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Abstract 

Empirical Orthogonal Functions (EOFs) applied to gridded Earth system data enables users to diagnose 

modes of variability with relative ease. Yet, many challenges to interpretation exist such that they must be 

used with awareness and intention when applied to gridded climate data. Challenges include erroneous 

mode swapping, sign flipping, and the temporal variability of the centers of action.  For modes of 

variability with similar contribution to variance, mode swapping is not uncommon. Sign flipping can 

occur with almost any mode where the pattern is correct but the sign is arbitrary. Although the variability 

of the center of action is not necessarily problematic, it potentially complicates interpretation over 

multi-century timescales. A wide variety of alternative methods to EOFs exist, but fitness-for-purpose 

must be evaluated. Utilizing data from two different Earth system modelling frameworks, the Energy 

Exoscale Earth System Model (E3SM) and the Community Earth System Model (CESM), as well as 

reanalysis data, common EOF pitfalls are summarized and discussed. Additionally, illustrations of 

alternative methods and examples of proper use are provided. Alternative methods fit into three 

categories: EOF variants, linear methods, and multilinear methods are provided.  
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Introduction   

Principal Component Analysis (PCA) is a widely used method for assessing gridded climate datasets. 

Whether the data takes the form of reanalyses, observational products, or model output, understanding 

Earth’s climate and its variability often involves quantifying patterns of variability, disentangling them 

from external forcing such as anthropogenic climate change, or simplifying predictions with the use of 

linear inverse modelling1. PCA is a commonly used approach which decomposes data into (1) spatial 
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patterns, referred to as Empirical Orthogonal Functions (EOFs) and (2) a time-varying principal 

components (PC), representing the variation of the amplitudes of the EOFs over time.  Although patterns 

produced from geophysical data can be interpreted as physical variance patterns occurring naturally in the 

Earth system, the data structures themselves are distinct from real physical processes. Patterns are defined 

to be orthogonal and sorted by contributions to total variance, in a specified domain, temporally across the 

dataset. EOF modes are uncorrelated with each other, in that the different patterns of variance may not 

necessarily be t related to each other2,3,4,5,6.  For example, a very common internal mode of climate 

variability in the Northern Hemisphere is the Pacific North American Pattern (PNA), a storm track 

pattern.  In observations, the PNA is the leading EOF of interannual sea -level pressure (PSL) anomalies.  

The second leading mode is the NPO (North Pacific Oscillation), an orthogonal pattern oriented as a 

meridional dipole in contrast to the PNA, whose structure is primarily zonal.  Reproducing these patterns 

in observations is influenced by parametric choices such as time period and domain bounds. Reproducing 

patterns in ensembles of climate models can be complicated further by orthogonal modes with similar 

variance across the dataset, such that the ordering of the modes is inconsistent across individual 

simulations. This is called mode-swapping. It has been documented in a number papers5,7,8,9, and can have 

serious implications for interpretability of the dominant mode in both models and observations.  The 

purpose of this article is neither to describe dominant modes of variability, nor to provide a deep-dive into 

PCA mathematics, but rather, in one place, to examine common pitfalls in PCA analysis when applying 

EOFs, and to outline approaches for dealing with them.  While some of these pitfalls are simply natural 

characteristics of the method, rather than problems per se, the challenges can arise when using EOFs to 

evaluate physical patterns, and particularly multi-model comparisons and large ensemble studies.  

Throughout this article, we intertwine discussion of EOFs, their modes, and respective physical 

interpretations, all together, to frame PCA within the context of typical community practices. However, it 

is important to acknowledge again that the data structures themselves are indeed distinct from the physical 

patterns, and it is our interpretation of them that is the challenge.  Further discussion can be found in 

Methods under Techniques: Standard EOF Computation. We follow in the spirit of earlier literature, each 
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aimed at addressing specific aspects of the challenge 5,8.  Lee et al. (2019)8 proposed applying common 

basis functions (CBFs) to EOFs as a means of using observations to mitigate for pitfalls of PCA in 

evaluating climate models.  CBFs can correct for mode swapping, sign swapping (i.e, the arbitrarily 

assigned signs of EOFs that are inconsistent with observations), and potentially misinterpretation related 

to mode center of action variability. Although the application of CBF works well for historical 

simulations, it is not well-suited for cases where the patterns of modes change, such as in past or future 

climates. Techniques considered to be an alternative to EOFs and traditional PCA analysis include rotated 

EOFs (REOFs).  Rotated EOFs can address issues related to the production of potentially unphysical 

modes and mode mixing, and have been explored in earlier work10,11. Even using REOFs, however, some 

of the classic problems, such as interpretability and geophysical pattern reliance on domain choice, still 

remain12,13.  Many issues arise when analyzing climate model simulations, especially in large ensembles, 

which consist of multiple simulations (>20) initialized with slightly different conditions but using 

identical external climate forcings.  Over the past decade, large ensembles have emerged as a critical and 

necessary tool for disentangling natural and forced climate signals14,15, in part, by benchmarking modes of 

variability (MOV) internal noise16. Here, we coalesce the most common challenges found in large 

ensembles into one reference paper and discuss not only the solutions and potential alternatives, but also 

the purposes and interpretability of these methods.  EOFs are powerful tools, however their limitations 

need to be acknowledged when applied to climate data.   

 

Challenges with EOFs   

Mode swap  

Sequential EOFs for a given variable are ranked by the percentage of variance they explain. When two 

modes explain very similar amounts of variance, mode swapping can occur, i.e, a physical mode gets 

paired with a neighboring EOF rather than its canonical pattern. We define mode swapping as the 

misassignment of a mode of variability to an adjacent EOF. Mode swapping shows up whenever EOFs are 
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not clearly distinguishable, for example by the North's test for Rule of Thumb for EOF significance3 

which evaluates separability by estimating the sampling uncertainty in the associated eigenvalues.  

 

To illustrate, consider wintertime, January-March (JFM) sea level pressure over the North Atlantic Region 

(20:80°N, -90:40°E).  In the ERA-5 reanalysis, EOF2 (East Atlantic Pattern, EA) accounts for 14.9% of 

variance and EOF3 (Scandinavian pattern, SCA) for 11.5%, only a 3.4% difference. If another dataset, or 

model shifts the gap by ≧ 3.4%, EOF2 and EOF3 swap: the second EOF now looks SCA-like and the 

third EA-like. A similar swap can also happen between EOF3 and EOF4, pushing SCA into EOF4. Figure 

1 shows this in two CESM2 (Community Earth System Model version 2) CMIP6 ensemble members. In 

r1i1p1f1, EOF2 matches the EA pattern with the larger variance (upper middle compared to upper left 

panels). In r3i1p1f1, the larger variance aligns with SCA rather than EA (compare upper right with lower 

left).  

 

Figure 1: East Atlantic pattern (EA, row 1) and Scandinavian pattern (SCA, row 2) shown for ERA5 

(first column), CESM2 ScenarioMIP ensemble member r1i1p1f1 (second column) and CESM2 

ScenarioMIP ensemble member r3i1p1f1 (third column). Mode swapping is evident in the third column. 

EA and SCA are defined as the 2nd and 3rd EOF patterns of area-weighted PSL computed over 20:80°N, 
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-90:40°E for JFM 1979-2022. Units are in hPa and variance explained is listed at the top right of each 

panel. 

 

The same phenomenon occurs in the Southern Hemisphere with the Pacific South American patterns 

(PSA1 and PSA2, Figure 2). Using sea level pressure for the winter months of June through August (JJA) 

in the southern hemisphere, ERA5 reanalysis quantifies these modes as even more closely varying with a 

mode separation of only 1%.  Not surprisingly, when using ensemble climate model data, mode swapping 

occurs frequently across ensemble members. As in Figure 1, the middle panels of Figure 2 show a CESM 

ensemble member (1181.010) for which modes match the expected patterns compared to ERA5, and the 

PSA1 and PSA2 correspond to EOF2 and EOF3, respectively. The panels on the right show a different 

ensemble member (1161.009) where the modes have been swapped. Here PSA1 corresponds to EOF3, 

and PSA2 to EOF2.  Mode swapping amongst different realizations of the same model can have serious 

implications when diagnosing teleconnections and their respective regional weather impacts.  To quantify 

potential impacts, we provide an example of mode swapping frequency between PSA1 and PSA2 in 

Table1, with and without the removal of the forced response.  
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Figure 2: Pacific South American (PSA) modes 1 (row 1) and 2 (row 2) shown for ERA5 (first column), 

CESM2 Large Ensemble member 1181.010 (second column) and CESM2 Large Ensemble member 

1161.009 (third column). Mode swapping is evident in the third column. PSA1 and PSA2 are defined as 

the 2nd and 3rd EOF patterns of area-weighted PSL computed over 20:90°S, 0:360°E for June-August 

1950-2023. Units are in hPa and variance explained is listed at the top right of each panel. The patterns 

are created by regressing global PSL anomalies onto normalized PC timeseries. 

 

 

Forced Response E3SMv1 E3SMv2 CESM1 CESM2 

Removed 53% 48% 33% 44% 

Included 88% 86% 18% 56% 
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Table 1.  Percentage of time mode swapping occurs between PSA1 and PSA2 for JJA (Southern 

Hemisphere winter) for the period of 1950-2023 using large ensembles.   

 

Sign flip  

 Sign flipping is another common feature and can occur with almost any mode of variability.  In EOF 

analysis, the sign of each EOF mode is arbitrary, due to the symmetric characteristics of eigenvalue 

decomposition. Flipping the sign of both the spatial pattern and its PC time series does not impact their 

interpretation or statistical significance. However, when comparing across models or simulations, 

inconsistencies in sign conventions may cause visual discrepancies and introduce challenges in statistical 

comparison, thus we include it here.  To illustrate this point, we plot the Pacific North American (PNA) 

pattern (Figure 3) using the Energy Exoscale Earth System Model version 2 (E3SMv2) as defined by the 

first EOF pattern of area-weighted PSL computed over 20:85°N, 120°E:120°W for June-August 

1950-2022. The hemispheric pattern is created by regressing global PSL anomalies onto the normalized 

PC timeseries. Knowing the correct phasing (positive or negative) for the mode based on observations 

allows us to identify and correct sign flipping issues.  

 

 



Submitted to Scientific Reports 

Figure 3: Pacific North American pattern shown for ERA5 (first panel), E3SMv2 member r18i1p1f1 

(second panel) and E3SMv2 member r29i1p1f1 (third panel). Sign flipping is evident in the third panel. 

Units are in hPa and variance explained for each pattern is listed at the top right. The PNA is defined as 

the first EOF pattern of area-weighted PSL computed over 20:85°N, 120°E:120°W for June-August 

1950-2022. Units are in hPa and variance explained is listed at the top right of each panel. The patterns 

are created by regressing global PSL anomalies onto normalized PC timeseries. 

 

Center of action variability  

Figure 4: Center of action variability for North Atlantic Oscillation (top), East Atlantic (middle) and 

Scandinavian (top) patterns computed for three ensemble members of the E3SMv2 Large Ensemble: 0101 

(left), 0201 (center), and 0301 (right), for a combination of historical and SSP370 simulations. The NAO 

is defined as the first EOF, the East Atlantic pattern as the second EOF and the Scandinavian pattern as 

the third EOF of area-weighted PSL computed over 20:80°N, 90°W:40°E for January-March over 
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100-year periods staggered by 10 years. The mean EOFs are shown, as well as the centers of action for 

each of the sixteen 100-year periods between 1850 and 2100, marked by white dots.  

 

While technically a feature of the PCA methodology itself, it is also important to consider 

center-of-action variability in the EOF loading pattern. Shifts in the location of the center-of-action can be 

used to evaluate multi-model, ensemble, or temporal variability. We use temporal variability to illustrate 

the concept. EOFs are typically calculated from a single time interval, implicitly treating mode structure 

as temporally invariant. However, this is not always the case, especially when EOFs are applied to data 

generated in a changing climate. While data can be detrended prior to computation of the EOFs, this is 

typically done by fitting simple trends and can miss more complex climate change signals.  

 

To investigate temporal center-of-action stability, we calculated EOFs from successive 100-year segments 

of simulations spanning historical and SSP370 scenarios from 1850 to 2100 for three members of the 

E3SMv2 Large Ensemble (0101, 0201, and 0301). The start date of each 100-year segment is advanced 

by ten years between windows, resulting in sixteen time slices for each ensemble member. Figure 4 shows 

the centers of action for the leading three EOFs of PSL, corresponding to the North Atlantic Oscillation 

(NAO), EA, and SCA, respectively. The loading patterns are averaged over the sixteen time slices and 

shown as contours in the background. Centers of action are marked as white dots. If EOF patterns showed 

no temporal variability, all white dots would cluster tightly over the maximum of the average loading 

pattern. However, we see that they trace out a broad region of variability, especially for the NAO and 

SCA patterns (Figure 4). This scatter demonstrates that even the leading modes of variability exhibit 

significant non-stationarity over multi-century timescales. To quantify whether two spatial patterns can be 

considered the “same” climate mode in the presence of sampling uncertainty - a spatial analog to the 

North (1982)3 eigenvalue criterion - we computed the pairwise pattern-correlation distribution across all 

time-slices. For a perfectly stable mode, correlations would cluster tightly near 1. While this holds for the 

NAO, with 88%, 88%, and 100% of r values above 0.8 for ensemble members 0101, 0201, and 0301, 
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respectively, we find a wide, often near-uniform spread from 0 to 1 for EA and SCA. (EA: 58%, 96%, and 

53%, SCA: 44%, 34%, and 30%). These results indicate that higher-order EOFs exhibit far lower 

robustness, consistent with rotational degeneracy and sensitivity to non-stationary forcing.  Overall, this 

demonstrates that spatial shifts in mode structure constitute a significant, and often underappreciated 

source of uncertainty. When EOFs derived from historical or control simulations are projected onto future 

climate scenarios—especially under strong anthropogenic forcing—these shifts are likely to accelerate, 

potentially biasing our interpretation of circulation changes and feedbacks. 

 

 Direct adjustment methods  

Mode swap​

Mode swapping complicates both the physical interpretation and statistical comparison of EOFs, and 

addressing it is essential for studies of climate variability given physical patterns and data structures are 

used in tandem. Often, researchers resort to manual mode swapping to ensure consistency in mode 

identification. While this approach can be effective for small datasets, it is tedious, subjective, and 

impractical for large ensembles or multi-model comparisons.  

 

Recent efforts have focused on automating the mode-swapping process, using objective criteria to match 

modes across datasets. One such technique involves statistical matching, where EOF modes from a target 

dataset (i.e., a model simulation) are compared to those from a reference dataset using similarity metrics 

such as spatial correlation, root-mean-square error (RMSE), or temporal correlation of PC time series. 

Such similarity metrics allow the user to quantify the differences between the mode in question and a 

reference control.  For example, each EOF mode from the target dataset (e.g., EOF 1, EOF 2, EOF 3) is 

compared against a specific reference mode (e.g., REF EOF 1), and the mode with the highest correlation 

or lowest RMSE is selected as the best match. In some cases, the reference PC time series used for 

temporal correlation may be derived from the Common Basis Functions (CBF),8, (Table 2 and Methods) 
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particularly when day-to-day or year-to-year reproducibility is not expected—for instance, in simulations 

following the Historical or AMIP experiment protocols of CMIP. While this approach can automatically 

resolve most cases of EOF mode swapping (see Fig. 5, upper panel), it is not infallible—particularly when 

different similarity metrics identify different best-matching modes. Figure 5 (bottom panel) illustrates this 

for the PNA pattern during SON, which is one of the modes and seasons with the highest incidence of 

EOF swapping 8. A few models display non-overlapping markers, indicating disagreement in mode 

identification and necessitating manual inspection and mode swapping. 

​

Alternative methods such as CBFs have been developed to address some of the limitations of traditional 

EOFs. CBF approaches emphasize dynamical consistency and interpretability, reducing ambiguity in 

mode identification by using dominant modes from reference datasets as fixed bases to detect similar 

patterns in model output—thereby eliminating the need for post-hoc mode swapping. 
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Figure 5. Mode swapping pattern correlation adjustment method illustration. (Upper panel) Pattern 

correlation of CMIP6 models' Pacific/North American (PNA) pattern during the 

September-October-November (SON) season (upper panel). The PNA pattern for each model was 

determined by the leading Empirical Orthogonal Function (EOF 1) of sea level pressure fields. Pattern 

correlation was then calculated between each model's EOF 1 spatial pattern and the 20th Century 

Reanalysis (20CR) PNA pattern (SON season). For each model, the pattern correlation of the leading 

three EOFs (EOF 1-3) was assessed against the 20CR PNA using spatial pattern correlation, Root Mean 

Square Error (RMSE), and temporal correlation between the EOF principal component (PC) time series 
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and a Common Basis Function PC time series. The highest pattern correlation achieved after potentially 

swapping EOF modes based on these criteria is indicated by markers, while the pattern correlation of the 

original EOF 1 is shown as a gray bar. The increasing spread between EOF1 and the alternative EOF on 

the right demonstrates the difficulty in automated selection of the best-matching EOF mode for models on 

the right, which highlights challenges in systematically identifying robust climate patterns across different 

models (further details in Lee et al., 20198). (Lower panel) Spatial pattern of model’s EOF 1 (left), 2 

(middle) and reference dataset’s EOF 1 demonstrating an example EOF swap case, obtained from 

EC-Earth3-AerChem model (far-most left in the upper panel) and the 20CR for PNA pattern during the 

SON season. This figure is a modified and expanded version from Figure 6 in Lee et al., 20198. 

 

Sign Flip  

Evaluating the EOF sign is required to ensure consistency when evaluating or intercomparing model 

simulations. A common manual approach involves checking the sign of each EOF spatial pattern or PC 

time series against a reference and flipping it if necessary—again, a process that becomes impractical 

with large datasets or ensemble analyses. To streamline this, automated sign correction techniques have 

been applied, which typically rely on pattern correlation: the EOF from a target dataset is compared to a 

reference pattern, and if the correlation is positive, the sign is retained; if negative, the sign is flipped. 

This approach mirrors the strategy used in automated mode matching and provides a consistent, objective 

way to address sign ambiguity. In addition to the correlation-based technique, region-specific sign 

corrections provide a practical alternative and/or complementary method for ensuring EOF sign 

consistency, particularly for climate modes and their spatial signatures. This method calculates the mean 

of the EOF pattern over a targeted geographical region and flips the sign if it deviates from the expected 

convention. For example, the PDO often shows negative loading in the central North Pacific, while the 

SAM is typically negative over the Southern Ocean. Applying this check across predefined regions allows 
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consistent alignment with standard mode definitions and can be especially useful when correlation metrics 

yield ambiguous results. 

​

While both mode swapping and sign flipping aim to ensure coherent EOF representation across datasets, 

they address distinct issues.  Mode swapping corrects for ordering ambiguities when eigenvalues are 

close or degenerate, noting that in linear algebra, degeneracy occurs when an eigenvalue (the frequency) 

can be associated with more than one eigenvector (the mode). Sign flipping, however, corrects for 

orientation ambiguities of individual modes. Both corrections are essential for creating comparable EOF 

structures that are physically interpretable across observations, models, ensemble members, or 

experimental protocols. 

 

Alternative methods 

 The limitations and challenges associated with EOF analysis highlighted thus far arise because PCA 

imposes several constraints—most notably linearity, orthogonality, and an implicit assumption of 

normally distributed fluctuations of the climate system.  These limitations can limit PCA effectiveness in 

capturing the full complexity of climate processes. Climate datasets frequently exhibit nonlinear 

interactions, spatial and temporal dependencies, raising questions about these assumptions. Furthermore, 

climate datasets often contain inherent physical constraints such as non-negativity (e.g., precipitation, 

concentrations, volumes). Standard EOF analysis does not enforce such constraints: its linear 

combinations can easily reconstruct physical fields with negative values of intrinsically non-negative 

variables. Working with anomalies does not avoid this issue.  Once the climatological mean is added 

back, the EOF reconstruction can still violate physical bounds. As a result, EOF-derived modes may 

capture mathematically valid variability patterns while nonetheless producing physically impossible 

states, complicating interpretation and downstream use.20 
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Motivated by these limitations, there is a need to explore alternative decomposition methods capable of 

addressing more general structures inherent to climate data. This section introduces several powerful 

approaches beyond PCA with further details in the Methods Section. We categorize these methods based 

on a few criteria and provide examples applied to climate questions: 

●​ EOF Variants: These techniques build off the core idea of EOFs, providing slight tweaks to try 

and overcome one or more limitations. Examples include common basis functions, rotated EOFs, 

and sparse EOFs. 

●​ Linear Methods: EOFs are a linear technique to define and discover modes, and as such, belong 

to a larger class of linear methods.  Other examples include factor analysis (FA), independent 

component analysis, nonnegative matrix factorization (NMF), and Dynamic Mode 

Decomposition (DMD). 

●​ Multilinear Methods: EOFs are discovered by flattening the spatial axis into a single dimension.  

Multilinear methods, such as the Canonical Polyadic Decomposition or the Tucker 

Decomposition generalize PCA to higher dimensional arrays in order to discover 

multidimensional modes.  

Table 2 summarizes our categorization.  Each approach offers unique strengths in handling interacting 

relationships, temporal dynamics, and spatial topology, thus providing climate researchers with versatile 

tools better suited for capturing and interpreting complex patterns embedded in climate datasets. Note that 

this categorization is far from complete.  We have chosen a small, but representative list of mode 

extraction methods, many of which have been applied throughout Earth system science.  All the methods 

described here arise from linear analysis - we have chosen not to include nonlinear methods such as 

autoencoders21 to keep the discussion more contained. Moreover, the above methods can be combined 

(e.g. nonnegative Tucker Decomposition, Table 2) to add further layers of sophistication.  To keep our 

discussion concise yet expansive, we have omitted these combination techniques.  Here, we directly 
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compare EOFs to the methods in Table 2.  In Methods, we provide an overview of the techniques and 

discuss which issues each method addresses. 

Method Addresses Limitation Category Example Uses  Packages 

EOF Maximizes 
variance with 
orthogonal 
modes 

Modes may 
mix physical 
signals 

EOF Gridded climate 
data 

Many 
analysis 
software 
packages 
will have an 
EOF routine, 
but, e.g. 
pyEOF, 
CVDP, PMP. 
or DOI: 
10.5334/jors.
122 

CBF Shared spatial 
basis across 
datasets 

May obscure 
dataset-specifi
c structure 

EOF Variant Multiple models 
or observations 
in a unified 
spatial 
framework 

PMP 

Rotated EOF Localized, 
interpretable 
patterns 

Rotation is 
subjective; 
loses 
orthogonality 

EOF Variant Avoid the 
unphysical dipole 
like EOF analysis 
pattern 

pyEOF 

Sparse EOF Enhances 
interpretability 
via sparsity 

Requires 
tuning; 
sensitive to 
noise 

EOF Variant Fingerprinting scikit-learn 

FA Models shared 
+ unique 
variance 
(latent factors) 

Identifiability 
- Different 
modes may 
explain data 

Linear 
Method 

Latent dynamics 
(e.g., unobserved 
climate drivers) 
are suspected to 
govern the 
observed data 

scikit-learn 

ICA Finds 
statistically 

Source 
signals must 

Linear 
Method 

Investigate sea 
level pressure 

scikit-learn 
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independent 
components 

be 
non-Gaussian 

and water storage 

NMF Nonnegative, 
parts-based 
decomposition 

Non-unique; 
depends on 
initialization 

Linear 
Method 

Precipitation, 
cloud cover, 
energy fluxes; 
characterizing 
drought behavior 
in river basins 
and quantifying 
the sources of 
atmospheric 
particles  

scikit-learn 

DMD Extracts 
coherent 
dynamical 
modes 

Assumes 
linear 
dynamics; 
sensitive to 
noise 

Linear 
Method 

Traveling waves, 
oscillations, and 
instabilities in 
geophysical 
flows and climate 
systems; LIMs 

pydmd 

CP 
Decomposition 

Multivariate 
generalization 
of EOF 

Non-orthogon
al; difficult 
optimization 
and scaling 

Multilinear 
Method 

Application that 
preserves 
multidimensional 
information (e.g. 
e.g., spatial 
modes, temporal 
modes, ensemble 
modes) 

tensorly 

Tucker 
Decomposition 

Multi-mode 
compression 
with core 
interactions 

Core may 
overfit; 
interpretation 
can be 
nuanced 

Multilinear 
Method 

Application that 
preserves 
multidimensional 
information (e.g., 
e.g., spatial 
modes, temporal 
modes, ensemble 
modes) 

tensorly 
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Table 2.  Summary of fixing or alternate techniques for EOF issues, including available software packages 

addressing issues, limitations, and example uses. References and detailed descriptions of specific methods 

and terms are found in the Methods section.  

 

Alternative Method Comparisons 

We now compare and contrast a sample of each method category (EOF variant, linear, multilinear) with 

EOF analysis.  Examples for other methods can be found in the Appendix. The aim of this section is not 

to extract deep insights about the Earth system, but to illustrate how these tools can be applied in practice 

and to highlight their key differences. We emphasize that this comparison is not intended to declare any 

single method as superior. In fact, such a direct comparison is often inappropriate, as each method is 

designed to capture different features of the data. Rather, our goal is to demonstrate the types of additional 

information that can be obtained using alternative techniques. Each method serves a distinct purpose and 

offers a unique perspective. 

 

We also note that, among the methods considered, only standard EOF analysis provides a clear and 

interpretable ordering of modes by importance, with each mode corresponding to a descending eigenvalue 

and associated variance explained. The CBF method (see Figure 5) inherits this property through its 

shared EOF basis, allowing joint variance-based ranking. Rotated EOFs, however, lose this feature: 

although the total variance is preserved, the variance is redistributed among rotated modes, and no 

canonical ordering remains. Sparse EOFs may allow modes to be ranked by post hoc variance explained, 

but the presence of sparsity-inducing penalties complicates the interpretation of such rankings, and 

ordering often depends on external criteria such as cross-validation. In FA, modes can sometimes be 

heuristically ranked using loadings or commonalities; however, this ranking is neither unique nor 

necessarily stable across model specifications. ICA offers no natural mode ordering, as its objective is 
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statistical independence rather than variance maximization. Similarly, NMF yields additive components 

without orthogonality or ordering, and the contribution of each mode must be assessed in context. DMD 

modes can be ordered by growth or decay rate, oscillation frequency, or modal energy, depending on the 

application. CPD lacks a natural ordering entirely, as components are not orthogonal and no scalar 

criterion governs their contribution. Tucker decomposition offers a partial analogue of variance-based 

ordering within each mode through the singular values of the factor matrices, but the presence of a dense 

core tensor, which mixes contributions across modes, precludes a globally interpretable ranking of 

importance.  Because most alternatives lack a coherent mode ordering, spatial and temporal structures are 

not directly comparable. Nonetheless, we highlight representative modes from a sample from each 

category (EOF variant, linear method, multilinear method, Table 2) based on the considerations outlined 

above. Examples for methods in Table 2 not shown in the main text, are in the Appendix, for reference.   

 

For our baseline, we compare against the PSL EOF modes from a single run of the CESM2 large 

ensemble. For this EOF baseline, we have chosen to not remove the seasonal cycle, nor apply any type of 

temporal filtering which can drastically change EOF results. We have made this decision so that we have 

a consistent baseline against other methods, however, examples of differences due to temporal filtering 

can be found in the Methods section under Techniques: Standard EOF Computation. Figure 6 contains 

the top four EOF modes sorted by explained variance.  
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Figure 6.  PSL EOFs 1,2,3,4 (with percent variance explained) and respective PC timeseries for CESM2 

model large ensemble, first member. No temporal filtering is done for consistency and comparison across 

alternative methods. See the Methods section under EOF: Standard Computation for an illustration on the 

potentially large differences due to temporal filtering.  

 

Rotated EOFs (EOF Variant) 

The rotated EOFs produce results that are broadly similar to those from standard EOF analysis (Figure 7). 

The first three modes largely mirror the original EOFs, aside from sign changes and minor variations in 

spatial structure. The most notable deviation occurs in the fourth mode, where the spatial pattern differs 

indicating that rotation has reoriented the variance into a distinct structure not present in the unrotated 

EOFs. 

 

 

Figure 7.  As in Figure 6, but an example of rotated EOF. 

 

Factor Analysis (Linear Method) 

FA results begin to diverge more noticeably from those of standard EOFs (Figure 8). A mode closely 

resembling the leading EOF still emerges, but subsequent FA modes appear as mixtures of multiple EOF 
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patterns. For example, FA mode 2 resembles a combination of EOFs 1 through 3, while FA mode 3 aligns 

primarily with EOF 1 but includes features of EOF 4. FA mode 4 appears to blend characteristics of EOFs 

2 and 3.  

 

 

Figure 8.  As in Figure 6 but using Factor Analysis. 

 

Tucker Decomposition (Multilinear Method) 

The Tucker decomposition is a multivariate generalization of the singular value decomposition (SVD) 

that extracts separate sets of modes for latitude, longitude, depth, etc. In practice, it works by finding a 

dominant subspace just like SVD but for each dimension individually which gives modes.  Tucker also 

discovers the linear mixing of these modes in a small “core” tensor. These modes can be weighted and 

combined to reconstruct the full spatiotemporal field. Tucker allows independent control over the number 

of modes (ranks) in each dimension. For example, with a multirank of (5, 10, 10) - i.e., 5 temporal, 10 

latitude, and 10 longitude modes - the core tensor has 5 temporal slices, each describing how to combine 

the 10 latitude and 10 longitude modes to form spatial patterns associated with a given temporal mode 

(Figure 9). 
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Figure 9. Tucker decomposition core tensor of PSL CESM2 large ensemble member in Figure 6, with a 

multirank of (5, 10, 10), with temporal modes 0 through 4, 10 latitudes (y-axis) and 10 longitudes 

(x-axis). 

 

By identifying the largest weights in the core tensor, we can isolate the most dominant spatial structures 

associated with each temporal mode. Using this approach, we construct the leading spatial modes for the 

first four temporal components (Figure 10). 

 

Figure 10. As in Figure 6, but for Tucker decomposition for the first four temporal components using the 

largest weights.   

 

Importantly, the core tensor enables flexible linear combinations of spatial and temporal modes, offering 

richer analysis. When all core weights are used in combination (Figure 11), the reconstruction recovers 

the baseline EOF structure (up to potential sign differences), demonstrating that Tucker generalizes EOFs 

while retaining interpretability through its separable and multi-ranked structure. 
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Figure 11. As in Figure 9, except using all core weights in combination.  

 

The primary benefit of the Tucker decomposition is that it does not need to flatten data fields into vectors 

to perform its analysis. As such, the Tucker decomposition is naturally suited for mulit-way analysis 

where coupled structure and interactions are difficult to ascertain through vectorization.  Examples 

include evolution of 3D variables such as ocean and atmosphere, cross-multivariable interactions, or 

multi-model ensemble outputs.  

 

Summary and Discussion   

Digesting and interpreting gridded climate data is not always straightforward when computing modes of 

variability with statistical methods. Here, we have attempted to summarize common challenges associated 

with the application of EOFs leading to misinterpretation, and have provided some examples, best 

practices, and alternative methods to consider. It can be tempting to assign physical meaning to a 

statistical mode, but intention and understanding of the physical processes must always come into play 

when evaluating the mathematics. Does it make physical sense? If not, we caution readers from the 

overinterpretation of EOFs themselves.  Common challenges that manifest from EOF applications include 

mode swapping and sign flipping; however, they are relatively easy to handle by directly operating on the 

EOF itself.  It is our intent to provide a quick reference guide (e.g., Table 2) detailing EOFs and 
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alternative methods that broadly fit into three categories: EOF variants, linear methods, and multilinear 

methods.  Any method that extracts modes of variability must be fit for purpose, always taking care to 

make sure modes are applicable to your science question and avoiding misinterpretation20.   

 

Not yet fully discussed, but equally important is the question of computing modes of variability under 

climate change.  How does one parse the variability of a system when the base state, by definition, is still 

changing? As the Earth system continues to remain out of equilibrium with the influx of anthropogenic 

greenhouse gas forcing, a key consideration is how, and if, the forced response should be removed. There 

is no right answer, rather, it entirely depends on the purpose and science question being asked. If one 

chooses to remove the forced response to elucidate a baseline, natural state, then detrending the data and 

using anomalies to compute the EOF, is a common approach. The difference between detrending, or not, 

can have significant consequences for interpretation. In our mode swapping example in Figure 2, the 

difference between the rate of mode swapping for PSA1 and PSA2 markedly changes depending on 

whether or not the forced response is removed. However, even detrending and removing the forced 

response will not necessarily remove any feedback that occurs due to the forcing itself. These types of 

questions inspired the creation of ForceSMIP, (Forced Component Estimation Statistical Methods 

Intercomparison Project22), which we encourage readers to follow for a deeper dive into forced response 

issues23,8,24,25.   Finally, we acknowledge that this article does not exhaustively cover all interpretation 

pitfalls with EOFs or statistical methods, but we hope our overview, and comparison of methods, aid 

readers when choosing techniques best suited for their science.   

 

 

Methods   

Datasets 
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Two reanalyses, two large ensembles, and the CMIP6 (Coupled Model Intercomparison Project Phase 6) 

database are used to demonstrate EOF issues and alternatives.  For reanalysis products, we sample sea 

level pressure (PSL) at monthly intervals for the period of 1950-2023, from the ECMWF reanalysis, 

version 5, (ERA5)26, as well as the 20th Century Reanalysis (20CR)27 from 1900- 2005. Both analyses 

provide pressure level data with ERA5 regridded to 0.25o horizontal resolution and 20CR regridded to 2o 

horizontal resolution.  For large ensemble simulations suites, we utilize four sets of large ensembles from 

fully coupled Earth system models and include: E3SMv1 and v2 (the Department of Energy's Energy 

Exascale Earth System Model, versions 1 and 2), and CESM1 and CESM2 (the Community Earth System 

Model, versions 1 and 2)16. Again, we analyze PSL at monthly intervals from the historical simulations, 

where E3SMv1 employs 17 ensemble members, E3SMv2, 21 members, CESM1 (40 members), and 

CESM2 (50 members). E3SM employs the E3SM Atmosphere model (EAM) and the Model for 

Prediction Across Scales-Ocean: MPAS-Ocean, whereas CESM employs the Community Atmosphere 

model (CAM) and the Parallel Ocean Program, version 2 (POP2).  Further details on versions 1 and 2 for 

both modelling frameworks are found in the respective modelling documentation papers28,29,30,31. From the 

CMIP6 archive, we utilize PSL at monthly intervals for the historical simulations for the same period as 

the 20CR.  

 

Techniques 

Here we describe all methodologies discussed including standard EOF computation, EOF alternatives, 

and finally techniques applied to directly adjust standard EOFs. 

 

Techniques: Standard EOF Computation 

To allow for complete comparison between the different methods, we will briefly recap how standard 

EOFs, or principal component analysis (PCA), is computed. Given a data matrix X of dimensions p × n, 

where p is the number of spatial locations and n is the number of time steps, the data is typically centered 
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by subtracting the temporal mean at each location. The covariance matrix C = (1/n) × X × Xᵗ is then 

computed, and its eigenvalue decomposition yields orthonormal eigenvectors (the EOFs) and eigenvalues 

that indicate the amount of variance explained by each mode. By design, the spatial patterns (the EOFs) 

and their corresponding temporal coefficients (the PCs) are orthogonal. The rank of this decomposition 

refers to the number of modes retained, i.e., how many spatial–temporal patterns are needed to 

approximate the data well.  

 

The explained variance is one of the strongest features of EOFs, allowing one to order the modes by 

importance. Further, it is often the case that a few leading modes capture the majority of the total 

variance. For this reason, EOF analysis can result in a parsimonious representation of the dynamics. The 

orthogonality further helps to isolate uncorrelated modes.  However, EOF analysis can also produce 

patterns that are complex and challenging to interpret physically, potentially leading to misunderstanding 

or confusion 5. Challenges with EOF analysis include: 

 

●​ Assumes data are best described by orthogonal spatial modes, which may not correspond to 

physically meaningful structures. 

●​ Mixes physical patterns when eigenvalues are nearly degenerate, leading to spatial modes that 

are hard to interpret. 

●​ Captures variance, not structure — modes are ranked by explained variance, even if they do 

not align with meaningful dynamical or physical features. 

●​ Sensitive to sampling variability, especially in the presence of noise or short time series (Figure 

12). 

●​ Assumes linear correlations — does not capture nonlinear interactions. 

●​ Applies only to two-dimensional (matrix) data — requires flattening multidimensional arrays, 

which discards structural information (e.g., separating space and time). 
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●​ Allows negative loadings, which may be difficult to interpret in contexts like precipitation or 

energy where signals are inherently nonnegative. 

●​ Lacks uniqueness when eigenvalues are repeated, making modes unstable across realizations 

or datasets. 

 
Figure 12.  As in Figure 6, except using a 1-year rolling average to demonstrate the potentially large 

differences when temporal filtering is applied.  

 

Despite these challenges, EOFs have cemented themselves as the most ubiquitous tool within Earth 

sciences for dimensionality reduction and mode discovery. 

 

Techniques: EOF Variants 

While standard EOF analysis provides an optimal low-rank decomposition in terms of explained variance, 

several variants have been developed to address its limitations or to impose additional constraints 

motivated by scientific interpretability. These variants often modify the underlying basis functions, adjust 

orthogonality constraints, or introduce sparsity-promoting priors. In this section, we briefly discuss three 

common approaches: EOF expansions using Common Basis Functions, Rotated EOFs, and Sparse 

EOFs. 
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Techniques: EOF Variants: Common Basis Functions 

The standard EOF analysis is designed for one sample matrix X of data. The Common Basis Function 

(CBF) approach is a multivariate generalization of EOF analysis designed to extract shared spatial 

patterns across multiple related datasets. Instead of computing EOFs separately for each dataset, the CBF 

method identifies a single set of spatial basis functions that best represent the variance across all datasets. 

Suppose we have M datasets {𝐗¹, 𝐗², ..., 𝐗ᴹ}, each of size p × n, where p is the number of spatial 

locations and n is the number of time steps. The goal is to find a common set of orthonormal spatial basis 

vectors 𝐁 ∈ ℝᵖˣʳ (i.e., 𝐁ᵀ𝐁 = 𝐈), along with dataset-specific temporal coefficients 𝐒ᵐ ∈ ℝʳˣⁿ such that: 

𝐗ᵐ ≈ 𝐁𝐒ᵐ  for m = 1, ..., M. 

This can be formulated as a maximum likelihood problem32,33. The CBF method is particularly useful 

when comparing multiple models or observations in a unified spatial framework38,34. 

Techniques: EOF Variants: Rotated EOFs 

While standard EOFs are optimal in terms of explained variance and form an orthogonal basis, their 

spatial patterns often suffer from poor, unphysical interpretability, especially when modes have nearly 

equal eigenvalues and represent mixtures of physical structures. Rotated EOFs (REOFs) attempt to 

address this by applying a rotation—typically orthogonal or oblique—to a subset of the leading EOFs to 

produce more localized and physically interpretable patterns35,36. Compared to standard EOFs, REOFs 

trade orthogonality and variance ordering for better physical localization and interpretability, especially in 

the presence of degeneracies among leading modes9. 

The procedure begins with standard EOF analysis to obtain the leading r EOF loading vectors, typically 

denoted L ∈ ℝᵖˣʳ, where p is the number of spatial points. An invertible matrix R ∈ ℝʳˣʳ is then applied 

to yield new, ‘rotated’ loadings: 
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L' = L·R, 

where R is chosen to optimize some criterion. Probably the most common method is the Varimax 

objective, which maximizes the variance of squared loadings across modes37. The corresponding rotated 

principal components (temporal coefficients) are S' = Rᵀ·S, where S contains the original principal 

components. This transformation preserves the total variance and subspace spanned by the original EOFs, 

but the rotated modes are no longer orthogonal. ROEFs yield regionalized patterns that depend on the 

number of retained modes. When only a few modes are used, the patterns can be highly sensitive to 

changes in r. As r approaches the number of spatial grid points, ROEFs tend to localize into patterns 

centered around individual points. 

Previous studies have shown that REOF analysis is able to avoid the unphysical dipole-like EOF analysis 

pattern that often appears when the known dominant mode has the same sign across the domain and to 

simplify spatial structures while retaining the robust patterns20,38. 

Techniques: EOF Variants: Sparse EOF 

Standard EOF analysis yields spatial patterns that are typically global in extent and difficult to interpret 

physically when the dominant modes have broad spatial support. Sparse EOFs aim to improve 

interpretability by promoting spatial localization of the modes through sparsity constraints. In this 

formulation, spatial patterns are encouraged to have many near-zero entries, highlighting only the most 

relevant regions contributing to variability. 

Sparse EOFs are typically formulated as a regularized matrix factorization problem, where the goal is 

to approximate the data matrix X ∈ ℝᵖˣⁿ as X ≈ B S, with B ∈ ℝᵖˣʳ representing spatial modes and 

S ∈ ℝʳˣⁿ the temporal coefficients, just as in standard EOFs. However, instead of requiring that the 

columns of B be orthogonal eigenvectors, the optimization adds a sparsity-inducing penalty, often the ℓ₁ 

norm: 
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minimize ‖X − B S‖²_F + λ ∑�‖b�‖₁, subject to ‖b�‖₂ = 1 for each mode k, 

where b� is the k-th column of B, and a penalty term λ > 0 controls the degree of sparsity39,40. The 

penalty term controls the degree of sparsity - larger λ results in more sparse EOFs. The result is a set of 

EOF-like modes that retain much of the explanatory power of standard EOFs while being easier to 

associate with physical mechanisms or localized features. Sparse PCA appears to have had limited 

application within the Earth sciences, though it has been applied for instance for more interpretable 

fingerprinting41.  

Techniques: Linear Methods 

While EOFs (PCA) are among the most widely used techniques for identifying dominant patterns of 

variability in spatiotemporal datasets, they belong to a broader class of linear dimensionality reduction 

methods. Several alternative techniques—including Factor Analysis (FA), Independent Component 

Analysis (ICA), Nonnegative Matrix Factorization (NMF), and Dynamic Mode Decomposition 

(DMD) —offer different decompositional frameworks based on distinct statistical or structural 

assumptions. These methods share the goal of representing high-dimensional data using a low-rank 

approximation, but they differ in how the components are derived, constrained, and interpreted. In the 

following subsections, we compare each of these methods to EOFs, focusing on their objectives, 

assumptions, and implications for interpretability in the context of geophysical data. 

 

Techniques: Linear Methods: Factor Analysis 

Factor analysis (FA) is a linear dimensionality reduction technique closely related to EOFs, but with a 

distinct modeling philosophy. While EOFs seek orthogonal directions that maximize explained variance, 

FA assumes that the observed variables are driven by a smaller number of latent (unobserved) factors, 

plus unique noise specific to each observed variable42,36. The observed data X ∈ ℝⁿˣᵖ is modeled as: 
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X = FΛᵀ + E, 

where: 

●​ F ∈ ℝⁿˣʳ contains the scores of r unobserved (latent) factors,​

 

●​ Λ ∈ ℝᵖˣʳ is the loading matrix linking the latent factors to the observed variables,​

 

●​ E ∈ ℝⁿˣᵖ is the idiosyncratic Gaussian noise, assumed to be uncorrelated across 

variables and with a diagonal covariance matrix.​

 

The assumption of FA is that the high-dimensional data arises from a low-dimensional set of underlying 

processes, possibly confounding or not directly observable, such as circulation regimes or hidden drivers 

of variability in the climate system. The noise term accounts for individual variability that is not shared 

between variables. Unlike EOFs, which assume all variance is shared and seek orthogonal modes, FA 

models both shared and unique variance separately. This distinction allows FA to represent more flexible 

and realistic relationships among variables by permitting non-orthogonal loadings, which is especially 

useful for modeling correlated processes. While EOFs decompose the total variance in the data, FA 

focuses specifically on capturing the covariance structure, often through maximum likelihood estimation. 

Additionally, FA can more effectively account for measurement noise or unresolved structure, making it 

particularly useful in settings where some factors are believed to be hidden or confounded. Factor analysis 

is a common data analysis technique used throughout the social sciences, with limited applications in the 

Earth sciences43.  FA is conceptually appealing in settings where latent dynamics (e.g., unobserved 

climate drivers) are suspected to govern the observed data. 
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Techniques: Linear Methods: Independent Component Analysis 

EOFs have as their primary objective, the successive maximization of variance of the modes. The 

orthogonality and uncorrelatedness come as byproducts of this goal.  By contrast, Independent 

Component Analysis (ICA) has statistical independence as its main aim44.  This makes ICA especially 

well-suited for extracting physically distinct processes when data are non-Gaussian. For Gaussian 

variables, uncorrelatedness and independence coincide, and ICA reduces to EOF/PCA. However, many 

climate and geophysical datasets are non-Gaussian, motivating the use of ICA as a generalization of EOFs 

in this setting36. 

Conceptually, ICA shares a modeling philosophy with FA: they are both latent variable models, meaning 

that they both assume that observed variables are generated by a smaller number of latent (hidden) 

components. The difference lies in the objective.  FA explains the covariance structure of the observed 

variables using fewer latent variables (factors). The emphasis is on modeling correlations and accounting 

for noise. ICA seeks to find latent variables that are statistically independent and assumes that the 

observed variables are mixtures of these independent sources. The goal is source separation. In linear 

ICA, the model is: 

x = Λ f, where f is a vector of statistically independent components, 

and Λ is a full-rank mixing matrix. The observed data vector x is a linear combination of these latent 

sources. The goal is to estimate an unmixing matrix W such that: 

ŝ = W x 

recovers the independent components ŝ ≈ f. T. The optimal W is obtained by minimizing a cost function 

measuring statistical dependence, typically based on non-Gaussianity, mutual information, or entropy35. 

This objective contrasts with the variance-maximizing goal of EOFs or the likelihood-based objective of 

factor analysis. Unlike EOFs, ICA does not impose orthogonality or rank ordering, and the decomposition 
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is not unique: the independent components are identifiable only up to permutation and scaling. ICA has 

been used to investigate sea level pressure and water storage45,46. 

Techniques: Linear Methods: Nonnegative Matrix Factorization 

 

Nonnegative Matrix Factorization (NMF) is a linear dimensionality reduction technique that differs 

from EOFs in one major fundamental way: it imposes nonnegativity constraints on both spatial and 

temporal components. This makes NMF especially useful when the data are naturally nonnegative (e.g., 

precipitation, cloud cover, energy fluxes), and when interpretability is enhanced by additive, parts-based 

representations46. Given a nonnegative data matrix X ∈ ℝ⁺ᵖˣⁿ, NMF approximates X as the product of 

two low-rank nonnegative matrices: 

X ≈ W H, 

where: 

●​ W ∈ ℝ⁺ᵖˣʳ contains the spatial patterns (basis vectors),​

 

●​ H ∈ ℝ⁺ʳˣⁿ contains the temporal activations or coefficients.​

 

Unlike EOFs, which yield orthogonal modes with both positive and negative loadings, NMF provides 

strictly additive components, allowing for a “parts-based” decomposition. This can yield spatial structures 

that are localized and physically interpretable, as each field is reconstructed as a nonnegative linear 

combination of a few basic building blocks. In contrast to EOFs, which can produce modes with large 

canceling positive and negative values, NMF enforces nonnegativity, leading to more interpretable and 

parts-based representations. While EOFs offer an optimal decomposition in terms of variance explained, 

NMF prioritizes interpretability and sparsity at the cost of optimality. Unlike EOFs, NMF modes are not 
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constrained to be orthogonal or ordered by explained variance, which does bring about ambiguity of 

importance for the underlying structures. Further, NMF lacks a unique solution and is sensitive to 

initialization and algorithmic choices, in contrast to the closed-form solution of EOFs obtained via SVD. 

In Earth Sciences, NMF has been applied to problems such as identifying characterizing drought behavior 

in river basins and quantifying the sources of atmospheric particles48,49. 

Techniques: Linear Methods: Dynamic Mode Decomposition 

EOFs identify spatial patterns that capture maximal variance in the data, without directly considering how 

those patterns evolve over time, i.e., the PCs are selected to be orthogonal. By contrast, Dynamic Mode 

Decomposition (DMD) is a data-driven technique designed to extract spatiotemporal patterns that evolve 

according to approximate linear dynamics. DMD is based on the idea that the temporal evolution of the 

system can be approximated by a linear operator, which maps each snapshot of the system state to the 

next. The resulting decomposition yields spatial patterns, each associated with a fixed temporal frequency 

and a corresponding growth or decay rate. This makes DMD particularly well-suited for identifying 

coherent structures such as traveling waves, oscillations, and instabilities in geophysical flows and climate 

systems50,51.  There are many different algorithms that fall under the DMD category, however we will 

describe the most basic form of DMD here52. Mathematically, DMD takes a sequence of state vectors x₁, 

x₂, ..., x_k, and seeks a matrix A such that 

xj+1  ≈ A xj 

for each time slice j. Equivalently, the state vectors are arranged into two data matrices: X = [x₁, x₂, ..., xk] 

and X' = [x₂, x₃, ..., xk+1]. The matrix A is then estimated by solving the linear system X' ≈ A X, often 

using a low-rank approximation via the SVD. The eigenvalues and eigenvectors of the matrix A (or its 

projection onto a reduced subspace) reveal the dynamic modes and their temporal behavior. The dynamics 

of each mode is controlled by powers of the (complex) eigenvalue. Each mode evolves exponentially in 
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time, either oscillating, growing, or decaying, and the full spatiotemporal dynamics of the system are 

represented as a linear combination of these modes. 

Whereas EOFs prioritize variance maximization and produce orthogonal spatial patterns, DMD focuses 

on uncovering temporal dynamics and typically results in non-orthogonal modes. Moreover, DMD does 

not rank modes by explained variance, but rather by dynamical significance, such as dominant 

frequencies or timescales. In this sense, DMD can be viewed as complementary to EOF analysis. While 

EOFs are optimal for compressing information, DMD is better suited for analyzing and predicting 

time-evolving structures, especially in systems governed by approximately linear dynamics. Under many 

circumstances, DMD is equivalent to the well known method in the climate community known as Linear 

Inverse Modeling (LIM) 51. The applications of LIM, and therefore DMD are quite vast across the Earth 

sciences, and it would be challenging to succinctly summarize its applications. We also note that DMD 

belongs to a broader class of algorithms, each designed to address different limitations of the traditional 

DMD framework, and ranging from mode collapse and scalability to improved representation of the 

underlying dynamics53. Given the limitations of this manuscript, we will not go into further descriptions 

of these techniques. 

Techniques: Multi-Linear Methods 

EOF analysis is traditionally applied to two-dimensional data matrices, such as a space × time dataset. 

However, many modern datasets are multidimensional (or multilinear): For example: latitude × 

longitude × time; or: model ensemble × latitude × longitude × time. Flattening these into a 2D matrix for 

EOF analysis can destroy important structure — such as the difference between the two spatial 

dimensions or between models and physical space. 

Multilinear methods generalize the logic of EOFs to tensors — higher-order arrays — in ways that 

preserve the multidimensional structure of the data. Rather than vectorizing or slicing the data and losing 

directional specificity, multilinear decompositions seek to jointly decompose the full tensor along all its 
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modes. This enables mode-specific dimensionality reduction, where distinct sets of latent factors are 

extracted along each axis (e.g., spatial modes, temporal modes, ensemble modes). 

There are many different types of tensor decompositions, each with their own strengths and weaknesses.  

Here we will cover two methods:  The Polyadic Decomposition, also called 

CANDECOMP/PARAFAC54,55 which generalizes a rank decomposition of a matrix, and the Tucker 

Decomposition56, which generalizes PCA through a smaller core tensor. 

Techniques: Multilinear Methods: Polyadic Decomposition 

Canonical Polyadic Decomposition (CPD) — also called CANDECOMP/PARAFAC — is a 

generalization of EOF analysis to higher-dimensional arrays, called tensors.  If we combine the singular 

values with the PCs from EOFs, we can write 

X ≈ ∑ uᵣ vᵣᵀ = ∑ uᵣ ⊗ vᵣ  

Here, the ⊗ symbol represents the outer product — a generalization of multiplication between vectors to 

form higher-dimensional arrays. Each term in the above sum has rank-1, and taking R singular vectors is a 

rank-R decomposition of X.  The outer product can be performed with more vectors to create higher 

dimensional arrays (tensors).  CP does the same with rank-1 tensors in three or more dimensions. 

Just as EOF expresses a 2D matrix as a sum of outer products of spatial and temporal modes, CP 

expresses a 3D (or 4D, 5D, etc.) data tensor as a sum of rank-1 tensors, each constructed from one vector 

in each dimension: 

X ≈  ∑ uᵣ ⊗ vᵣ ⊗ wᵣ   

This means that the data value at position (i, j, k) — say, (latitude i, longitude j, time k) — is 

approximated as a sum of products of values from: a spatial mode along dimension 1 (uᵣ ), a spatial mode 

along dimension 2 (vᵣ), and a temporal mode (wᵣ). Each term in the sum is like a triple-mode EOF 
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component, one per mode of the data tensor. The number of such terms, R, is called the tensor rank, and it 

plays the same role as the number of retained EOFs: higher R captures more structure at the cost of 

increased complexity57.  In general, tensors can have as many dimensions as needed, allowing for 

complex interactions and large compression.  

The CP decomposition expresses a tensor as a sum of R separable components—one for each mode. This 

often leads to more parsimonious representations, particularly when the true structure of the data is 

separable across dimensions. Unlike EOFs, which discard tensor structure through matricization, CP 

preserves the full multidimensional nature of the data. While EOF modes are orthogonal by construction, 

CP components are not, yet the CP decomposition can still be unique under mild conditions, up to scaling 

and permutation58. Moreover, CP yields mode-specific components (e.g., one temporal and two spatial), 

which can result in better physical interpretability.  

 

Techniques: Multilinear Methods: Tucker Decomposition 

The Tucker decomposition generalizes EOF analysis to higher-order data arrays, or tensors, by allowing 

a low-rank projection along each dimension of the data simultaneously. Given a three-dimensional data 

tensor 𝓧 ∈ ℝ^{I × J × K}, such as latitude × longitude × time, Tucker approximates the data as: 

𝓧 ≈ 𝓖 ×₁ A ×₂ B ×₃ C 

Here, A, B, and C are factor matrices containing the principal components along the first, second, and 

third modes, respectively—analogous to the left and right singular matrices U and V matrices in SVD. 

The core tensor 𝓖 ∈ ℝ^{R₁ × R₂ × R₃} captures the interaction strengths between components from each 

mode. The mode-n product ×� represents a generalization of matrix multiplication to tensors, allowing us 

to project 𝓧 along each axis independently57. 
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Where EOFs decompose a matrix into rank-one outer products of vectors, Tucker decomposes a tensor 

into a multilinear product of basis vectors and a dense core. The EOF decomposition can be viewed as a 

special case of Tucker where the core tensor is diagonal and only two modes are present. Tucker relaxes 

the orthogonality and diagonal structure, allowing for richer cross-mode interactions. The number of 

components can be controlled independently for each axis, enabling anisotropic compression and a more 

tailored approximation of the data. 

Techniques: Direct Adjustment Methods  

Methods that directly adjust sign flipping are automatically applied within Climate Variability Diagnostics 

Package, version 6, (CVDPv6)17 and PCMDI Metrics Package (PMP)19 packages. In the CVDPv6, the 

sign at a point in the center of action is used to determine whether the sign is consistent or not, whereas 

for the PMP, a pattern correlation is used. PMP identifies the need of sign flipping by spatial pattern 

correlation to the EOF pattern obtained from the reference dataset and flips the sign of the model's pattern 

when the pattern correlation is negative. Additional diagnoses were applied for some variability modes by 

assessing sign of area-averaged EOF pattern over certain geographical regions. 

 

Mode swapping, however, is not automatically adjusted within the packages and is incumbent upon the 

user to adjust manually. For example, one could use the statistics for determining mode swapping 

described in section Challenges with EOFs/Mode Swap, and then manually change the mode numbers 

assigned to the modes of interest (i.e. PSA1, PSA2).  Table 1 mode swapping statistics were computed as 

follows: We determine the absolute value of the pattern correlation between ERA5 PSA1 and a given 

model and member's PSA1 and PSA2. Then, if the absolute value of the pattern correlation between 

ERA5 PSA1 and the model's PSA2 is greater than the absolute value of the pattern correlation between 

ERA5 PSA1 and model PSA1, we conclude that the modes are swapped.  The forced response is 

computed as the ensemble mean sea level pressure (SLP), which is removed from the SLP field prior to 
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calculation of the PSA1 and 2 modes. For observations, we use the 30-year running mean to define the 

forced response, and that is also removed from PSL prior to calculation of the modes. 

 

Appendix 

For completeness and to provide illustrations of alternative methods discussed, we provide comparisons 

with Figure 6’s standard monthly PSL EOF, but for methods not shown in the Alternative Method 

Comparisons section. 

Sparse EOFs 

Sparse EOFs were implemented using scikit-learn’s MiniBatchSparsePCA algorithm. We present results 

for varying values of the sparsity parameter α, with larger values enforcing greater sparsity. Specifically, 

we examine α = 1000, 7000, and 10000. 

 

Figure A1. As in Figure 6, but an example of Sparse EOF, where  α = 1000. 



Submitted to Scientific Reports 

 

Figure A2.  As in Figure A1, but an example of Sparse EOF, where  α = 7000. 

 

 

Figure A3.  As in Figure A1, but an example of Sparse EOF, where  α = 10000. 

 

For lower α, the spatial patterns closely resemble those from standard EOFs, with notable differences 

emerging primarily near regions of high variance, such as over Russia. As α increases, the modes become 

increasingly localized, concentrating around the primary centers of activity for each pattern. This spatial 

separation is reflected in the associated principal component time series, which begin to exhibit clearer 

seasonal structure, similar to that of the leading EOF mode. 

 

Independent Component Analysis 
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In ICA, the first mode appears quite similar to the first EOF.  This means that the direction of maximal 

variance happens to also be the direction chosen to maximize independence. The second ICA mode is a 

large southern global teleconnection with nodes of importance in the Pacific and Atlantic. This appears to 

be a combination of the second and fourth EOFs.  The third and fourth ICA modes grab the Southern and 

Northern Hemispheric patterns, analogous with the second and third EOFs.  

 

 

 

Figure A4. As in Figure 6, but for Independent Component Analysis 

 

Nonnegative Matrix Factorization 

In NMF, both the spatial and temporal modes are constrained to be nonnegative. The first two modes 

resemble those from the leading EOF, capturing the prominent Africa–South Asia signal. Subsequent 

modes highlight other localized features, such as activity near Alaska and the North Atlantic. A key 

distinction of NMF, relative to other methods, is that the polar regions consistently remain near zero 

across all modes. This arises from the additive nature of NMF: unlike EOFs or other linear methods, it 

cannot balance large positive contributions with offsetting negative values. As a result, the decomposition 

emphasizes localized, purely additive structures, leading to inherently different spatial representations. 
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Figure A5.  As in Figure 6, but for Nonnegative Matrix Factorization. 

 

Dynamic Mode Decomposition 

In the basic DMD algorithm, both spatiotemporal modes and their associated eigenvalues are extracted, 

with both quantities generally complex-valued. The temporal evolution of each mode is governed by 

powers of its corresponding eigenvalue, enabling fast and interpretable reconstruction of dynamics. 

Figure A6 is a plot of the leading eigenvalues, sorted by magnitude. 
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Figure A6.  Leading eigenvalue with Earth System Cycles (mean state, triennial, biennial, annual, 

semiannual, quarterly) sorted by magnitude. Blue circles represent DMD eigenvalues and the black 

dashed line is a unit circle for reference.  

 

To visualize the spatial patterns and dynamics, it is common practice to take the real parts of the modes 

and time series. Since DMD eigenvalues often come in complex-conjugate pairs, care must be taken to 

avoid redundancy by selecting only one representative from each pair. Shown here are the first four 

distinct modes in Figure A7. 

 

 

Figure A7: As in Figure 6, but for dynamic mode decomposition.  

 

From the structure of the eigenvalues, we identify these modes as corresponding to the mean, annual, 

semiannual, and quarterly cycles. The magnitude of each eigenvalue determines its long-term behavior: 

eigenvalues with magnitude one produce persistent oscillations; those less than one decay over time; and 

those greater than one amplify. In this case, the mean mode has a magnitude greater than one, suggesting 

a long-term warming trend. It is typical for most DMD eigenvalues to have magnitudes below one, 

leading to attenuation of the associated modes over time. This likely reflects limitations of the linear 

DMD model over longer horizons. However, over short time spans, DMD can still recover physically 

meaningful and interpretable modes of variability. 
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Canonical Polyadic Decomposition 

In the CPD, we extract R modes along the latitude, longitude, and temporal dimensions, where R is the 

chosen decomposition rank. The spatial modes are formed by the outer product of the corresponding 

latitude and longitude factors, which we display below. The resulting spatial and temporal structures are 

highly sensitive to the choice of R. For low rank (e.g., R=4), the leading CPD modes resemble those from 

EOF analysis, with some notable distinctions. Specifically, the first CPD mode closely matches the 

leading EOF, while the others reflect the dataset’s latitudinal structure, analogous to the second and third 

EOFs. 

 

 

Figure A8. As in Figure 6, but for canonical polyadic decomposition using a low rand of R=4. 

 

When the rank is increased (e.g., R=12), the decomposition reveals more complex structures. These 

higher-rank modes tend to exhibit dipole-like or blocky spatial patterns not seen in the lower-rank or EOF 

results. As CPD lacks a natural ordering of modes, we present a representative subset of these patterns in 

Figure A9. 
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Figure A9. As in Figure 6, but for canonical polyadic decomposition using a high rank of R=12. 
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Figure legends  

 

Figure 1: East Atlantic pattern (EA, row 1) and Scandinavian pattern (SCA, row 2) shown for ERA5 

(first column), CESM2 ScenarioMIP ensemble member r1i1p1f1 (second column) and CESM2 

ScenarioMIP ensemble member r3i1p1f1 (third column). Mode swapping is evident in the third column. 

EA and SCA are defined as the 2nd and 3rd EOF patterns of area-weighted PSL computed over 20:80°N, 

-90:40°E for JFM 1979-2022. Units are in hPa and variance explained is listed at the top right of each 

panel. 

Figure 2: Pacific South American (PSA) modes 1 (row 1) and 2 (row 2) shown for ERA5 (first column), 

CESM2 Large Ensemble member 1181.010 (second column) and CESM2 Large Ensemble member 

1161.009 (third column). Mode swapping is evident in the third column. PSA1 and PSA2 are defined as 

the 2nd and 3rd EOF patterns of area-weighted PSL computed over 20:90°S, 0:360°E for June-August 

1950-2023. Units are in hPa and variance explained is listed at the top right of each panel. The patterns 

are created by regressing global PSL anomalies onto normalized PC timeseries. 

Figure 3: Pacific North American pattern shown for ERA5 (first panel), E3SMv2 member r18i1p1f1 

(second panel) and E3SMv2 member r29i1p1f1 (third panel). Sign flipping is evident in the third panel. 

Units are in hPa and variance explained for each pattern is listed at the top right. The PNA is defined as 

the first EOF pattern of area-weighted PSL computed over 20:85°N, 120°E:120°W for June-August 

1950-2022. Units are in hPa and variance explained is listed at the top right of each panel. The patterns 

are created by regressing global PSL anomalies onto normalized PC timeseries. 

Figure 4: Center of action variability for North Atlantic Oscillation (top), East Atlantic (middle) and 

Scandinavian (top) patterns computed for three ensemble members of the E3SMv2 Large Ensemble: 0101 

https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels-monthly-means?tab=overview
https://psl.noaa.gov/data/20thC_Rean/
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(left), 0201 (center), and 0301 (right), for a combination of historical and SSP370 simulations. The NAO 

is defined as the first EOF, the East Atlantic pattern as the second EOF and the Scandinavian pattern as 

the third EOF of area-weighted PSL computed over 20:80°N, 90°W:40°E for January-March over 

100-year periods staggered by 10 years. The mean EOFs are shown, as well as the centers of action for 

each of the sixteen 100-year periods between 1850 and 2100, marked by white dots.  

Figure 5. Mode swapping pattern correlation adjustment method illustration. (Upper panel) Pattern 

correlation of CMIP6 models' Pacific/North American (PNA) pattern during the 

September-October-November (SON) season (upper panel). The PNA pattern for each model was 

determined by the leading Empirical Orthogonal Function (EOF 1) of sea level pressure fields. Pattern 

correlation was then calculated between each model's EOF 1 spatial pattern and the 20th Century 

Reanalysis (20CR) PNA pattern (SON season). For each model, the pattern correlation of the leading 

three EOFs (EOF 1-3) was assessed against the 20CR PNA using spatial pattern correlation, Root Mean 

Square Error (RMSE), and temporal correlation between the EOF principal component (PC) time series 

and a Common Basis Function PC time series. The highest pattern correlation achieved after potentially 

swapping EOF modes based on these criteria is indicated by markers, while the pattern correlation of the 

original EOF 1 is shown as a gray bar. The increasing spread between EOF1 and the alternative EOF on 

the right demonstrates the difficulty in automated selection of the best-matching EOF mode for models on 

the right, which highlights challenges in systematically identifying robust climate patterns across different 

models (further details in Lee et al., 2019). (Lower panel) Spatial pattern of model’s EOF 1 (left), 2 

(middle) and reference dataset’s EOF 1 demonstrating an example EOF swap case, obtained from 

EC-Earth3-AerChem model (far-most left in the upper panel) and the 20CR for PNA pattern during the 

SON season. 

Figure 6.  Figure 6.  PSL EOFs 1,2,3,4 (with percent variance explained) and respective PC timeseries for 

CESM2 model large ensemble, first member. No temporal filtering is done for consistency and 

comparison across alternative methods. See the Methods section under EOF: Standard Computation for 

an illustration on the potentially large differences due to temporal filtering.  
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Figure 7.  As in Figure 6, but an example of rotated EOF. 

Figure 8.  As in Figure 6 but using Factor Analysis. 

Figure 9. Tucker decomposition core tensor of PSL CESM2 large ensemble member in Figure 6, with a 

multirank of (5, 10, 10), with temporal modes 0 through 4, 10 latitudes (y-axis) and 10 longitudes 

(x-axis). 

Figure 10. As in Figure 6, but for Tucker decomposition for the first four temporal components using the 

largest weights.   

Figure 11. As in Figure 9, except using all core weights in combination.  

Figure 12.  As in Figure 6, except using a 1 year rolling average to demonstrate the potentially large 

differences when temporal filtering is applied.  
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