with “TEL” composed of teleconnected predictors, and “COA” developed from “center
of action” sites in the tropical Pacific); the distribution of unforced ZC simulations shown in Figure 2 (gold vertical line);
the unforced control simulations (piControls) of the CMIP5 archive (triangles); and the forced, last millennium simulations
(past1000) (diamonds) over the period 1000–1850 C.E. for valid intermodel comparison (not all modeling groups ran
transient simulations from 850 to 2005). Models with both long (>500 year) control runs and last millennium simulations
are color-coded according to the legend on the right.
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variability and autocorrelation that are consistent with the
statistics of seasonal SST anomaly evolution during the latter
half of the 20th century. This result was hinted at in Newman
[2007], Newman et al. [2011a], and Ault et al. [2009] but has
been tested more rigorously here.

[28] On centennial and longer timescales, reconstructed
and simulated NINO3.4 variability is above what the LIM
can produce. However, the origin of this variability differs
in the models and reconstructions. In CCSM4, centennial
variability arises primarily as a thermodynamic response to
external influences, especially explosive volcanism: a sim-
ple one-dimensional stochastic climate model shows that the
power spectrum of radiatively induced temperature anoma-
lies on dec-cen timescales agrees well with the CCSM4
last millennium simulation for the period of 850 to 1850
C.E. (Figure S11). As most of the forced variability in the
radiative budget of the last millennium simulation is due to
volcanic aerosols (e.g., Figure 1 and also Landrum et al.
[2012]), this suggests that the majority of the low-frequency
variability in the model’s NINO3.4 region is likewise driven
by reconstructed volcanic activity.

[29] In contrast to the primarily volcanic origin of cen-
tennial variability in CCSM4, epochs following large erup-
tions (e.g, 1258, 1453, and 1816 C.E.) are not obviously
discernible in the reconstruction (Figure 1). Chronologi-
cal uncertainty in paleoclimate records may prevent the
reconstruction from recording short-lived volcanic events
(EG13b), but this effect would only explain the lack of a
strong volcanic signal in the reconstruction and not the pres-
ence of substantial dec-cen variability overall. Moreover, the
reconstruction is significantly anticorrelated to the 200 year
solar signal, whereas CCSM4 and almost all the other
CMIP5 last millennium simulations are positively correlated
to it (see Table S3 and EG13b). In total, CMIP5 model and
reconstruction low-pass time series mostly range from being
uncorrelated to anticorrelated to each other (see Table S4).
As discussed in EG13b, this finding may imply that models
do not simulate dynamical responses to increased insola-
tion that are consistent with the paleoclimate record [e.g.,
Clement et al., 1996].

[30] Although explosive volcanism and solar oscillations
appear to impart centennial variability in the reconstruc-
tions and the models, we cannot rule out the possibility
that these variations largely arise from internal climate fluc-
tuations. Both the LIM and especially the ZC ensembles
generate centennial-scale amplitudes that come close to the
lower bound of the EG13a,b reconstructions. Hence, if the
Kaplan reconstruction is most reflective of the true variance
of centennial-scale fluctuations, then these timescales are
only nominally above the distribution of the LIM and within
the ZC spread (Figure 2e). Nonetheless, the ERSSTv3,
HadSST2i, and Mann et al. [2009] reconstructions are all
above the LIM and ZC upper bounds, while unforced
CMIP5 simulations are not. Consequently, if the variabil-
ity is indeed largely unforced, its magnitude is well above
what any state-of-the-art models produce naturally in the
NINO3.4 region.

[31] The differences in modeled and reconstructed
NINO3.4 variability during the last millennium have impor-
tant implications for anticipating the role of climate change
in the equatorial Pacific during the coming century. Namely,
if the estimates of dec-cen variance obtained from the mul-
tiproxy reconstructions reflect climate responses to external

forcings, then those forced responses are different in nature
than in the CCSM4 simulation. On the other hand, if
they arise from nonclimate sources of variability, then they
reflect processes in the individual archives that filter climate
information in ways we do not yet understand. This possi-
bility has important implications for our study and beyond
and argues that continuing efforts to develop “for-
ward” models of individual paleoclimate archives [e.g.,
Anchukaitis et al., 2006; Evans et al., 2006; Truebe
et al., 2010; Thompson et al., 2011] will deepen
our understanding of dec-cen variability in this region
and elsewhere.

[32] Finally, if the proxy-inferred magnitude of dec-cen
variability is accurate and arises from internal sources—that
is, independent of any forcing—our current generation of
global climate and Earth system models, as well as the non-
linear ZC model of exclusively tropical processes, appear
unable to generate variance commensurate with that seen in
the reconstructions. If this is the case, then natural variability
may play a fundamental role in modulating forced changes
in the region in the future, and we may not yet have an ade-
quate numerical modeling paradigm to fully represent the
range of future climate states that could emerge in the tropi-
cal Pacific as a consequence of these two combined effects.
Future work on the spatial structure of dec-cen variability
could help disentangle the aforementioned uncertainties as
forced, unforced, and nonclimate sources of variance at these
timescales may differ in their geographic patterns.
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