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ABSTRACT

Internal variability in the climate system gives rise to large uncertainty in projections of future climate. The

uncertainty in future climate due to internal climate variability can be estimated from large ensembles of climate

change simulations in which the experiment setup is the same from one ensemble member to the next but for

small perturbations in the initial atmospheric state. However, large ensembles are invariably computationally

expensive and susceptible to model bias.

Here the authors outline an alternative approach for assessing the role of internal variability in future climate

based on a simple analytic model and the statistics of the unforced climate variability. The analytic model is

derived from the standard error of the regression and assumes that the statistics of the internal variability are

roughly Gaussian and stationary in time. When applied to the statistics of an unforced control simulation, the

analytic model provides a remarkably robust estimate of the uncertainty in future climate indicated by a large

ensemble of climate change simulations. To the extent that observations can be used to estimate the amplitude

of internal climate variability, it is argued that the uncertainty in future climate trends due to internal variability

can be robustly estimated from the statistics of the observed climate.

1. Introduction

The signature of anthropogenic forcing in climate

change has and will be superposed on internal climate

variability resulting from a variety of physical processes

(e.g., Hawkins and Sutton 2009, 2011; Deser et al. 2012a,b;

Wallace et al. 2015; Kirtman et al. 2014; Collins et al.

2013; Knutson et al. 2013; Bindoff et al. 2014). At most

terrestrial locations, a large component of the internal

variability in surface climate change arises from varia-

tions in the atmospheric circulation (Wallace et al. 1995,

2012, 2015; Deser et al. 2014). On regional spatial scales,

the internal variability can overwhelm the signature of

anthropogenic forcing not only on year-to-year time

scales, but on multidecadal time scales as well (Hawkins

and Sutton 2009; Deser et al. 2012a,b; IPCC 2014). The

signal of significant warming is thus expected to

‘‘emerge’’ earliest in regions with relatively small natural

variability, such as the tropics (Christensen et al. 2007;

Mahlstein et al. 2011; Diffenbaugh and Scherer 2011;

Hawkins and Sutton 2012). Understanding and predict-

ing the contribution of internal variability to long-term
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trends in climate is essential for both the adaptation to

and the mitigation of climate change (IPCC 2014).

What is the most robust way to estimate the role of

internal variability in future climate trends? One ap-

proach is to generate a large ensemble of climate change

simulations in which the individual ensemble members

are from the same climate model and subject to the same

external forcing but are initiated with slightly different

atmospheric initial conditions. For example, the National

Center for Atmospheric Research (NCAR) Community

Climate System Model, version 3 (CCSM3), large en-

semble project includes 40 climate change simulations run

with the same coupled atmosphere–ocean–sea ice–land

model (CCSM3) and forced with identical projected

changes in greenhouse gases and ozone from 2000 to 2061

(the SRES A1B scenario). Since the model and forcing

are the same in all ensemble members, the differences in

climate trends from one ensemble member to the next

derive entirely from the unforced (i.e., internal) variability

in the model.

Analyses of the spread in the trends in the NCAR

40-member ensemble make clear the pronounced role of

internal climate variability in projections of regional cli-

mate change (Deser et al. 2012a,b). For example, the left

panels in Fig. 1 show the standard deviations of the 50-yr

(2011–61) trends in October–March mean near-surface

FIG. 1. (left) The standard deviations of the 50-yr trends in October–March mean (top) surface temperature and

(bottom) precipitation based on output from the NCAR 40-member ensemble of climate change simulations. Trends

are expressed as the total change over the 50-yr period 2011–61. The trend standard deviations indicate the spread in

the trends derived from all 40 ensemble members. (right) Wintertime mean time series of (top) surface temperature

and (bottom) precipitation for grid boxes collocatedwith the indicated locations. The gray lines show results for all 40

ensemble members; the red and blue lines indicate the ensemble members with the largest and smallest trends over

the 2011–61 period, respectively. Tick marks at every 18C and 1mmday21.
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air temperature and precipitation calculated over all en-

semble members (i.e., the results indicate the spread in

the trends from one ensemble member to the next).

The right panels indicate time series of October–March

mean surface air temperature and precipitation for all

40 ensemble members at two sample locations. As

noted in Deser et al. (2012b), internal variability in the

CCSM3 gives rise to temperature trend standard de-

viations that exceed 1K (50 yr)21 over much of the

NorthernHemisphere and precipitation trend standard

deviations that exceed 0.5mmday21 (50 yr)21 over

much of the tropics. Since the spreads in the trends

indicated in Fig. 1 arise entirely from stochastic vari-

ability in the CCSM3, they may be viewed as the irre-

ducible component of uncertainty in climate change

projections in this particular model.

The purpose of this study is to develop a simple an-

alytic model for estimating the uncertainty in projec-

tions of future climate trends due to internal climate

variability, as exemplified in Fig. 1. The model is de-

rived from the standard error of the regression and is

based on two statistics of the unforced climate vari-

ability: the standard deviation and autocorrelation.

The analytic model is developed in section 2. It is tested

against the NCAR 40-member ensemble in section 3 and

applied to observations in section 4. Section 5 includes a

discussion of the results. Concluding remarks are given in

section 6.

2. A simple analytic model of the role of internal
variability in future climate trends

Consider a time series x(t) with mean zero and a linear

least squares trend b. The confidence interval (CI) on

the trend in x(t) is expressed as

CI5 b6 e ,

where e is themargin of error for the trend. The trend, its

confidence interval, and its margin of error are all ex-

pressed in units, where nt is the number of time steps and

Dt is the time step. For example, if x(t) corresponds to

50 years of wintertime mean temperature data, then

nt 5 50, Dt 5 1 yr, and the temperature trend in x(t) is

expressed in units of degrees Celsius per 50 yr.

If the distribution of the deviations in x(t) about its

linear trend (i.e., the residuals of the regression) is

Gaussian, then the margin of error for the trend in x(t) is

e5 tcsb , (1)

where the critical t statistic tc is a function of the degrees

of freedom and desired confidence interval, and

sb5 nt
seffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
n
t

i51

(i2 i)2

s (2)

is the standard error of the trend. In Eq. (2), i denotes

time, se is the standard error of x(t) about its linear trend,

and the factor nt is included so that the standard error is

given in the units of Dx(ntDt)
21. Equations (1) and (2)

are widely used to assess the significance of a trend in

climate science (Wilks 1995; von Storch and Zwiers

1999; Santer et al. 2000).

The standard deviation of the time axis [the de-

nominator in Eq. (2)] can be expressed as a function of nt
as follows:

g(nt)[
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
n
t

i51

(i2 i)2

s 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

n3t 2 nt

s
, (3)

where we have used two formulas for consecutive integers

to derive the algebraic expression g(nt) (see the appendix).

Note that the units for g(nt) are per time step.

Regarding the standard error of x(t) about its linear

trend [se in Eq. (2)]: if the residuals of the regression

[i.e., the detrended values of the x(t) time series] are

serially correlated, then se must include a scaling factor

that accounts for the bias in the sample standard de-

viation introduced by persistence in the time series

(Mitchell et al. 1966;Wilks 1995; von Storch and Zwiers

1999; Santer et al. 2000). As shown in the appendix, if

x(t) is well modeled as Gaussian red noise, then the

standard error of x(t) about its linear trend can be ap-

proximated as

se 5sg(nt, r1) , (4)

where

s[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nt 2 2
�
n
t

i51

[x(i)2 bi]2

s
(5)

is the standard deviation of the residuals,

g(nt, r1)[

2
4 nt 2 2

nt

�
12 r1
11 r1

�
2 2

3
5

1/2

(6)

is the scaling factor, and r1 is the lag-one autocorrelation

of the residuals. If the residuals are not serially corre-

lated [e.g., the lag-one autocorrelation of the detrended

x(t) time series is zero], then se 5 s. Note that the de-

nominator of Eq. (5) includes the factor nt 2 2 (rather
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than nt 2 1, as is the case for estimating the sample

standard deviation). The factor nt 2 2 arises because

estimating the standard deviation of the residuals re-

quires estimating not only the mean of the time series

(the y intercept) but also the regression line (the slope).

In the context of climate change, s can be viewed as the

standard deviation of the internal (unforced) variability.

Substituting Eqs. (2), (3), and (4) into Eq. (1) yields

the following expression for the margin of error for a

trend in x(t) in the units of Dx(ntDt)
21:

e5 tcntsg(nt, r1)g(nt) . (7)

Equation (7) provides a simple analytic model for the

margin of error for a trend in a Gaussian red noise

process. It is derived from commonly used estimates of

trend significance (e.g., Lettenmaier 1976; Santer et al.

2000; Casola et al. 2009). And it makes clear that the

margin of error on a trend is a function of two statistics

of the internal variability, both of which we assume are

stationary in time:

1) the standard deviation of the internal (unforced)

variability s and

2) the lag-one autocorrelation of the internal (un-

forced) variability r1.

Figure 2 shows solutions for Eq. (7) as a function of

nt (trend length) and r1 (the lag-one autocorrelation

of the residuals), where tc is calculated for the two-

tailed 95% confidence level (i.e., 2.5% of the distri-

bution lies in each tail). The results are expressed in

units of the margin of error relative to the amplitude

of the internal variability [i.e., they show solutions to

e/s5 tcntg(nt, r1)g(nt)]. As such, the results indicate

the amplitude of the trend required to exceed the

95% confidence level in units of the internal vari-

ability. For example, if e/s5 2, then the trend must be

twice as large as the internal (unforced) variability to

exceed its margin of error.

The margins of error on the trends (and thus the trend

amplitudes required for significance) increase rapidly as

the length of the trend decreases and/or the autocorre-

lation increases. If a time series is 40 time steps in length

and has autocorrelation r1 ’ 0.45, then the trend in the

time series must be twice as large as the standard de-

viation of the internal variability to exceed the 95%

confidence level. If the autocorrelation increases to r1 ’
0.65, then the trend must be approximately 3 times as

large as the internal variability.

As also evidenced in Fig. 2, if the autocorrelation of

the residuals r1’ 0 and the trend length is 50 time steps,

then the margin of error on the trend is roughly equal to

the standard deviation of the residuals; that is, inserting

r1 ’ 0 and nt 5 50 into Eq. (7) yields

e95% ’s (for nt 5 50 and r1’ 0), (8)

where e95% denotes the two-tailed 95%margin of error on

the trend in theunits ofDx(ntDt)
21. Equation (8) provides a

rough rule of thumb for the uncertainty in 50-yr trends in

anyGaussian physical process that is not serially correlated

from one year to the next: the 95%margin of error on the

50-yr trends in a Gaussian process is roughly equal to its

interannual standard deviation.

3. Testing the analytic model in a large ensemble of
climate change simulations

How well does the analytic model given by Eq. (7)

predict the uncertainty in future climate trends? The

utility of the analytic model is tested by comparing

1) the margins of error in trends calculated from a large

ensemble of climate change simulations run on a cou-

pled global climate model (the actual margins of error)

with 2) the margins of error predicted by applying the

analytic model to the statistics of the internal vari-

ability of the same coupled global climate model (the

predicted margins of error). As discussed below, the

internal variability of the coupled global climate model

is estimated from a long control simulation with fixed

anthropogenic forcing.

FIG. 2. Analytic solutions for the uncertainty in future climate

due to internal variability. Contours indicate the trend amplitudes

required to exceed the 95%margin of error relative to the standard

deviation of the internal variability. For example, a trend of 2 in-

dicates that the trend must be twice as large as the internal (un-

forced) variability to exceed the 95% margin of error. Results are

derived fromEq. (7) and are shown as a function of the trend length

(in time steps) and the lag-one autocorrelation r1. Contours are

spaced at trend amplitudes of 0.5.
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The actualmargins of error are derived from50-yr trends

in boreal wintertime (October–March) mean near-surface

air temperature and precipitation from the NCAR

40-member ensemble of climate change simulations. The

NCAR40-member ensemble is described in detail inDeser

et al. (2012b). Briefly, the simulations were run with a fully

coupled ocean–land–atmosphere global climate model

on a 2.88 3 2.88 latitude–longitude grid (CCSM3) and

forced with the Special Report on Emissions Scenarios

(SRES) A1B scenario. The ensemble members differ only

in their initial atmospheric conditions.

The predicted margins of error are derived from a

1000-yr-long control simulation runon theNCARCCSM3

in which greenhouse gases are held fixed at 1990 levels. In

the analyses shown here, the climate change simulations

are examined from 2011 to 2061, and the control simula-

tion is examined for the last 500 years of the integration.

Seasonal-mean surface air temperature and precipitation

do not exhibit notable memory from one year to the next

at virtually all terrestrial locations in the control run (not

shown). So, in practice, the predicted 95% margins of

error for the 50-yr trends derived fromEq. (7) are roughly

the same as the interannual standard deviations in the

control run [according to Eq. (8)].

Figure 3a shows the ensemble-mean 50-yr trends in

surface air temperature from 2011 to 2061 averaged over

all 40 members in the CCSM3 large ensemble. The

ensemble-mean trends have been discussed in previous

work (Deser et al. 2012b) and are shown here to provide

context for the amplitude of the internal variability. The

warming during the first half of the twenty-first century

is projected to be largest over theNorthernHemisphere,

where it exceeds approximately 3K (50 yr)21 over much

of northernNorthAmerica andAsia (Deser et al. 2012b;

Kirtman et al. 2014; Collins et al. 2013).

Figure 3b shows the actual two-tailed 95%margins of

error for the 50-yr trends found by 1) calculating the

standard deviations of the trends derived from all 40

ensemble members and 2) multiplying the standard

deviations by a factor of 2 (95% of the normal distri-

bution lies within about two standard deviations of the

population mean). Note that Fig. 3b is identical to

the top-left panel of Fig. 1 multiplied by a factor of 2. The

gray bars in the surrounding panels indicate the histo-

grams of the simulated trends at grid boxes collocated

with the indicated cities. The actual margins of error for

the trends are due entirely to the internal variability in

the NCAR CCSM3—that is, they are not due to differ-

ences in the forcing or themodel used in the simulations.

As such, they provide a quantitative estimate of the role

of internal variability in future climate trends (Deser

et al. 2012a,b). By construction, the means of the his-

tograms are equal to the trends in Fig. 3a and the

standard deviations of the histograms are equal to

0.5 times the actual margins of errors shown in Fig. 3b.

Atmany terrestrial locations, themargins of error due to

internal variability are approximately 50% as large as

the forced signal (cf. Figs. 3a and 3b).

Figure 3c shows the predicted 95%margins of error for

the 50-yr trends found by applying the analytic model

given by Eq. (7) to the statistics of the control simulation.

Stippling indicates regions where the predicted margins

are not significantly different from the actual margins

(see the appendix for details). The blue probability den-

sity functions in the surrounding panels show the corre-

sponding predicted Gaussian distributions of the trends

at grid boxes collocated with the indicated cities, where

95% of the distributions lie between positive and nega-

tive e95%. Comparing Figs. 3b and 3c, it is clear that 1) the

margins of error predicted by applying Eq. (7) to the

statistics of the control run provide a remarkably accurate

prediction for 2) the margin of error on the trends in

surface air temperature derived from the large ensemble

of climate change simulations. Over much of the globe,

the predicted margins of error are statistically indistinct

from the actual margins.

Figure 4 shows analogous results for October–March

mean precipitation. The ensemble-mean trends (Fig. 4a)

are consistent with increases in precipitation in the deep

tropics and high northern latitudes juxtaposed against

decreases in precipitation in the subtropics (Kirtman

et al. 2014; Collins et al. 2013; Held and Soden 2006).

As is the case for surface air temperature, the predicted

margins of error found by applying Eq. (7) to the sta-

tistics of the control run provide a remarkably accurate

estimate of both the spatial pattern and amplitude of

the actual margins of error throughout much of the

globe (cf. Figs. 4b and 4c). The predicted margins of

error are statistically indistinct from the actual margins

over most terrestrial locations. The apparent bimo-

dality in the ensemble member trends at Melbourne

(Fig. 4, bottom-right graph) is not reproducible in

results for adjacent grid boxes and is thus likely an

artifact of sampling variability.

We reproduced the above analyses for the boreal sum-

mer season months April–September (results not shown).

To first order, the similarities between the predicted and

actual margins of error in April–September mean surface

air temperature and precipitation are comparable to those

indicated in Figs. 3 and 4.

4. Application to observations

The results in the previous section indicate that the

role of internal variability in a large ensemble of climate

change simulations can be quantified to a high degree of
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accuracy from the statistics of the variability in an un-

forced control simulation. The results highlight the im-

portance of simulating correctly the internal variability

in a control simulation: if the standard deviation and/or

autocorrelation of the simulated internal variability are

biased relative to the observations, then those biases

will project directly onto the uncertainty in simulations

of climate change. Since model simulations inevitably

FIG. 3. Using the control run to estimate the 95%margins of error on 50-yr trends inOctober–Marchmean surface temperature. (a) The

forced response defined as the linear trends in October–March mean surface temperature averaged over all 40 ensemble members in

kelvin per 50 yr. (b) The actual 95% margins of error on the 50-yr trends derived from all 40 ensemble members. (c) The predicted 95%

margins of error on the 50-yr trends derived by applying Eq. (7) to the statistics of the control run. Stippling indicates regions where the

predicted margins are not significantly different from the actual margins (see appendix for details). (left),(right) The probability distri-

bution functions of the 50-yr trends at grid boxes collocated with the indicated cities. The gray bars denote the histograms derived from all

40 ensemble members. The standard deviations of the blue curves correspond to the predicted margins of error on the trends found by

applying Eq. (7) to the statistics of the control run; the means of the blue curves correspond to the ensemble-mean trends. The areas under

the blue curves are normalized so that they match the areas under the attendant gray bars.
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contain biases, the internal variability of the real world is

arguably best estimated from the real world itself—that is,

from observations.

In this section, we apply the analyticmodel to estimates

of internal variability derived from two observational

data sources: 1) precipitation data from the Global

Precipitation Climatology Project (GPCP), version 2.2,

combined precipitation dataset (Adler et al. 2003) and

2) surface air temperature data from the HadCRUT4

dataset (Kennedy et al. 2011; Osborn and Jones 2014).

The precipitation data are analyzed on a 2.58 3 2.58mesh

and were obtained from the NOAA/ESRL Physical Sci-

ences Division; the surface air temperature data are an-

alyzed on a 58 3 58 mesh and were obtained from the

Climatic Research Unit at the University of East Anglia.

The observed internal climate variability is assumed to

be closely approximated by the statistics of the detren-

ded, seasonal-mean gridpoint values over the period

1979–2013. In principle, 1) the anthropogenic forcing of

the past few decades is not perfectly linear, and 2) the

FIG. 4. As in Fig. 3, except for October–March mean precipitation. Trends are expressed in millimeters per day per 50 yr.
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amplitude of the internal variability on decadal time

scales may be underestimated in the relatively short

1979–2013 period (the GPCP precipitation data are

available only after 1979). However, in practice, 1) the

statistics of the gridpoint surface air temperature and

precipitation observations are effectively identical

whether the anthropogenic signal is modeled as a first-

order (linear trend) or second-order polynomial fit,

and 2) variations on decadal time scales account for a

relatively small fraction of the total variance in surface

air temperature and precipitation on regional scales

(not shown).

Figures 5 and 6 compare the 95%margins of error for

the 50-yr October–March mean surface air temperature

and precipitation trends derived from the observations

(top-center panels and solid distributions in left and

right panels) and theCCSM3 control simulation (bottom-

center panels and dashed distributions in left and

right panels). As is the case for the control simulation

output, observed October–March mean surface air

temperature and precipitation do not exhibit statistically

significant memory from one year to the next at virtually

all terrestrial locations (not shown). Hence, in practice

1) the 95% margins of error on the 50-yr trends pre-

dicted by applying Eq. (7) to the observations are ef-

fectively equal to 2) the standard deviations of the

(detrended) October–March mean observations, ac-

cording to Eq. (8). Note that the results in Figs. 5b and

6b are identical to those shown in Figs. 3c and 4c, re-

spectively, except that 1) the stippling in Figs. 5b and 6b

indicates regions where the modeled and observed in-

terannual variances are significantly different from each

FIG. 5. Using observations to estimate the 95%margins of error on 50-yr trends in October–March mean surface temperature. (a) The

predicted 95%margins of error on the 50-yr trends derived by applying Eq. (7) to the statistics of the observations. (b) The predicted 95%

margins of error derived by applyingEq. (7) to the statistics of the control run. The results in (b) are as those shown in Fig. 3c, except that 1)

the stippling indicates regions where the modeled and observed margins of error are significantly different from each other at the 95%

confidence level (ratios.1.5:1 or,1:1.5 exceed the 95% confidence level based on a test of the F statistic assuming one degree of freedom

per year) and 2) the model output has been interpolated to the same mesh as the observations. (left),(right) The probability distribution

functions of the 50-yr trends for grid boxes collocated with the indicated cities. Solid and dashed curves denote the distribution functions

predicted by applying Eq. (7) to the statistics of the observations and the interpolated control simulation output, respectively. Distri-

butions are normalized so that they have the same area.
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other at the 95% confidence level (see Fig. 5 caption)

and 2) the control simulation output used in Figs. 5 and

6 has been interpolated to the same mesh as the ob-

servations before calculating the interannual standard

deviations (i.e., the temporal variance of area-mean

surface air temperature and precipitation generally

decreases when averaged over successively larger

spatial regions).

The margins of error predicted by the CCSM3 control

simulation and observations exhibit similar spatial pat-

terns but have significantly different amplitudes over

large regions of the globe (stippling). For example, the

control simulation exhibits significantly different mar-

gins of error in surface air temperature over much of

western North America, southern Asia, and tropical

South America and Africa (Fig. 5). It also exhibits sig-

nificantly different margins of error in precipitation over

much of North America, South America, and eastern

Asia (Fig. 6). The differences between the margins of

error predicted by the observed and control interannual

standard deviations are visually apparent at several of

the indicated cities (probability distribution functions).

Comparable differences are found during the April–

September season in both surface air temperature and

precipitation (results not shown).

5. Discussion

The analytic model developed in section 2 is based on

three primary assumptions. First, it assumes that the

internal variability is roughly Gaussian and is not dom-

inated by, say, bimodal or oscillatory behavior. The cli-

mate system exhibits various forms of quasi-periodic

variability other than the seasonal cycle [e.g., the

Madden–Julian oscillation (Zhang 2005) and El Niño–
Southern Oscillation]. But a substantial fraction of cli-

mate variability is well modeled as a Gaussian process,

particularly at extratropical locations (Hartmann andLo

1998; Feldstein 2000; Newman et al. 2003) and on in-

terannual time scales. The strong similarities between

the actual and predicted margins of errors in Fig. 4

suggest that even precipitation is sufficiently Gaussian

FIG. 6. As in Fig. 5, but for October–March mean precipitation. The observations have been interpolated to the same mesh as the

model output.
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on seasonal-mean time scales to justify the assumptions

that underlie the analytic model.

Second, the analytic model assumes that the signature

of climate change in surface climate can be estimated

from linear trends. In principle, the analytic model could

be generalized to a higher-order polynomial fit than a

linear trend. But to zeroth order, the predicted changes

in surface climate over the next 50 yr project strongly

onto linear trends. Linear trends are widely used to es-

timate the amplitude of climate change in the climate

literature, including all of the IPCC reports.

Third, it assumes that the standard deviation and au-

tocorrelation of the internal variability are stationary in

time. There is evidence that the standard deviation of

surface air temperature will change over select locations

in response to climate change, with decreases in tem-

perature variance over the high latitudes of the Northern

Hemisphere during winter (e.g., Gregory and Mitchell

1995; Screen 2014; Schneider et al. 2015) and increases

over various terrestrial regions in summer (Fischer and

Schär 2009). The most noticeable changes in interannual

variance in the NCARCCSM3 large ensemble of climate

change simulations are found over eastern Europe/

western Russia, where the standard deviations of surface

air temperature decrease during the forcing period (see

Fig. A1 in the appendix). But even in this region, the

differences between the predicted and actual margins of

error are not statistically significant (Fig. 3c). As dem-

onstrated in Figs. 3 and 4, the analytic model provides a

remarkably robust estimate of the uncertainty in simu-

lated climate change due to internal variability over the

vast majority of the globe.

In fact, the analytic model given by Eq. (7) may be

viewed as a ‘‘null hypothesis’’ for the role of internal

variability in future climate on any time scale in any

physical field that is well modeled as a Gaussian process.

The results in Figs. 7a and 7b show trends in temperature

and precipitation as a function of trend length at the

model grid point collocated with Los Angeles (results for

the same grid point are highlighted in Figs. 1, 3, and 4).

Red dots indicate trends derived from all 40 ensemble

members for the period starting 2011 and ending on the

year indicated on the abscissa. For example, the red dots

at 2061 indicate trends derived from all 40 ensemble

members for the period 2011–61 (in units per 50 yr) and

are identical to the results used to generate the gray

histograms in the top-left panels of Figs. 3 and 4. The

dashed lines indicate the ranges of the trends given by

bnt 6 e, where b is the ensemble-mean trend and e is

found by applying Eq. (7) to the statistics of the control

run. Figure 7c indicates analogous results for October–

March mean precipitation averaged over grid points

that lie within the Colorado River watershed. Fig. 7d

indicates results for the model North Atlantic Oscilla-

tion (i.e., northern annular mode), calculated here as the

standardized difference between October–March mean

sea level pressure anomalies collocated with Iceland and

the Azores.

Figure 7 highlights two main points: 1) it makes clear

that the analytic model given by Eq. (7) provides a re-

markably accurate estimate of the uncertainty in climate

change projections on an array of time scales, not just

the 50-yr time scale exemplified in Figs. 3 and 4, and 2) it

highlights the utility of the analytic model for estimating

the uncertainty in surface climate trends averaged over a

relatively large spatial region and in the large-scale at-

mospheric circulation. The uncertainties in projected

changes in precipitation averaged over the Colorado

River watershed (Fig. 5c) and in the North Atlantic

Oscillation (Fig. 5d) indicated by the large ensemble are

closely approximated by applying Eq. (7) to the statistics

of the control simulation.

6. Concluding remarks

Uncertainty in projections of future climate change

can arise from three different factors (e.g., Hawkins and

Sutton 2009): 1) model uncertainty—the uncertainty

that arises from differences between climate models, 2)

scenario uncertainty—the uncertainty that arises from

differences in forcing scenarios, and 3) uncertainty due

to internal variability—the uncertainty that arises from

unpredictable internal variability in the climate system.

Model and scenario uncertainty can be reduced as

models and our understanding of future forcing sce-

narios improve. The uncertainty due to internal climate

variability arises from the chaotic nature of the climate

system and—to the extent that it is unpredictable—is

presumably irreducible.

The analytic model given by Eq. (7) provides a sim-

ple basis for estimating the uncertainty in climate

change projections due to internal variability using the

statistics of the unforced climate. It provides a zeroth-

order estimate of the uncertainty in future trends due

to internal variability in a range of physical fields in-

cluding, for example, precipitation averaged over a

watershed, surface air temperature averaged over an

agricultural region, and the atmospheric circulation at

middle latitudes.

The analytic model is based on three assumptions:

1) the internal variability is well modeled as Gaussian,

2) the signature of anthropogenic forcing in surface climate

can be modeled as a linear trend, and 3) the standard

deviation and/or autocorrelation of the internal climate

variability do not change in response to anthropo-

genic forcing. The robustness of the model to all three
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assumptions is strongly supported by the close similari-

ties between 1) the uncertainties in climate trends esti-

mated from the statistics of an unforced control

simulation and 2) the uncertainties found in a large

ensemble of climate change simulations. To the extent

that the assumptions of the analytic model hold, the

results suggest that large ensembles provide little in-

formation on the role of internal variability in future

climate that cannot be inferred from the statistics of an

unforced control simulation.

The analytic model also makes clear the direct re-

lationship between 1) biases in a model control simulation

and 2) the uncertainty in projections of future climate

change. If the amplitude of internal climate variability is

biased relative to observations in the control simulationof a

given climate model, then so is the uncertainty in future

climate change simulated by the same model.

Both observational and climate model estimates of

internal climate variability have shortcomings. The

observational record provides robust estimates of in-

ternal climate variability on intraseasonal and in-

terannual time scales. However, the record is relatively

short and thus provides limited insight into internal

climate variability on multidecadal and longer time

scales. In contrast, numerical models provide long re-

cords for estimating the amplitude of internal climate

variability. However, models frequently exhibit sys-

tematic biases in their representation of internal cli-

mate variability not only on decadal time scales (e.g.,

Laepple and Huybers 2014) but on interannual time

scales as well (e.g., Figs. 5 and 6). To the extent that

imperfect observational records provide a more re-

alistic representation of the real world than a climate

model, it follows that the role of internal variability in

FIG. 7. Actual trends (red) and the predicted ranges of the trends (black dashed lines) in

fields indicated. Trend periods start in 2011 and end on the year indicated on the abscissa. Units

are change over the length of the trend period. Red dots indicate the actual trends derived from

all 40 ensemble members. Black dashed lines indicate the predicted ranges of the trends found

by applying Eq. (7) to the statistics of the control run as a function of trend length. Themargins

of error on the trends indicated by the black dashed lines [e in Eq. (1)] are given by the statistics

of the control run; the amplitudes of the forced signal are given by the ensemble-mean trends.

The units on the North Atlantic Oscillation index are standard deviation of the interannual

variability.
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future climate trends is arguably best estimated not

from a long control simulation or a large ensemble of

climate change simulations, but from observational

estimates of internal climate variability.
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APPENDIX

Analysis Details

a. Expanding the standard deviation of the time axis

The standard deviation of the time axis [the de-

nominator in Eq. (2)] can be expanded as a function of nt,

since the time axis corresponds to a series of consecutive

integers. Using two formulas for consecutive integers

�
n
t

i51

i5
nt(nt 1 1)

2
and �

n
t

i51

i25
nt(nt 1 1)(2nt 1 1)

6
,

it follows that

i5
1

nt
�
n
t

i51

i5
(nt 1 1)

2
,

and thus
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i 2
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nt(nt 1 1)(2nt 1 1)

6
2

nt(nt 1 1)2

2
1

nt(nt 1 1)2

4

5
n3t 2 nt
12

.

b. Accounting for autocorrelation in the standard
error of the residuals

A simple and commonly used method for accounting

for the bias in the sample standard deviation is to sub-

stitute an effective sample size neff for the sample size nt

FIG. A1. Ratio of variances between the periods 2051–60 and 2011–20 from the NCAR 40-member ensemble of

climate change simulations. The variances are calculated from the pooled detrended seasonal-mean data from all

ensemble members. Ratios greater than;1.4 and less than;0.71 (indicated by stippling) are significant at the 95%

level based on the F statistic.

6454 JOURNAL OF CL IMATE VOLUME 28



in the calculation of the standard deviation [i.e., Eq. (5)].

If x(t) is well modeled as Gaussian red noise (and thus its

autocorrelation function decays exponentially with lag),

then neff can be approximated as (Mitchell et al. 1966;

Santer et al. 2000)

neff ; nt

�
12 r1
11 r1

�
.

Note that the time between independent samples in a

red noise time series is equal to approximately 2 times

the e-folding time of the autocorrelation function

(Leith 1973).

Substituting neff for nt in the denominator of Eq. (5)

yields the following relationship between the standard

error se and the standard deviation s of the residuals:

se5sg(nt, r1) ,

where

g(nt, r1)[

2
4 nt 2 2

nt

�
12 r1
11 r1

�
2 2

3
5

1/2

.

c. Estimating statistical significance in Figs. 3c and 4c

The stippling in Fig. 3c denotes regions where

the predicted margins shown in Fig. 3c fall within the

95% confidence intervals of the actual margins shown

in Fig. 3b. The 95% confidence intervals of the actual

margins are found by 1) calculating the 95% confidence

intervals of the interannual standard deviations from

the control simulation using the chi-squared distribu-

tion assuming 40 degrees of freedom and 2) multiplying

the resulting confidence intervals by a factor of 2 to

convert them to confidence intervals of the predicted

margins of error. The stippling in Fig. 4c is found in an

analogous manner.

d. Changes in interannual variance over the 2011–60
period

Figure A1 indicates the ratio of variances between

the periods 2051–60 and 2011–20 from the NCAR

40-member ensemble of climate change simulations. See

caption for details.
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