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Spontaneous, internally-generated variability of the climate system is pervasive. On the multide-
cadal time scale it dominates the variability of surface air temperature averaged over extratropical 
land areas as large as the contiguous United States, and it modulates the rate of rise of global mean 
temperature in response to the buildup of greenhouse gases. Unforced variability is one of the fac-
tors that imposes limitations on the degree of confidence that can be attached to assessments and 
predictions of human-induced climate change. This chapter summarizes results of some recent 
studies based on the analysis of large ensembles of numerical integrations run with a suite of dif-
ferent atmospheric initial conditions but with the same prescribed external forcing scenario. The 
future trajectory of the real climate system is, in some sense, like the trajectory of an individual 
member of such an ensemble. The diversity of the trends among the different ensemble members 
is a part of the irreducible uncertainty inherent in projections of future climate change. It is shown 
how statistical methods can be used to diagnose the causes of this diversity, most of which is in re-
sponse to member-to-member diversity in the atmospheric circulation trends, as reflected in the 
associated patterns of the sea-level pressure trends. Interactions between the atmosphere, oceans, 
and land also contribute to the variability of surface air temperature trends on the multidecadal 
time scale, as discussed in Chapters XX and XX. It is argued that in the face of such large uncer-
tainties in the attribution of climate change in the extratropics, more attention should be focused 
on climate change in the tropics, where the greenhouse warming signal stands out more clearly, 
and on the broader suite of environmental issues that impact food security and the viability of eco-
systems. 
 

1.  Introduction 

Many questions concerning the nature and 
causes of climate variability on the multide-
cadal time scale are still unresolved. For ex-
ample, there is no consensus within the scien-
tific community as to whether time-varying 
forcing associated with aerosols or whether a 
strengthening of the Atlantic Meridional Over-

turning Circulation was mainly responsible for 
the mid-20th century hiatus and the recent 
slowdown in the rate of global warming. Nor 
is it clear why the Arctic has experienced rap-
id warming during the past decade while sur-
face air temperatures over the Northern Hemi-
sphere as a whole warmed less than in the two 
prior decades, or why wintertime temperatures 
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over the Northern Hemisphere continents 
poleward of 40°N warmed three times as rap-
idly as global-mean (land plus ocean) annual-
mean surface air temperature during the late 
20th century (e.g., see Trenberth et al. 2007). 
These large spatial and temporal differences in 
the rate of warming stem from the fact that the 
climate system is varying on the multidecadal 
time scale in response to its own internal vari-
ability as well as to a variety of natural and 
anthropogenic forcings. It is often difficult to 
distinguish between internally generated low 
frequency climate variability and human-
induced climate change. In the words of the 
Technical Summary of the IPCC’s Fourth As-
sessment Report, “Difficulties remain in at-
tributing temperature changes at smaller than 
continental scales and over time scales less 
than 50 years.” (Solomon et al. 2007). These 
ambiguities can be expected to persist until the 
signature of human-induced climate change 
becomes large enough to stand out clearly 
above the natural “background variability”, as 
is projected to occur in the second half of this 
century (Deser et al. 2012a). 

 The causes of surface air temperature 
(SAT) trends over the continents can be for-
mally separated into the four categories listed 
in Fig. 1, which are arranged in the form of a 2 
x 2 matrix, the columns separating thermody-
namically- versus dynamically-induced SAT 
variability and the rows separating forced ver-
sus free variability. In this terminology, ther-
modynamically-induced refers to SAT changes 
induced by time-varying radiative fluxes or by 
time-varying fluxes of sensible and latent heat 
at the Earth’s surface, exclusive of any con-
comitant changes in the atmospheric circula-
tion and dynamically-induced denotes SAT 
changes attributable to changes in the atmos-
pheric circulation, irrespective of their cause. 

The term forced refers to responses to exter-
nally imposed changes in the Earth’s energy 
balance, including both anthropogenic influ-
ences and natural forcings such as volcanic 
eruptions, solar variability and, on long time 
scales, orbital changes. Forced, thermodynam-
ically-induced trends in global-mean tempera-
ture (the upper left box in Fig. 1) plays a cen-
tral role in projections of human-induced cli-
mate change. However, for attribution of re-
gional and perhaps even global climate trends 
on the multidecadal time scale, the other three 
categories need to be considered as well.  

 If the global atmospheric circulation 
changes systematically in response to human-
induced global warming or due to natural 
causes it will result in further SAT changes 
that can be said to be dynamically-induced 
(the upper right box in Fig. 1). Examples of 
dynamically-induced climate change include a 
circulation-induced poleward amplification of 
the temperature trend at the Earth’s surface 
(Alekseev et al. 2005), a widening of the trop-
ical Hadley cells (Lu et al. 2007), a poleward 
shifting of the extratropical storm tracks (Yin 
2005), and a systematic weakening of the trop-
ical circulations (Vecchi and Soden 2007). It 
has been proposed that the “robust response to 
global warming” includes a suite of circula-

FIG. 1. A scheme for categorizing the factors that con-
tribute to trends in regional surface air temperature. See 
text for explanation. 
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tion-related changes that can be inferred from 
basic conservation laws (Held and Soden 
2006).  Other examples of externally forced 
dynamical responses include changes in the 
wintertime circulation over high northern lati-
tudes induced by large volcanic eruptions 
(Robock and Mao 1994; Shindell et al. 2001) 

and changes in the monsoon circulations in 
response to the changing meridional profile of 
insolation induced by orbital changes 
(Kutzbach 1981). 

 Spontaneously occurring changes in the 
amplitude and polarity of preferred atmospher-
ic circulation patterns such as the Northern 
and Southern Hemisphere annular modes 
(Wallace and Thompson 2002) or the patterns 
observed in association with ENSO (Nitta and 
Yamada 1989; Trenberth and Hurrell 1994; 
Zhang et al. 1997), as represented by the lower 
right box in Fig. 1, should induce regional 
SAT trends on the multidecadal time scale. 
The amplitude of the dynamically-induced 
SAT changes tend to be much larger over land 
than over sea, because of its lower heat capaci-
ty. Hence, if the dynamically-induced SAT 
trends project strongly upon the land-sea dis-
tribution, they may contribute to the hemi-
spherically or globally averaged temperature 
trend; e.g., if they were to change in a manner 
so as to cool the oceans and warm the land, 
that would constitute a positive contribution. 
Dynamically-induced warming in response to 
atmospheric circulation changes has been in-
voked to account for the rapidity of the winter-
time warming over Eurasia and North Ameri-
ca poleward of 40°N during the late 20th Cen-
tury (Hurrell 1996; Wallace et al. 1995, 1996; 
Bracco et al. 2004). 

 In most of the existing literature on the im-
pacts of the unforced (or internal) variability 
of the climate system it is assumed that the 

associated regional or global temperature 
trends over land are mediated by changes in 
the atmospheric circulation. However, it is 
also possible that a component of the SAT 
trends could be thermodynamically-induced 
(the lower left box in Fig. 1). For example, it 
has been suggested that the ENSO cycle af-
fects SAT not only through planetary-scale 
teleconnections (the lower right box), but also 
by modulating the surface energy fluxes over 
the equatorial Pacific cold tongue region 
(Yuleva et al. 1994; Chiang and Sobel 2002). 

It has recently been proposed the sea surface 
temperature variations over high latitudes of 
the Atlantic Ocean and the Arctic Ocean that 
occur in association with unforced variations 
in the intensity of the meridional overturning 
circulation on the multidecadal time scale 
might be capable of causing even larger SAT 
variations over Eurasia on the multidecadal 
time scale (Semenov et al. 2010). 

 In the world of models, the distinctions be-
tween the four boxes are clear, at least in prin-
ciple. Anthropogenically-forced climate 
change can be distinguished from internally 
generated, free climate variability based on a 
suite of simulations, performed with a single 
model in which each ensemble member is 
started from a different set of initial conditions 
and run with the same prescribed, time-
varying external forcings. In principle, the 
trends in the ensemble-mean of the simula-
tions can be identified with the externally 
forced climate change “signal” and the depar-
tures of the trends in the individual realiza-
tions from the ensemble mean trends are at-
tributable to the internal variability of the sim-
ulated climate system. This methodology is 
useful when the number of individual realiza-
tions is large enough to ensure a high level of 
statistical significance. However, thus far, en-
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sembles sizes in the CMIP simulations have 
been so small that it has been necessary to use 
multi-model ensemble means to obtain statis-
tically significant results, in which case inter-
nal variability and model-to-model differences 
both contribute to the departures of the trends 
in the individual realizations from the ensem-
ble-mean trend, rendering attribution problem-
atical. In principle, thermodynamically versus 
dynamically forced variability can likewise be 
distinguished through experimentation with 
climate models, but in practice the design of 
experiments that permit one kind of forcing 
but not the other is not straightforward. 

 Just how applicable the results derived 
from the model world are to the real world 
depends upon how well the models run with 
and without various prescribed external forc-
ings are able to simulate the internally gener-
ated low frequency variability of the climate 
system. With only one observed climate tra-
jectory that can be used as a basis for validat-
ing the models, this question can only be ad-
dressed in a probabilistic way. Validating cli-
mate models requires a robust characterization 
of the low frequency variability in the histori-
cal climate record, including temporal means, 
variance and covariance statistics, and spectra. 
To obtain robust estimates of these quantities 
(i.e., estimates with a sufficient number of sta-
tistical degrees of freedom) it is necessary to 
restrict the analysis to frequencies at least an 
order of magnitude higher than one cycle over 
the length of the ~100-year-long historical 
record, e.g., by applying a high pass filter. At-
tribution of variability with frequencies lower 
than this cutoff frequency is inherently ambig-
uous. Multidecadal variability falls within this 
“twilight zone” in which attribution can be 
performed only in a probabilistic way. 

 Another factor that limits our ability to di-
agnose the decadal-scale variability in the cli-
mate record is the fact that inherently stochas-
tic variability on the interannual time scale 
associated, for example, with the ENSO cycle 
or with large excursions of the Northern and 
Southern Hemisphere annular modes is capa-
ble of inducing substantial sampling variabil-
ity on the multidecadal time scale. For exam-
ple, it has been questioned whether the so-
called Pacific Decadal Oscillation (PDO: 
Mantua et al. 1997), which is alleged to be a 
multidecadal phenomenon is merely a mani-
festation of such stochastic, sampling variabil-
ity (Newman et al. 2003).  

 Regardless of the mechanisms that give 
rise to it, multidecadal climate variability me-
diates the rate of rise of global-mean tempera-
ture. Performing a “dynamical adjustment” to 
remove, or at least reduce the contribution of 
these circulation changes that contribute to or 
detract from the rate of rise in global-mean 
temperature simplifies the space-time structure 
of the surface air temperature record and ren-
ders it more spatially and seasonally coherent 
(Wallace et al. 1995; Thompson et al. 2009). 

 The existence of internally generated sam-
pling variability is well known and is dis-
cussed extensively in reviews of Barnett et al. 
(2005) and Hegerl et al. (2007) and the refer-
ences therein. Various approaches have been 
used to estimate the uncertainty in past and 
projected SAT trends that is attributable to 
such “climate noise,” but the emphasis in the-
se studies has generally been on establishing 
the statistical significance of historical or pro-
jected climate trends rather than on the charac-
teristics of the noise itself. In many studies the 
noise is represented as formless error bars 
flanking the observed, reconstructed, or pro-
jected “signal.” In reality, climate noise exhib-
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its distinctive space-time structure that can 
mimic that of human-induced climate change. 
Later in this chapter we will recall two rela-
tively recent instances in which apparent secu-
lar trends deemed as having been beyond the 
range of natural variability have subsequently 
reversed, suggesting that they were, in fact, 
internally generated. 

 In this chapter we will summarize the state 
of our knowledge of internally generated in-
terdecadal variability of the climate system. In 
the next section we will show how the inter-
play between free and forced climate variabil-
ity complicates the attribution of global warm-
ing and regional climate impacts. In Section 3 
we show examples of the dynamical contribu-
tion to SAT trends and we demonstrate how 
performing a dynamical adjustment can sim-
plify the representation of climate change in 
the historical record. In Section 4 we offer a 
few brief comments relating to the internally 
generated thermodynamically-induced varia-
bility. In the final section we summarize and 
discuss the implications of these results more 
generally. 
 
2. On the role of internally-generated cli-
mate variability in climate change 

 In this section we will discuss the role of 
internally-generated climate variability in cli-
mate change on space scales ranging from re-
gional to global.  We will begin in Section 2.1 
by considering the diversity and spatial pat-
terns of surface air temperature (SAT), sea 
level pressure (SLP) and precipitation trends 
in a 40 member ensemble of simulations run 

with Version 3 of the Community Climate 
System Model (CCSM3) forced with the A1B 
greenhouse gas scenario initialized in 2000 
and integrated forward in time through 2060. 
Details of the model simulations may be found 
in Deser et al. (2012a). Then in Section 2.2 we 
will show and discuss observations and simu-
lations of global warming during the 20th 
Century. In interpreting these results it should 
be noted that existing climate models exhibit 
substantial diversity with respect to their mean 
climates and the level of internally generated 
climate variability. Hence, the results present-
ed here, which are derived from only two of 
these models, should be regarded as illustra-
tive, but not necessarily representative of the 
behavior of the real climate system. 

 
2.1. Insights derived from projections of fu-
ture trends 

 As background for the discussion in this 
subsection we show in Fig. 2a,c the ensemble 
mean of the 56 year (2005–2060) December-
February (DJF) SLP and SAT trends in the 40 
member CCSM3 ensemble in raw (hPa per 56 
years; °C per 56 years) and standardized form 
(Fig. 2b,d respectively). The SLP trends in the 
ensemble mean map range up to several hPa 
(e.g., off the west coast of Canada) but with 
the exception of a few patches in the tropics, 
they are generally much less than one standard 
deviation and therefore may be interpreted as 
sampling fluctuations. In contrast, the ensem-
ble mean SAT trend  (Fig. 2d) exhibits a ro-
bust global warming signal, with an average 
warming of 2–3 standard deviations over the 
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Fig. 2.  DJF sea level pressure (SLP) and surface air temperature (SAT) trends for 2005-2060 in a 40-member en-
semble of simulations with the CCSM3 climate model. Left panels (a) Ensemble-mean SLP trend; (b) Ensemble-
mean SAT trend. Right panels (c) Standardized ensemble-mean SLP trend (SLP*) computed by dividing the ensem-
ble mean trend at each grid point by the standard deviation of the 40-member ensemble trends at the same grid point 
and (d) Standardized ensemble-mean SAT trend (SAT*). From Deser et al. (2012a). 

FIG. 3. Partitioning of the 56-year temperature trends in Ensemble Members #4 and #22 into a component forced by 
the buildup of greenhouse gases and a residual trend attributable to internally generated variability. Adapted from 
Deser et al. (2013). 
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Northern Hemisphere continents. In agreement 
with observations, the “signal to noise ratio” of 
the warming trend is larger in the tropics than 
at higher latitudes (Mahlstein et al. 2011, 
2012).  

 The diversity of the patterns in SAT trends 
in the 40 individual ensemble members is il-
lustrated by contrasting the 2005–2060 trends 
in Members #4 and #22, which correspond to 
the weakest and strongest warming trends av-
eraged over the contiguous United States. In 
Fig. 3 the trends for these two ensemble mem-

bers are partitioned into “Forced” and “Natu-
ral” components, the former defined by the 
ensemble mean trend and the latter by the de-
parture of the trends in these two ensemble 
members from the ensemble mean trend. It is 
evident that the “Natural” component of the 
trend, which is attributable to internally gener-
ated variability, is as large as the “Forced” 
component. 

 Figure 4 shows selected time series of SAT 
in Ensemble Members #4 and #22. The glob-
al-mean SAT trend (land areas only) is quite 

FIG. 4. (Left panels) DJF temperature trends during 2005–2060 (°C per 56 years). Top panel shows the 40-member 
ensemble mean; middle and bottom panels show the corresponding trends in Members #4 and #22. Right panels show 
DJF time series for selected regions and specific locations as indicated by the labeling and marked by the open circles 
in the left panels). The black segments of the curves show observed records from 1910–2008 (minus the long-term 
mean); the red and blue segments show model projections for 2005–2060 based on the ensemble members with the 
largest and smallest projected trends, respectively, for each region or location. Dashed red and blue lines show the 
best-fit linear trends in these same ensemble members. For visual clarity, time mean SAT in the model projections are 
adjusted to match to observations averaged over their common period of record 2005–2008. From Deser et al. (2012b). 
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comparable in the two ensemble members but 
the regional and local trends over the contigu-
ous United States (CONUS) have a profound-
ly different character. In Member #22 average 
warming over the CONUS over the 56 year 
period is ~3°C, whereas in Member #4 it is 
only ~1°C and cooling occurs over parts of the 
Pacific Northwest and the northern Rockies. 

 The patterns shown in Figs. 2–4 are for the 
boreal winter season December through Feb-
ruary (DJF) when the internally generated var-
iability is greatest. However, the spatial pat-
terns in individual members of the CCSM3 
40-member ensemble also exhibit substantial 
diversity during the boreal summer June-
August (JJA), as shown in Fig. 5. The con-

trasts between outliers are not as large as dur-
ing winter but they are still appreciable. 

 In the summertime precipitation trends 
based on the same 40-member ensemble, most 
ensemble members exhibit positive trends 
over Canada and Alaska, but a wide member-
to-member diversity of the rainfall trends over 
the continental United States. The two exam-
ples shown in Fig. 6 portray sharply con-
trasting future rainfall trends over the Great 
Plains and Midwest relative to the 2005–2008 
rainfall climatology in that ensemble member. 
Large ensembles are required to detect statisti-
cally significant precipitation trends in simula-
tions with climate models and there is no 
guarantee that nature will conform to the en-

Fig. 5. As in Fig. 4 but for Ensemble Members #3 and #31, the most contrasting runs in JJA. From Deser et al., 
(2012b). 
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semble-mean projection. It follows that unless 
the CCSM is seriously underestimating the 
role of soil moisture feedbacks, regional pre-
cipitation trends forced by the buildup of 
greenhouse gases are not likely to become de-
tectable above the internally generated back-
ground variability in the observations until 
well beyond 2060.                

 
2.2. Observed and simulated 20th Century 
trends 

 Historical reconstructions of the climate of 
the 20th century provide an even more graphic 
illustration of the inherent difficulties in com-
paring an individual realization (in this case, 
the historical record) with an ensemble of nu-

merical simulations. Figure 7 shows 1970–
2005 wintertime surface air temperature trends 
for individual ensemble members of suites of 
historical simulations conducted with the 
CCSM4 and ECHAM5 models. These initial-
condition historical ensembles follow a similar 
experimental design as the 21st Century en-
sembles discussed above (Deser et al. 2013). 
CCSM4, introduced in 2010, is more ad-
vanced than CCSM3 in several important re-
spects (Gent et al. 2011). The patterns for the 
historical reconstructions are even more di-
verse than the ones shown in Figs. 4-6 because 
the interval over which the trend is computed 
is 36, rather than 56 years, and is thus subject 
to smaller anthropogenic forcing and larger 
sampling variability.  

FIG. 6. As in Fig. 4 but for summer (JJA) precipitation. 
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 In the context of these simulations, the ob-
servational record is just one of the many pos-
sible outcomes of the time dependent forcing 
that the climate system has been subject to 
over the past century. Let us now consider the 
observed trends in greater detail. Figure 8 
shows time series of observed and simulated 
trends in (a) global mean surface temperature 
including both land and ocean, (b) global-
mean surface air temperature over land and (c) 
cold season surface air temperature poleward 
of 40°N. The simulations in this case are based 
on the reference interval 1965–2000 (5 years 
earlier than the one used in the simulations 
described in Fig. 7, but 30 out of the 36 years 
of the two records are overlapping. Both inter-
vals 1965–2000 and 1970–2005 were marked 

by pronounced warming that was more rapid 
over land than over the oceans, as shown in 
Fig. 8a,b and the high latitude Northern Hemi-
sphere continents warmed about three times as 
much as annual mean GST during the boreal 
cold season (Fig. 8c).   

 The GST time series based on the multi-
member ensemble mean of the CMIP simula-
tions closely tracks the observations during the 
reference period 1965–2000 but it fails to cap-

Fig. 8. Observed (solid) and multi-model ensemble mean 
(MMEM) (dotted) temperature anomaly time series with 
respect to the 1965–2000 reference period (indicated by 
light gray shading) for (a) annual-mean, global-mean 
surface temperature (GST), (b) annual-mean, global 
mean land temperature (GSAT), and (c) boreal cold sea-
son-mean (Nov.–Apr.) land temperature poleward of 
40°N. Tick marks on the abscissa denote intervals of 
0.5°C. Observations from NOAA merged ocean land 
surface temperature dataset. Model output based on AR4 
(CMIP3) historical simulations in which ozone depletion 
and volcanic aerosols are included as part of the forcing 
(1900–1999) and SRES A1B simulations (2000–2012). 
Adapted from Wallace et al. (2012). 

FIG. 7. DJF surface air temperature trends for the refer-
ence interval 1970–2005 in a 30-member ensemble of 
the CCSM4 (C1–C30) and 17-member ensemble per-
formed with the ECHAM model (E1–E17). Trends are 
expressed in °C per 36 years. The ensemble-mean trend 
and the observed trend for this period are shown at the 
end of the sequence of maps. 
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ture the flattening of the curve in the past dec-
ade. As of the end of 2012 the projections 
were ~0.4°C higher than the observed GST. 

 Figure 9 shows the spatial distribution of 
the observed 1965–2000 SAT trends during 
the boreal cold and warm seasons (a,c) togeth-
er with multi-model ensemble means of nu-
merical simulations that were used as a basis 
for the Fourth Assessment Report of the IPCC 
(b,d; Randall et al. 2007; Meehl et al. 2007): 
the simulations include nine different models 
with ensemble sizes ranging from 1 to 5. Con-
sistent with the modeling results presented in 
the previous subsection, the multi-model en-
semble-mean trends are much more spatially 
homogeneous than the observed trends, par-
ticularly over high northern latitudes during 
the boreal cold season. The observed warming 
trends over Siberia and Canada during this 
interval, which ranged up to ~3°C per 36 
years, were an order of magnitude larger than 
the mean rate of global (GST) warming during 
the 20th Century (~0.08°C per decade). They 

are also larger and extend farther southward 
than the corresponding multi-model ensemble 
mean trends shown in the right hand column 
of Fig. 9. Hence, it seems quite likely that the 
enhancement of the warming was either ther-
modynamically- or dynamically-induced by 
the free (internally generated) variability of 
the climate system; i.e., the categories listed in 
the bottom row of Fig. 1.  

 Over the 92-year-long reference interval 
1920–2011 the regional SAT trends shown in 
Fig. 10, expressed in °C per 92 years, are 
smaller than those for the shorter reference 
interval shown in the previous figure, but they 
still range up to nearly 3°C per century, about 
three times the GST trend. The heterogeneity 
of the trends during the boreal winter shown in 
Fig. 10a, and the fact that they are so much 
larger than the corresponding warm season 
trends shown in Fig. 10b suggest that even on 
this extended time scale, the internal variabil-
ity of the climate system makes an important 
contribution to the observed trends.  

Fig. 9. Maps and zonally averaged meridional profiles showing rates of warming (i.e., the linear trend) over the histor-
ical reference interval 1965–2000 expressed in units of °C per 36 years: (a,b) boreal cold season; (c,d) boreal warm 
season. Left column (a,c) based on observations and right column (b,d) the multi-model ensemble mean (MMEM) of 
the AR4 simulations. From Wallace et al. (2012). 
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3. Assessing the dynamically-induced 
variability 

 As noted in the Introduction, dynamically-
induced variability of SAT and rainfall (i.e., 
variability attributable to the time-varying at-
mospheric circulation) is not identical to the 
internally generated variability for two rea-
sons: (1) anthropogenic forcing can induce 
changes in the atmospheric general circulation 
and (2) internal variability of the climate sys-
tem would be capable of inducing changes in 
SAT, even in the absence of circulation 
changes. These distinctions are reflected in the 
categories of causal mechanisms in Fig. 1. But 
despite these caveats, it appears that much of 
the internally generated variability in the SAT 
field is mediated by changes in the atmospher-
ic circulation. To illustrate this point, we reex-
amine Ensemble Members #4 and #22 from 
the CCSM3 40-member ensemble, whose 
SAT fields were depicted in Figs. 4, 5, and 6, 
but here in Fig. 11a,b we show them together 
superimposed on the corresponding trends in 

the sea level pressure (SLP) field. The SLP 
trend in Member #4 is in the sense as to favor 
offshore flow along the west coast from Brit-
ish Columbia to California, reducing the mod-
erating influence of the influx of marine air 
masses upon winter temperatures over most of 
North America. In contrast, the trend in Mem-
ber #22 (Fig. 11b) is in the sense as to increase 
the onshore flow over western Canada. That 
the strength of the onshore flow along the Pa-
cific seaboard exerts a strong influence on 
wintertime SAT over the continental US is 
borne out in the Member #22 minus Member 
#4 SLP difference map shown in Fig, 11c, and 
the regression map based an all the other en-
semble members shown in Fig. 11d.  It is no-
table that the SLP trends in these “outlier” 
members of the 40-member ensemble are 
much larger than the ensemble-mean SLP 
trend shown in Fig. 2a. The same must be true 
of randomly selected members because at 
most grid points the ensemble-mean 56-year 
trend is less than 0.5 standard deviation of the 
trends in the individual ensemble members, as 
shown in Fig. 2b. In agreement with this con-
clusion, based on an analysis of simulations 
performed with CMIP3 models, Oshima et al. 
(2012) reported that the contribution of inter-
nal climate variability the diversity of century-
long SLP trends over the North Pacific in the 
ensemble members is as large as the ensemble 
mean trend itself and that internal variability 
accounts for virtually all of the diversity of the 
50-year SLP trends in the individual ensemble 
members during the first half of the 20th cen-
tury.	   

Is it merely chance coincidence that the 
SLP trends in Ensemble Members #4 and #22 
are dynamically consistent with the con-
trasting SAT trends over the continental Unit-
ed States? To address this question we show in 

FIG. 10. Observed rates of warming in SAT over the 
historical reference interval 1920–2011 (i.e., the linear 
trend) expressed in units of °C per 92 years: (a) boreal 
cold season; (b) boreal warm season. Based on the 
NCDC MLOST dataset. 
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Fig. 11d the pattern of DJF SLP trends re-
gressed on the standardized SAT trends aver-
aged over the continental United States in the 
other individual ensemble members. That the 

SLP patterns in Figs. 11c,d are broadly similar 
confirms the inference that the differences in 
the SAT trends in the individual ensemble 
members are at least to some degree dynami-

FIG. 11 (a,b) 2005-2060 DJF SAT trends in Ensemble Members 4 and 22 of the CCSM3 40-member ensemble,  (c) 
The difference between (a) and (b).  (d) Trends in the individual ensemble members (exclusive of #4 and #22) re-
gressed on the 38 corresponding raw SAT trends averaged over the continental US. SAT trends are indicated by col-
ored shading and SLP trends by contours. Contour interval 1 hPa per 56 years. The zero contour is bold and dashed 
contours indicate SLP falls. 

FIG. 12. As in Fig. 11 but for SAT and SLP in JJA, contrasting the two ensemble members that exhibit the weakest 
(#3) and strongest (#31) SAT trends averaged over the contiguous US. 
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cally induced.  
 Analogous results for ensemble members 

with contrasting summertime 2005–2060 SAT 
trends are shown in Fig. 12. These runs exhibit 
contrasting patterns of SLP trends over the 
North Pacific and over the Canadian Arctic, 
but distinctions between the warm and cold 
patterns are not as clearly discernible over the 
contiguous US. That the JJA SLP trends in the 
other 38 ensemble members regressed upon 
the respective SAT trends averaged over the 
continental United States yields (Fig. 12d) 
yields a pattern similar to the difference map 
(Fig. 12c) is suggestive of a dynamical influ-
ence upon the SAT trends in the individual 
ensemble members in summer as well as in 
winter.	   

   Patterns of SLP and SAT anomalies ob-
served during anomalously hot summers over 
the contiguous US the so-called “Dust Bowl) 
and, more generally during hot summers over 
CONUS are shown in Fig. 13. The anomalous 
upstream anticyclone over the North Pacific 
and the anomalously low SLP along the Arctic 
coast are not as prominent in the historical 
data as they are in the simulated SLP patterns 
shown in the previous figure. Apart from the 

anomalies over the regions of elevated terrain 
over the southwestern US, which is mainly a 
SAT signature, the SLP anomalies are quite 
small. It is difficult to understand how the low 
level circulation anomalies associated with 
such weak features could have been responsi-
ble for the large SAT anomalies either in the 
simulations (Fig. 12) or in extreme years in the 
historical record (Fig. 13). Feedbacks involv-
ing soil moisture could greatly increase the 
amplitude of the internal variability of SAT, at 
least in the model. The land surface tends to 
become drier as it warms and, conversely, 
summer SAT tends to be warmer over dry 
land surfaces. Both relationships contribute to 
a negative correlation between temperature 
and precipitation. In the CCSM3 ensemble 
members with strong summertime warming 
trends over the continental US tend to be 
marked by negative precipitation trends and 
vice versa: the correlation coefficient between 
JJA SAT trends and precipitation trends aver-
aged over the continental US among the 40 
individual ensemble members is –0.82. Dry 
months also tend to be warmer than normal in 
the observations (Madden and Williams 1978; 
Trenberth and Shea 2005) but the negative 

FIG. 13.  (a) Pattern of SLP anomalies (contoured) and SAT anomalies (shaded) during the US Great Plains Dust Bowl 
summers, the average of JJA 1934, 1935, and 1936. The reference period for the anomalies is 1900-2010. (b) SLP and 
SAT regressed on the detrended time series of JJA SAT averaged over the continental US. The regression coefficients 
are based on the period of record 1900-2010, exclusive of JJA 1934, 1935, and 1936. Contour interval 0.5 hPa. Based 
on the 20th Century Reanalyses (Compo et al. 2011). 
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correlation between precipitation and SAT is 
not as strong. A drying tendency favors a ten-
dency toward reduced latent heat fluxes and 
enhanced sensible heat fluxes at the Earth’s 
surface, which favors warming. Such land sur-
face feedbacks can serve to amplify and pro-
long dynamically-induced heat waves (e.g., 
see Black et al. 2004 or Dole et al. 2012), ren-
dering internally generated dynamically- and 
thermodynamically-induced diversity in the 
temperature trends difficult to separate, even 
in large ensembles of simulations. 

  
3.1. Further insights derived from projections 
of future SAT trends 

 The 40-member ensemble of CCSM3 sim-
ulations in Deser et al. (2012a) has been sub-
jected to a more formal analysis of the dynam-

ical contribution to the diversity of the winter-
time SAT trends. The left hand columns of 
Fig. 14 show the leading Northern and South-
ern Hemisphere empirical orthogonal func-
tions (EOFs) derived from the extratropical 
DJF and JJA 2005-2060 SLP trends. In the 
climate literature EOF analysis is usually per-
formed in the space / time domain and the 
“modes” obtained from it consist of an ordered 
set of spatial patterns (EOFs) whose time-
varying amplitudes and polarities are de-
scribed by their respective principal compo-
nent (PC) time series. In Deser et al. (2012a) 
the analysis is performed in the domain of 
space / ensemble number: the EOFs are spatial 
patterns but in their analysis the PCs refer to 
the amplitude and polarity of various 2005-
2060 trend EOFs as expressed in the individu-
al ensemble members.  Despite the differences 

FIG. 14   The leading EOFs of extratropical SLP trends from the 40-member CCSM3 ensemble (a) DJF and (c) JJA; and 
in the CAM3 ensemble (b) DJF and (d) JJA. Trends are computed over the period 2005–2060 for CCSM3 and for 56-
year non-overlapping segments for CAM3. EOF analysis is performed for each hemisphere separately but plotted on a 
single map. The percent variance explained by each EOF is given in the upper right corner of each panel, with the first 
number denoting the NH and the second number the SH (for example, for CCSM3 in DJF, NH EOF1 accounts for 36% 
of the NH variance and SH EOF1 accounts for 60% of the SH variance). From Deser et al. (2012a). 
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in which that data are analyzed, the DJF SLP 
patterns and the Northern Hemisphere JJA 
pattern shown in Fig. 14 closely resemble the 
leading EOFs of the month-to-month variabil-
ity in historical time series (Thompson and 
Wallace 2000; not shown), which are com-
monly referred to as the “Northern and South-
ern Hemisphere annular modes” (NAM and 
SAM, respectively; we will refer to them by 
those names). They correspond to preferred 
modes of variability in the historical record 
and in extended control runs of the CCSM3 
and other climate models (Miller et al. 2006). 

  The CCSM is a coupled model in which 
ENSO and longer term climate variations re-
sulting from large-scale atmosphere-ocean 

interactions come into play. In order to distin-
guish between the internally generated varia-
bility that is attributable to changes in the at-
mospheric circulation alone and variability 
that is a consequence of atmosphere-ocean 
interactions, the SAT trends in the 40-member 
ensemble of CCSM3 runs are compared with 
trends in non-overlapping 56 year segments of 
a 10,000 year control integration of the Com-
munity Atmospheric Model (CAM3), the 
same atmospheric model that is used in the 
coupled CCSM3 integrations. In the control 
integration greenhouse gas and aerosol con-
centrations are held constant and SST is pre-
scribed in accordance with the seasonally var-
ying climatology but the treatment of land sur-

FIG. 15.  Histograms of the SLP 2005–2060 trend projections onto EOF1 from the CAM3 control integration bro-
ken down by hemisphere and season as indicated. The red open bars show results from the 40-member CCSM3 and 
the gray filled bars from the 178-member Community Atmospheric Model (CAM3), which is used as a control. The 
x axis is in units of standard deviations of the CAM3 control integration, and the y axis is frequency (number of 
ensemble members divided by the total number of ensemble members). From Deser et al. (2012a). 
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face feedbacks is the same as in CCSM3. Re-
sults are shown in the right hand panels of Fig. 
14. If the atmosphere-ocean coupled variabil-
ity were making an important contribution to 
the diversity of the trends among the CCSM3 
ensemble members, one would expect the am-
plitude of the annular modes and other pre-
ferred patterns of variability in the SLP field 
to be larger in the CCSM3 ensemble members 
than in the 56-year segments of the CAM sim-
ulations. That the EOFs obtained from the 
CCSM3 and CAM3 runs are similar in shape, 
comparable in amplitude, and explain compa-
rable fractions of the total SLP variance sug-
gests that the diversity of the SLP trends in the 
CCSM3 ensemble members is mainly due to 
the internal variability of the atmospheric cir-
culation in the absence of any coupling to the 
ocean.  

 The ensemble mean of the trends in the 
56-year segments of the CAM3 control run is 
indistinguishable from zero. However, the pro-
jections of the patterns of SLP trends in the 40 
CCSM3 simulations onto EOF1 of the control 
run shown in Fig. 15 exhibit a statistically sig-
nificant positive bias indicative of falling SLP 
in both polar cap regions and rising SLP over 
much of middle latitudes. SLP changes in this  
sense are commonly referred to as a trend to-
ward the “high index polarity” of the NAM 
and the SAM.  Nearly all the climate models 
used in the IPCC projections exhibit a trend in 
this sense (Meehl et al. 2007). This shift to-
ward the high index polarity of the annular 
modes is evidently a robust feature of the en-
semble-mean response to the buildup of 
greenhouse gases in the CCSM3 (i.e., the up-
per right box in Fig. 1), but it is expressed 
with different strengths in different ensemble 
members and in some members the trend is in 
the opposite sense. The diversity of the SLP 

trends in the individual members of the en-
semble, as reflected in the width of the fre-
quency distributions in Fig. 15, is a measure of 
a kind of structural uncertainty inherent in the 
projected SLP trends for 2005–2060.      

  The low level circulation pattern implied 
by EOF1 of the SLP trend induces a spatially 
varying SAT trend of the form shown in Fig. 
16, which is obtained by averaging the SAT 
trends over all ensemble members, weighting 
each in accordance with the projection of its 
pattern of SLP trend upon EOF1 (i.e., by its 
value of PC1). The patterns of induced SAT 
trend in the two hemispheres are dynamically 
consistent with EOF1 of the SLP trend and 
they resemble the SAT patterns obtained by 
regressing the SAT field upon time varying 
(SLP) indices of the annular modes (Thomp-
son and Wallace 2000). The regression pat-
terns in Fig. 16, in effect, define the anomaly 
in the trend of SAT in each member of the 
ensemble (i.e., the departure from the ensem-
ble-mean SAT trend) that can be attributed to 

FIG. 16.  Surface temperature regressed upon the scores 
of EOF1 of extratropical SLP trends from the 40-
member CCSM3 ensemble in DJF, shown in Fig. 15. 
Contours show the SLP trend EOF (contour interval 0.6 
hPa per 56 years; negative values are dashed). Trends are 
computed over the period 2005–2060. EOF and regres-
sion analyses are performed for each hemisphere sepa-
rately but plotted on a single map. From Deser et al. 
(2012a). 
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the anomalous trend in the NAM/SAM in each 
ensemble member  (again, anomalous with 
reference to the ensemble mean trend). Sub-
tracting out that portion of the SAT trend at 
each grid point in each ensemble member that 
is attributable to the anomalous trend in the 
NAM/SAM in that ensemble member consti-
tutes a dynamical adjustment that serves to 
reduce the diversity of the trends among the 
ensemble members. A dynamically adjusted 
global or hemispheric SAT trend field can be 
created by subtracting the dynamical contribu-
tion from the raw SAT trend field for each 
member. In principle, a complete dynamical 
adjustment of the SAT trends in the individual 
members of the ensemble can be obtained by 
the applying dynamical adjustments not only 
for the NAM/SAM, but for all the significant 
EOFs of the SLP trends. In practice, applying 
this procedure to an ensemble with a finite 
number of members will inevitably tend to 
overestimate the dynamical contribution. The 
challenge is to limit the degree of “overfit-
ting.”  

 
3.2.  Estimating the dynamical adjustment 
for individual ensemble members 

 In order to avoid serious overfitting of the 
diversity (or variance) of the trends in the in-
dividual ensemble members it is necessary to 
apply analysis techniques that are parsimoni-
ous i.e., that involve regression equations con-
taining very few SLP predictors. Deciding 
how best to perform the analysis is an area of 
active research. Here we will briefly describe 
some of the linear analysis tools that might be 
used in performing such an analysis. 

 Consider the set of SAT trends T(n), (n = 
1, N) at a specified grid point, one belonging 
to each of the N ensemble members.   A sim-
ple, conservative approach is to apply least 

squares regression (LSR), using the SLP trend 
field in a prescribed spatial domain to define a 
single “predictor” T*(n) of T(n). The first step 
is to regress the standardized SLP trend field 
upon T(n) to obtain a single predictor pattern 
P(x). Here the standardization is performed in 
“ensemble-space”; i.e., the standard deviation 
of SLP trend at each grid point is based on the 
sample consisting of the N ensemble members.  
The second step is to project the standardized 
SLP trend field in each ensemble member up-
on P(x) to obtain a “score” S(n) that provides a 
relative measure of the polarity and the 
strength with which the predictor pattern P(x) 
is expressed in that ensemble member. The 
final step is to scale the scores S(n) by fitting 
them to T(n) using the method of least squares. 
The rescaled scores are the predictors T*(n), 
which constitute the dynamical adjustment. 
Spatial averaging and the steps in LSR are 
commutative, so this procedure can equally 
well be applied directly to an ensemble of spa-
tially averaged SAT trends such as GST(n).  

 For each specified grid point or area aver-
age time series, LSR yields a single correla-
tion coefficient or “predictor” T*(n) of the 
SAT trend in the nth ensemble member and is 
thus as parsimonious as any method can be. 
The LSR approach can be extended to multi-
ple predictors by the method of partial least 
squares regression (PLSR). In PLSR, the first 
predictor T1*(n) is obtained by LSR, as de-
scribed above. A residual data set is then cre-
ated by regressing T1*(n) out of both the SLP 
trend field in each of the individual ensemble 
members (i.e., the field from which the “pre-
dictor patterns” are chosen) and the ensemble 
of grid point or area-average SAT trends T(n) 
(the “predictand”). Then LSR is applied to 
these residuals to obtain a second predictor 
T2*(n) that is orthogonal to T1*(n) by con-
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struction and a second set of residuals. The 
procedure can be repeated as many times as 
desired.  PLSR is widely used in other fields 
such as econometrics, chemometrics, neuro-
science, and computer science, and is begin-
ning to be more widely used in geophysics 
(Smoliak et al. 2010). It has been used by 
Wallace et al. (2012) to estimate the dynam-
ical contribution to the wintertime SAT trends 
over the Northern Hemisphere continents, as 
discussed in the next subsection. 

 The above procedure can be computation-
ally intensive when it is applied pointwise 
(i.e., to every grid point in the SAT field) be-
cause of the high degree of redundancy inher-
ent in the calculations, especially when the 
grid is fine. Under some circumstances it may 

be preferable to expand the SAT trend field in 
terms of EOFs and to perform LSR or PLSR 
on a subset of the resulting PC time series. 
The same considerations that apply to 
pointwise or area-wise LSR/PLSR are also 
applicable when these forms of analysis are 
performed in PC space. 

 Figure 17 shows raw and dynamically ad-
justed wintertime SAT trends for Members #4 
and #22 of the 40-member ensemble conduct-
ed with CCSM3, the ensemble members with 
the smallest and largest SAT trends over CO-
NUS. In this example the dynamical adjust-
ment was computed by performing pointwise 
PLSR on the SAT field over North America. 
The patterns P(x) in the SLP field are for the 
domain 10° to 90°N and from the Date Line to 
the Greenwich Meridian. The dynamical ad-
justment has the strongest influence on outlier 
ensemble members such as these. With each 

FIG. 18. As in Fig. 7 but dynamically adjusted with two 
passes of PLSR using the SLP field in the domain 10° to 
90°N and from the Date Line to the Greenwich Meridian 
as the predictor field.  

FIG. 17. Examples of raw and dynamically adjusted 
2005-2060 SAT trends for ensemble members 4 (left) 
and 22 (right) of the 40-member CCSM3 ensemble, the 
members that exhibited the smallest and largest SAT 
trends averaged over the contiguous US. The top row of 
panels show the raw patterns, the second shows the ad-
justed patterns with one pass of PLSR, the third row with 
two passes, and the bottom row after three passes. 
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pass the contrast between the two ensemble 
members becomes less pronounced. 

  Figure 18 shows dynamically adjusted 
trends for the individual members of the 
CCSM4 and ECHAM ensembles, whose raw 
trends were shown in Fig. 7. Application of 
the dynamical adjustment substantially reduc-
es the diversity of the SAT trend patterns in 
the ensemble members, bringing them more 
into line with the ensemble-mean trends. Av-
eraged over the North American domain, ap-
plying this dynamical adjustment with two 
passes accounts for 75% of the variance of the 
SST trends in the 30-member CCSM4 ensem-
ble. That it leaves 25% of the variance unex-
plained suggests that our dynamical adjust-
ment scheme, which relies exclusively on the 
SLP field, might not be capturing all the dy-
namically-induced variance. 

 When applied to regions the size of the 
CONUS, the dynamical adjustment based on 
SLP appears to be even more effective in re-
ducing the diversity of the SAT trends in 
summer than in winter, accounting for 81% of 
the variance of the SST trends in the 30-
member CCSM4 ensemble with only two 
passes.  

 
3.3. Dynamically adjusting SAT trends in the 
historical record 

 To adapt the methods described in the pre-
vious subsection to estimating the dynamical 
contribution to the observed SAT trends it is 
necessary to use temporal variability within 
the historical record as a surrogate for the di-
versity of the individual ensemble members in 
the simulations. In this case the goal is to ex-
plain the multidecadal variability of the trends 
observed within a single time series using SLP 
patterns derived from the analysis of that same 
time series. The strong late 20th Century 

warming trend during the boreal cold season 
over the continental interiors documented in 
Section 2.2 is arguably the most dramatic fea-
ture in the historical record. Was it dynamical-
ly induced? If so, is the adjustment large 
enough to affect estimates of the rise in annual 
mean GST during this period? 

 As background for addressing this ques-
tion, Fig. 19 shows the global pattern of No-
vember-April SLP trends from 1965 to 2000. 
Compared to other sampling intervals of com-
parable length, the trends during this interval 
are particularly strong and spatially coherent, 
with pressure falls in both polar regions and 
pressure rises in midlatitudes, indicative of a 
shift toward the high index polarity of the 
NAM and the SAM. The trend in the PNA 
pattern was associated with a spontaneous, 
abrupt shift toward a more El Niño-like state 
of the sea surface temperature distribution and 
related atmospheric circulation patterns equa-
torial Pacific in 1976-77 (Nitta and Yamada 
1989; Trenberth and Hurrell 1994; Zhang et 
al. 1997).  

 Shindell et al. (2001) investigated the 
cause of the strong NAM-related trends during 
this interval and they concluded, on the basis 
of numerical simulations with an array of ex-
ternal forcings, that the observed trend in the 
NAM during this interval was beyond the 
range of internal variability and was likely 
forced by a change in the meridional heating 
gradient in the stratosphere induced by the 
buildup of greenhouse gases. This explanation 
would account for the prominence of the 
NAM signature in the 1965-2000 SLP trend 
but does not explain the reversal in the trend in 
the NAM that began in the mid- 1990s and 
became more clearly apparent after the turn of 
the millennium (see NCAR’s Climate Data 
Guide, http://climatedataguide.ucar.edu, for a 
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NAM index from 1899 to present). Subse-
quent numerical experiments by Bracco et al. 
(2004) and Deser and Phillips (2009) based on 
ensembles of integrations with two atmospher-
ic GCMs forced with the observed evolution 
of SSTs, greenhouse gases, ozone and aerosols 
suggest that the prominent NAM signature in 
Fig. 19 is likely a manifestation of atmospher-
ic internal variability that happened to be par-
ticularly strong during this 36-year interval.   

 In a similar manner, Trenberth and Hoar 
(1996, 1997) investigated the cause of the late 
20th Century trend toward the positive polari-
ty of the PNA pattern; i.e., the prevalence of 
an El Niño-like state of the tropical Pacific 
after the mid-1970s.  On the basis of a statisti-
cal analysis of the historical record of the 
Southern Oscillation Index (SOI) they con-
cluded in their second paper that the behavior 
of the SOI during the post 1976 period had 
been “highly unusual and very unlikely to 
have been caused by natural variability”. With 
the benefit of 15-years of hindsight it is evi-
dent that the role of natural (i.e., unforced) 
variability of the climate system was underes-
timated in this case as well: the prevalence of 
the El Niño-like state of the equatorial Pacific 

has not persisted into the 21st Century (Hu et 
al. 2013). 

  In contrast to the trends in the NAM and 
the PNA pattern, the late 20th Century trend in 
the SAM is widely regarded as having been at 
least partially forced by a decrease in concen-
trations of stratospheric ozone due to the 
buildup of CFCs during this period— the so-
called “Antarctic ozone hole” (Thompson and 
Solomon 2002; Gillett and Thompson 2003; 
Polvani et al. 2011). It has been suggested that 
the more subtle ozone losses that occurred 
over the Arctic during this period might have 
induced an analogous trend in forcing the 
NAM, but the case is less clear (Hartmann et 
al., 2000).  

 The NAM- and PNA/ENSO-related SLP 
trends have obviously contributed to the win-

FIG. 19. Observed 1965–2000 SLP trends for the boreal 
cold season (Nov.–Apr.), based on the 20th Century 
Reanalyses. The contour interval is 1 hPa per 36 years. 
Negative values are dashed. Zero contour bold. From 
Wallace et al. (2012). 

Fig. 20. 1965–2000 SAT trends for the boreal cold sea-
son (Nov.–Apr.): (a) the raw trend pattern, (b) the dy-
namical contribution, estimated by partial least squares 
regression (PLSR) with two predictors for each grid 
point, and (c) the dynamically adjusted trend pattern, 
calculated by subtracting the dynamical contribution in 
(b) from the raw trend pattern in (a).  
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tertime warming of Eurasia and North Ameri-
ca poleward of 40°N from 1965 to 2000. Re-
sults obtained by dynamically adjusting the 
time series of SAT averaged over all the 
Northern Hemisphere land grid points pole-
ward of 40°N, using two PLSR Northern 
Hemisphere SLP predictors, are shown in Fig. 
20. The dynamical contribution to the SAT 
trend resembles the SAT signature of the 
NAM. The residual SAT trend is weaker than 
the raw trend and more closely resembles the 
corresponding warm season trend shown in 
Fig. 9c. Yet it is clear that the dynamical ad-
justment shown in Fig. 20 does not account for 
all of the enhanced warming over the interiors 
of the continents during the boreal cold season 
relative to the model simulations shown in 
Fig. 9b. Either the methodology described in 
the previous subsection is failing to capture all 
the dynamically-induced variability or there is 
a contribution from the thermodynamically-
induced internal variability discussed in the 
next subsection and in Chapter XX.  

 To place the dynamical adjustment for 
1965–2000 in a global context, Table 1 shows 
a summary of how it affects the trends in 
global mean SAT over land (GSAT) and over 
the entire globe (GST). Applying the dynam-

ical adjustment reduces the warming over the 
high latitude Northern Hemisphere land mass-
es during the boreal cold season from 1.72°C 
to 1.02°C over this 36-year interval, eliminat-
ing most of the excess warming relative to the 
warm season and relative to the land lying 
south of 40°N. The magnitude of the adjust-
ment (0.70°C) is diluted by averaging over all 
land (to 0.28°C) and over the year (to 0.14°C) 
and by combining land and ocean data (to 
0.04°C in GST). Hence, changing extratropi-
cal circulation patterns during the boreal win-
ter accounted for less than 10% of the global 
warming signal during this interval. Compared 
to the accelerated warming; i.e., the rate of 
rise of annual mean GST during this interval 
minus the mean rate of rise of GST during the 
past century of 0.08°C per decade or 0.29°C 
per 36 years, it amounts to about 15%. Hence, 
though appreciable and of first order im-
portance for the attribution of high latitude 
Northern Hemisphere wintertime temperature 
trends over land, the dynamical contribution 
explains only a small fraction of the accelerat-
ed global warming during the late 20th Centu-
ry and even after it is removed, land (GSAT) 
warmed twice as rapidly as ocean (GSST) dur-
ing this period. 

Table 1.  Observed 1965-2000 SAT trends over land for boreal cold and warm seasons November-April and May-
October expressed in °C per 36 years. The italicized numbers refer to dynamically adjusted trends as explained in 
Section 4.  GSAT refers to global-mean SAT, GSST to global-mean SST and GST refers to global mean surface 
temperature including both land and sea. Data based on the National Climatic Data Center historical merged land-
ocean land surface temperature analysis (MLOST), with its land component, GHCNv3, and ocean component, 
ERSSTv3b. Adapted from Wallace et al. (2012). 

 Cold Warm Annual Mean 
N: 40°N–90°N 1.72 (1.02) 0.79 1.26 (0.91) 
S: 60°S–40°N 0.70 0.69 0.70 
GSAT (Land) 1.03 (0.80) 0.72 0.88 (0.76) 
GSST (Ocean) 0.35 0.37 0.36 
GST 0.57 (0.49) 0.48 0.52 (0.49) 
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 The importance of the dynamical adjust-
ment tends to decline with the length of the 
interval over which the trends are computed, 
but even for the longer interval 1920–2011, it 
remains quite important during the boreal cold 
season, as seen in Fig. 21. Applying the dy-
namical adjustment to the cold season trends 
and averaging them with the warm season 
trends is seen to yield a relatively simple spa-
tial pattern suggestive of reduced warming 
over China and the southeastern United States 
possibly in response to the buildup of aerosols.  

 Applying the dynamical adjustment to the 
cold season trends substantially improves the 
coherence between cold and warm season 
SAT time series both for the global mean and 
for regional means, as illustrated in Fig. 22. In 
particular, it accounts for most of the excess 

warming during the boreal cold season relative 
to the warm season over the course of the 20th 
Century. The positive correlation between the 
warm and cold season time series on a year-to-
year basis is indicative of a season-to-season 
memory that transcends the very short thermal 
adjustment time of the land surface. Features 
such as the cooling following the 1991 erup-
tion of Mt. Pinatubo are more clearly evident 
in the adjusted data.  

 
4. Does thermodynamically-induced varia-
bility play a role? 

 Of the four categories of processes listed in 
Fig. 1 that contribute to climate trends, ther-

FIG. 21. SAT trend patterns for the reference interval 
1920–2011: (a) dynamically adjusted trend for the boreal 
cold season estimated by PLSR as in Fig. 20, (b) raw 
trend for the warm season, and (c) annual mean trend 
estimated by averaging the dynamically adjusted cold 
season trend and the raw warm season trend. 

FIG. 22. Time series of (red) warm season and (blue) 
cold season SAT spatially averaged as indicated. The top 
pair of curves in each set shows raw time series and the 
bottom pair shows the dynamically adjusted cold season 
series and raw warm season series. Adapted from Wal-
lace et al. (2012). 
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modynamically-induced internal variability is 
the most difficult to quantify because it re-
quires an understanding of variations in the 
oceanic global overturning circulation and the 
land biosphere and hydrosphere, and in the 
cryosphere, all of which are on the frontiers of 
climate science. It is not clear how well the 
models used in IPCC assessments, including 
the ones referred to in this chapter, simulate 
the relevant processes on the multidecadal 
time scale. For example, it is quite possible 
that the diversity of the trends in Fig. 7, large 
though it is, could be underestimated for fail-
ure of the models to realistically represent the 
variability of the ocean circulation for lack of 
adequate treatment of the physics or proper 
initialization. In a similar manner, changes in 
vegetation and ground hydrology that are ig-
nored or not accurately represented in the 
models could conceivably render the summer-
time trends more diverse than the examples 
included in this chapter. 

 Multidecadal variations in the strength of 
the meridional overturning circulation in the 
North Atlantic (MOC) affect the poleward 
heat transport by the Gulf Stream and its ex-
tension to subpolar latitudes and they regulate 
the rate of exchange of heat between the oce-
anic mixed layer and the layers below. The 
temperature of the oceanic mixed layer re-
sponds rapidly to changes in the surface ener-
gy balance, through which the global warming 
signal is transmitted together with regional 
signals associated with atmospheric circula-
tion anomalies. When the MOC is anomalous-
ly strong, enhanced poleward heat transports 
warm the surface waters of the subpolar North 
Atlantic and parts of the Arctic, which in turn, 
transfer heat to the atmospheric boundary lay-
er, where it may be advected downstream by 
the winds. The MOC strength also modulates 

the rate at which heat that accumulates in the 
ocean mixed later is transferred into the deeper 
ocean (Meehl et al. 2013). Hence, variations in 
the strength of the MOC could act as a time-
varying thermodynamic forcing of SAT that is 
likely to be strongest over the higher latitudes 
during the boreal cold season, when the sea to 
air fluxes of sensible and latent heat are 
strongest.  

 In the absence of reliable direct measure-
ments of variations in the strength the MOC, 
much of what is known about its role in mul-
tidecadal climate variability is inferred from 
numerical simulations of the oceanic response 
to prescribed surface forcing as in Alvarez-
Garcia et al. (2008). The induced MOC-
related variations in the oceanic circulation 
can feed back on the surface fluxes and there-
by force the atmosphere on the interdecadal 
time scale. Numerical experiments by Se-
menov et al. (2010) with a coupled model with 
interactive MOC-related variability suggest 
that the modulations in the fluxes may have 
been strong enough to force significant SAT 
anomalies over the high latitude continents, 
irrespective of any related circulation changes. 
If so, the resulting thermodynamic contribu-
tion to the high latitude warming would appear 
in the residual SAT trend field in Fig. 20c.  

 A prominent feature of the multidecadal 
variability in the strength of the MOC is the 
so-called Atlantic Multidecadal Oscillation 
(AMO), which exhibits a period on the order 
of 70 years, as discussed in Chapter XX. 
There and in Chapter XX it is argued that the 
AMO is a manifestation of internal variability 
of the coupled atmosphere-ocean climate sys-
tem that would exist even in the absence of 
external forcing. It has further been argued 
that AMO-related variations in the strength of 
the MOC during the 20th century are respon-
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sible for much of the multidecadal variability 
in the rate of rise of GST; i.e., the relatively 
rapid rise in the 1920s and 30s, the mid-
century hiatus, the resumption of the rapid 
warming toward the end of the century and 
perhaps even the recent second hiatus (Del-
Sole et al. 2011; Wu et al. 2011; Gulev et al. 
2013). For further discussion, the reader is 
referred to Chapter XX by K. K. Tung). 

 Another way in which the exchange of wa-
ter between the mixed layer and the deep 
ocean on a decadal time scales could exert a 
thermodynamic influence global surface tem-
perature is through the wind-driven zonal 
overturning circulation in the equatorial Pacif-
ic, which pumps cold water from below the 
thermocline into the warm ocean mixed layer. 
The stronger the equatorial trade winds, the 
stronger the zonal overturning circulation and 
the sea surface temperature (SST) contrast 
between the cooler eastern Pacific and the so-
called Indo-Pacific warm pool” in the west. 
Conversely, the stronger the east-west SST 
contrast, the stronger the trade winds. The ex-
istence of this strong positive feedback gives 
rise to pronounced variability of SST and wind 
on time scales ranging from seasons to dec-
ades. It plays an essential role in the ENSO 
cycle, but it would exist even in a hypothetical 
atmosphere coupled to a passive ocean mixed 
layer (Kitoh et al. 1999; Dommenget 2010; 
Clement et al. 2011). Based on experiments 
with numerical models, Meehl et al. (2011) 
and Kosaka and Xie (2013) have shown evi-
dence that an intensification of this zonal over-
turning circulation and the resulting cooling of 
the tropical eastern Pacific contributed to the 
pronounced slowdown in the rate of global 
warming that occurred around the beginning 
of the current millennium.  

 Despite the array of statistical and model-
ing evidence that has been presented in sup-
port of the role of the ocean in thermodynamic 
forcing, many climate scientists remain con-
vinced that the irregularities in the rate of 
warming in the historical record are attributa-
ble to variations in the time-varying anthropo-
genic forcing by aerosols. For example, on the 
basis of numerical experiments with a state-of-
the-art climate system model, Booth et al. 
(2012) conclude that aerosol emissions and 
periods of volcanic activity explain 76 per cent 
of the simulated multidecadal variance in 
detrended 1860–2005 North Atlantic sea sur-
face temperatures and that after 1950, their 
simulated variability is within observational 
estimates. Numerical experiments reported in 
the attribution chapter of the IPCC’s Fourth 
Assessment Report (Hegerl et al. 2007) and 
highlighted in the Technical Summary also 
portray the late 20th Century warming in GST 
as being entirely in response to anthropogenic 
forcing. For further discussion of these issues 
see Zhang et al. (2013) and Chapters XX, XX, 
XX, and XX of this book.  

 Another arena in which thermodynamical-
ly forced internal variability of the climate 
system might come into play is through the 
feedbacks associated with the fluxes of latent 
and sensible heat by soil moisture and vegeta-
tion during the warm season (or in the tropics, 
during the growing season). Although land 
surface processes act on rather short time 
scales, the existence of positive feedbacks can 
serve to amplify the variability on all time 
scales. Another aspect of this problem on a 
regional scale is the existence of human-
induced external forcings not directly related 
to global warming; e.g., cultivation, irrigation, 
deforestation and afforestation, and inadvert-
ent desertification.  
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5. Summary and Discussion 

 In this chapter we have categorized SAT 
trends as being externally forced versus inter-
nally generated (i.e., forced versus free) and as 
being dynamically versus thermodynamically 
induced, as elaborated in Fig. 1. The distinc-
tion between forced and free is illuminated by 
analysis of numerical simulations in which a 
single model is run with a single set of time 
dependent external forcings but starting from a 
suite of different atmospheric initial condi-
tions, yielding an ensemble of time-dependent 
climate scenarios. The dynamically induced 
component of the SAT trend is isolated by 
linear regression using the SLP field as a 
“predictor” and the individual ensemble mem-
bers as samples. When ensembles of climate 
scenarios are not available, the regression can 
be performed in the time domain. In principle, 
this methodology can be applied to variables 
other than SAT and variables other than SLP 
can be used as “predictors” of the dynamical-
ly-induced trends.  

 The relative importance of the forced and 
free components of the trends depends upon 
the interval τ over which the trends are com-
puted. If the forced component can be viewed 
as increasing linearly with τ and the dynami-
cally-induced variability can be modeled as 
white noise whose contribution to the variance 
of the trend is inversely proportional to τ, then 
the prominence of the forced component (i.e., 
the ratio of the trend to the standard deviation 
of the variability about the trend) should vary 
as τ 3/2. The “signal” in the SAT trends is also 
latitude dependent (i.e., much more prominent 
in the tropics than in the extratropics) and de-
pendent upon the spatial averaging. Here we 
have focused mainly on SAT trends over the 
continental US within 36 and 56 year inter-
vals. The individual ensemble members in 

large ensembles of simulations are shown to 
exhibit a remarkable amount of diversity, most 
of which is dynamically induced. That this 
dynamical contribution to the variability is as 
large in an atmospheric model run with SST 
prescribed in accordance with its seasonally 
varying climatology as in the coupled runs 
suggests that the dynamically induced compo-
nent of the trends is mainly attributable to at-
mosphere’s own internal variability rather than 
to coupled atmosphere-ocean interactions. 

 Whether the real climate system exhibits as 
much dynamically-induced variability as the 
climate models examined in this study remains 
to be determined. There are indications that 
the temporal variance of the atmospheric cir-
culation in the CAM3 is somewhat overesti-
mated (Deser et al. 2012a) and this may also 
be true of CCSM4. If this is the case, one 
might expect the dynamically-induced varia-
bility to be overestimated as well. On the other 
hand, it is possible that the coupled atmos-
phere-ocean system exhibits multidecadal var-
iability that is not fully captured by the models 
(Deser et al. 2012c; Danabasoglu et al. 2012), 
in which case, the uncertainty inherent in pro-
jections of 56-year SAT trends might be un-
derestimated. 

 Dynamically-induced atmospheric varia-
bility accounts for ~0.7 of the 1.7°C the warm-
ing of the Northern Hemisphere continents 
from 1965 to 2000, but this has had only a 
small effect on the globally averaged warm-
ing. A potentially more important contributor 
to multidecadal variations in the rate of rise of 
GST is the variability in the strength of the 
MOC, which modulates the fluxes of sensible 
and latent heat at the air-sea interface over the 
subpolar North Atlantic and parts of the Arc-
tic. Just how much of the spatial and temporal 
variability in the rate of warming over the con-
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tinents is MOC-related how much of it is in-
duced by spatial and temporal inhomogenei-
ties in the forcing by greenhouse gases and 
aerosols has important implications for esti-
mates of climate sensitivity. If the enhanced 
late 20th century warming was, indeed, a re-
flection of the internal variability of the cli-
mate system, the climate models purported to 
replicate it in ensemble-mean simulations may 
be getting the right answer for the wrong rea-
son; i.e., they may be overly sensitive to the 
radiative forcing.  

 We have shown that sampling variability 
constitutes a large part of the uncertainty in-
herent in projections of regional climate 
change over the next 50 years, even in averag-
es over areas as large as the continental US. 
The uncertainty in estimates of the forced re-
sponse can be narrowed by performing en-
sembles of simulations and/or by applying 
dynamical adjustments to the individual en-
semble members. However, even if the forced 
variability were known exactly, the inherently 
unpredictable, internally generated sampling 
variability in the future trajectory of the cli-
mate system would still remain because it is 
only one member of an ensemble of possible 
time-dependent scenarios that could result 
from a single prescribed external forcing. Dur-
ing the summer season the internally generat-
ed SLP variability is smaller than during win-
ter but the thermodynamic consequences of 
changing atmospheric circulation patterns 
could be amplified by hydrologic and terres-
trial biosphere feedbacks. Deterministic, mul-
tidecadal, MOC-related variability is an addi-
tional source of uncertainty that could modu-
late or even temporarily reverse the sign of 
short term GST trends, as discussed in Chapter 
XX. 

 The large sampling variability inherent in 
local or regional interdecadal and multidecadal 
temperature trends has implications for the 
attribution of record high temperature events 
and heat waves, whose frequency of occur-
rence is closely tied to the mean temperature 
(Wergen and Krug 2010; Lau and Nath 2012, 
Coumou et al. 2013). To the extent that inher-
ently stochastic trends in atmospheric circula-
tion patterns modulate local seasonal mean 
temperatures, they also raise or lower the fre-
quency of occurrence of extreme events, re-
sulting in clusters of extreme events in particu-
lar geographical “hot spots” while extreme 
event statistics other regions may appear to be 
unaffected by climate change. 

 Opponents of environmental protection 
exploit the uncertainties inherent in projec-
tions of future climate change to cast doubt on 
the immediacy, seriousness, and policy rele-
vance of human-induced environmental deg-
radation and to portray the scientific commu-
nity as “crying wolf.” The sampling issues 
discussed in this chapter afford the so-called 
“climate skeptics” some degree of aid and 
comfort, but not nearly as much as they derive 
from misstatements about attribution of ex-
treme events and exaggerated projections of 
regional, near term climate change. Until the 
signal of human-induced climate change 
emerges more clearly above background vari-
ability, a more compelling case for environ-
mental protection, including reductions the 
emissions of greenhouse gases, can be made 
by focusing on the impacts of human-induced 
warming in the tropics, where the “signal to 
noise ratio” is much stronger (Mahlstein et al. 
2011, 2012) and on the combined impacts of 
climate change, looming shortages of fresh 
water (Pearce 2007; Brown 2010) and loss of 
topsoil (Montgomery 2009) on food security. 
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