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Abstract

Empirical Orthogonal Functions (EOFs) applied to gridded Earth system data enables users to diagnose
modes of variability with relative ease. Yet, many challenges to interpretation exist such that they must be
used with awareness and intention when applied to gridded climate data. Challenges include erroneous
mode swapping, sign flipping, and the temporal variability of the centers of action. For modes of
variability with similar contribution to variance, mode swapping is not uncommon. Sign flipping can
occur with almost any mode where the pattern is correct but the sign is arbitrary. Although the variability
of the center of action is not necessarily problematic, it potentially complicates interpretation over
multi-century timescales. A wide variety of alternative methods to EOFs exist, but fitness-for-purpose
must be evaluated. Utilizing data from two different Earth system modelling frameworks, the Energy
Exoscale Earth System Model (E3SM) and the Community Earth System Model (CESM), as well as
reanalysis data, common EOF pitfalls are summarized and discussed. Additionally, illustrations of
alternative methods and examples of proper use are provided. Alternative methods fit into three

categories: EOF variants, linear methods, and multilinear methods are provided.
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Introduction

Principal Component Analysis (PCA) is a widely used method for assessing gridded climate datasets.

Whether the data takes the form of reanalyses, observational products, or model output, understanding
Earth’s climate and its variability often involves quantifying patterns of variability, disentangling them
from external forcing such as anthropogenic climate change, or simplifying predictions with the use of

linear inverse modelling'. PCA is a commonly used approach which decomposes data into (1) spatial
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patterns, referred to as Empirical Orthogonal Functions (EOFs) and (2) a time-varying principal
components (PC), representing the variation of the amplitudes of the EOFs over time. Although patterns
produced from geophysical data can be interpreted as physical variance patterns occurring naturally in the
Earth system, the data structures themselves are distinct from real physical processes. Patterns are defined
to be orthogonal and sorted by contributions to total variance, in a specified domain, temporally across the
dataset. EOF modes are uncorrelated with each other, in that the different patterns of variance may not
necessarily be t related to each other****¢, For example, a very common internal mode of climate
variability in the Northern Hemisphere is the Pacific North American Pattern (PNA), a storm track
pattern. In observations, the PNA is the leading EOF of interannual sea -level pressure (PSL) anomalies.
The second leading mode is the NPO (North Pacific Oscillation), an orthogonal pattern oriented as a
meridional dipole in contrast to the PNA, whose structure is primarily zonal. Reproducing these patterns
in observations is influenced by parametric choices such as time period and domain bounds. Reproducing
patterns in ensembles of climate models can be complicated further by orthogonal modes with similar
variance across the dataset, such that the ordering of the modes is inconsistent across individual

3789 and can have

simulations. This is called mode-swapping. It has been documented in a number papers
serious implications for interpretability of the dominant mode in both models and observations. The
purpose of this article is neither to describe dominant modes of variability, nor to provide a deep-dive into
PCA mathematics, but rather, in one place, to examine common pitfalls in PCA analysis when applying
EQOFs, and to outline approaches for dealing with them. While some of these pitfalls are simply natural
characteristics of the method, rather than problems per se, the challenges can arise when using EOFs to
evaluate physical patterns, and particularly multi-model comparisons and large ensemble studies.
Throughout this article, we intertwine discussion of EOFs, their modes, and respective physical
interpretations, all together, to frame PCA within the context of typical community practices. However, it
is important to acknowledge again that the data structures themselves are indeed distinct from the physical

patterns, and it is our interpretation of them that is the challenge. Further discussion can be found in

Methods under Techniques: Standard EOF Computation. We follow in the spirit of earlier literature, each
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aimed at addressing specific aspects of the challenge *®. Lee et al. (2019)® proposed applying common
basis functions (CBFs) to EOFs as a means of using observations to mitigate for pitfalls of PCA in
evaluating climate models. CBFs can correct for mode swapping, sign swapping (i.e, the arbitrarily
assigned signs of EOFs that are inconsistent with observations), and potentially misinterpretation related
to mode center of action variability. Although the application of CBF works well for historical
simulations, it is not well-suited for cases where the patterns of modes change, such as in past or future
climates. Techniques considered to be an alternative to EOFs and traditional PCA analysis include rotated
EOFs (REOFs). Rotated EOFs can address issues related to the production of potentially unphysical
modes and mode mixing, and have been explored in earlier work'®!". Even using REOFs, however, some
of the classic problems, such as interpretability and geophysical pattern reliance on domain choice, still
remain'>", Many issues arise when analyzing climate model simulations, especially in large ensembles,
which consist of multiple simulations (>20) initialized with slightly different conditions but using
identical external climate forcings. Over the past decade, large ensembles have emerged as a critical and

necessary tool for disentangling natural and forced climate signals'*'®

, in part, by benchmarking modes of
variability (MOV) internal noise'®. Here, we coalesce the most common challenges found in large
ensembles into one reference paper and discuss not only the solutions and potential alternatives, but also

the purposes and interpretability of these methods. EOFs are powerful tools, however their limitations

need to be acknowledged when applied to climate data.

Challenges with EOF's

Mode swap

Sequential EOFs for a given variable are ranked by the percentage of variance they explain. When two
modes explain very similar amounts of variance, mode swapping can occur, i.e, a physical mode gets
paired with a neighboring EOF rather than its canonical pattern. We define mode swapping as the

misassignment of a mode of variability to an adjacent EOF. Mode swapping shows up whenever EOFs are
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not clearly distinguishable, for example by the North's test for Rule of Thumb for EOF significance’

which evaluates separability by estimating the sampling uncertainty in the associated eigenvalues.

To illustrate, consider wintertime, January-March (JFM) sea level pressure over the North Atlantic Region
(20:80°N, -90:40°E). In the ERA-5 reanalysis, EOF2 (East Atlantic Pattern, EA) accounts for 14.9% of
variance and EOF3 (Scandinavian pattern, SCA) for 11.5%, only a 3.4% difference. If another dataset, or

model shifts the gap by = 3.4%, EOF2 and EOF3 swap: the second EOF now looks SCA-like and the

third EA-like. A similar swap can also happen between EOF3 and EOF4, pushing SCA into EOF4. Figure
1 shows this in two CESM2 (Community Earth System Model version 2) CMIP6 ensemble members. In
rlilp1fl, EOF2 matches the EA pattern with the larger variance (upper middle compared to upper left
panels). In r3ilp1fl, the larger variance aligns with SCA rather than EA (compare upper right with lower

left).

EA (incorrectly identified)
CESM2 (r3i1p1f1) 18.7%

SCA (incorrectly identified)
CESM2 (r3i1p1f1) o 12.5%

-4

Figure 1: East Atlantic pattern (EA, row 1) and Scandinavian pattern (SCA, row 2) shown for ERAS
(first column), CESM2 ScenarioMIP ensemble member rlilp1fl (second column) and CESM2
ScenarioMIP ensemble member r3ilplfl (third column). Mode swapping is evident in the third column.

EA and SCA are defined as the 2nd and 3rd EOF patterns of area-weighted PSL computed over 20:80°N,
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-90:40°E for JFM 1979-2022. Units are in hPa and variance explained is listed at the top right of each

panel.

The same phenomenon occurs in the Southern Hemisphere with the Pacific South American patterns
(PSA1 and PSA2, Figure 2). Using sea level pressure for the winter months of June through August (JJA)
in the southern hemisphere, ERAS reanalysis quantifies these modes as even more closely varying with a
mode separation of only 1%. Not surprisingly, when using ensemble climate model data, mode swapping
occurs frequently across ensemble members. As in Figure 1, the middle panels of Figure 2 show a CESM
ensemble member (1181.010) for which modes match the expected patterns compared to ERAS, and the
PSAT1 and PSA2 correspond to EOF2 and EOF3, respectively. The panels on the right show a different
ensemble member (1161.009) where the modes have been swapped. Here PSA1 corresponds to EOF3,
and PSA2 to EOF2. Mode swapping amongst different realizations of the same model can have serious
implications when diagnosing teleconnections and their respective regional weather impacts. To quantify
potential impacts, we provide an example of mode swapping frequency between PSA1 and PSA2 in

Tablel, with and without the removal of the forced response.
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CESM2 1181.010

PSA1
0 14.7%*

PSA1 (Incorrectly Identified)
0 14.4%"

CESM2 1161.009

CESM2 1161.009

BOW

PSA2 (Incorrectly Identified)

10.4%"

Figure 2: Pacific South American (PSA) modes 1 (row 1) and 2 (row 2) shown for ERAS (first column),

CESM2 Large Ensemble member 1181.010 (second column) and CESM2 Large Ensemble member

1161.009 (third column). Mode swapping is evident in the third column. PSA1 and PSA2 are defined as

the 2nd and 3rd EOF patterns of area-weighted PSL computed over 20:90°S, 0:360°E for June-August

1950-2023. Units are in hPa and variance explained is listed at the top right of each panel. The patterns

are created by regressing global PSL anomalies onto normalized PC timeseries.

Forced Response | E3SMvl E3SMv2 CESM1 CESM2
Removed 53% 48% 33% 44%
Included 88% 86% 18% 56%
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Table 1. Percentage of time mode swapping occurs between PSA1 and PSA2 for JJA (Southern

Hemisphere winter) for the period of 1950-2023 using large ensembles.

Sign flip

Sign flipping is another common feature and can occur with almost any mode of variability. In EOF
analysis, the sign of each EOF mode is arbitrary, due to the symmetric characteristics of eigenvalue
decomposition. Flipping the sign of both the spatial pattern and its PC time series does not impact their
interpretation or statistical significance. However, when comparing across models or simulations,
inconsistencies in sign conventions may cause visual discrepancies and introduce challenges in statistical
comparison, thus we include it here. To illustrate this point, we plot the Pacific North American (PNA)
pattern (Figure 3) using the Energy Exoscale Earth System Model version 2 (E3SMv2) as defined by the
first EOF pattern of area-weighted PSL computed over 20:85°N, 120°E:120°W for June-August
1950-2022. The hemispheric pattern is created by regressing global PSL anomalies onto the normalized
PC timeseries. Knowing the correct phasing (positive or negative) for the mode based on observations

allows us to identify and correct sign flipping issues.

PNA (Sign Flipped
E3SMv2 r18i1p1fi ﬁI:QA . ESSMVZ"‘ES”P"‘( ?ao Pped)

[N I N
35 -3 256 2 15 -1
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Figure 3: Pacific North American pattern shown for ERAS (first panel), E3SMv2 member r18ilp1fl
(second panel) and E3SMv2 member r29i1p1£1 (third panel). Sign flipping is evident in the third panel.
Units are in hPa and variance explained for each pattern is listed at the top right. The PNA is defined as
the first EOF pattern of area-weighted PSL computed over 20:85°N, 120°E:120°W for June-August
1950-2022. Units are in hPa and variance explained is listed at the top right of each panel. The patterns

are created by regressing global PSL anomalies onto normalized PC timeseries.

Center of action variability
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Figure 4: Center of action variability for North Atlantic Oscillation (top), East Atlantic (middle) and
Scandinavian (top) patterns computed for three ensemble members of the E3SMv2 Large Ensemble: 0101
(left), 0201 (center), and 0301 (right), for a combination of historical and SSP370 simulations. The NAO
is defined as the first EOF, the East Atlantic pattern as the second EOF and the Scandinavian pattern as

the third EOF of area-weighted PSL computed over 20:80°N, 90°W:40°E for January-March over
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100-year periods staggered by 10 years. The mean EOFs are shown, as well as the centers of action for

each of the sixteen 100-year periods between 1850 and 2100, marked by white dots.

While technically a feature of the PCA methodology itself, it is also important to consider
center-of-action variability in the EOF loading pattern. Shifts in the location of the center-of-action can be
used to evaluate multi-model, ensemble, or temporal variability. We use temporal variability to illustrate
the concept. EOFs are typically calculated from a single time interval, implicitly treating mode structure
as temporally invariant. However, this is not always the case, especially when EOFs are applied to data
generated in a changing climate. While data can be detrended prior to computation of the EOFs, this is

typically done by fitting simple trends and can miss more complex climate change signals.

To investigate temporal center-of-action stability, we calculated EOFs from successive 100-year segments
of simulations spanning historical and SSP370 scenarios from 1850 to 2100 for three members of the
E3SMv2 Large Ensemble (0101, 0201, and 0301). The start date of each 100-year segment is advanced
by ten years between windows, resulting in sixteen time slices for each ensemble member. Figure 4 shows
the centers of action for the leading three EOFs of PSL, corresponding to the North Atlantic Oscillation
(NAO), EA, and SCA, respectively. The loading patterns are averaged over the sixteen time slices and
shown as contours in the background. Centers of action are marked as white dots. If EOF patterns showed
no temporal variability, all white dots would cluster tightly over the maximum of the average loading
pattern. However, we see that they trace out a broad region of variability, especially for the NAO and
SCA patterns (Figure 4). This scatter demonstrates that even the leading modes of variability exhibit
significant non-stationarity over multi-century timescales. To quantify whether two spatial patterns can be
considered the “same” climate mode in the presence of sampling uncertainty - a spatial analog to the
North (1982)* eigenvalue criterion - we computed the pairwise pattern-correlation distribution across all
time-slices. For a perfectly stable mode, correlations would cluster tightly near 1. While this holds for the

NAO, with 88%, 88%, and 100% of r values above 0.8 for ensemble members 0101, 0201, and 0301,
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respectively, we find a wide, often near-uniform spread from 0 to 1 for EA and SCA. (EA: 58%, 96%, and
53%, SCA: 44%, 34%, and 30%). These results indicate that higher-order EOFs exhibit far lower
robustness, consistent with rotational degeneracy and sensitivity to non-stationary forcing. Overall, this
demonstrates that spatial shifts in mode structure constitute a significant, and often underappreciated
source of uncertainty. When EOFs derived from historical or control simulations are projected onto future
climate scenarios—especially under strong anthropogenic forcing—these shifts are likely to accelerate,

potentially biasing our interpretation of circulation changes and feedbacks.

Direct adjustment methods
Mode swap

Mode swapping complicates both the physical interpretation and statistical comparison of EOFs, and
addressing it is essential for studies of climate variability given physical patterns and data structures are
used in tandem. Often, researchers resort to manual mode swapping to ensure consistency in mode
identification. While this approach can be effective for small datasets, it is tedious, subjective, and

impractical for large ensembles or multi-model comparisons.

Recent efforts have focused on automating the mode-swapping process, using objective criteria to match
modes across datasets. One such technique involves statistical matching, where EOF modes from a target
dataset (i.e., a model simulation) are compared to those from a reference dataset using similarity metrics
such as spatial correlation, root-mean-square error (RMSE), or temporal correlation of PC time series.
Such similarity metrics allow the user to quantify the differences between the mode in question and a
reference control. For example, each EOF mode from the target dataset (e.g., EOF 1, EOF 2, EOF 3) is
compared against a specific reference mode (e.g., REF EOF 1), and the mode with the highest correlation
or lowest RMSE is selected as the best match. In some cases, the reference PC time series used for

temporal correlation may be derived from the Common Basis Functions (CBF)®, (Table 2 and Methods)
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particularly when day-to-day or year-to-year reproducibility is not expected—for instance, in simulations
following the Historical or AMIP experiment protocols of CMIP. While this approach can automatically
resolve most cases of EOF mode swapping (see Fig. 5, upper panel), it is not infallible—particularly when
different similarity metrics identify different best-matching modes. Figure 5 (bottom panel) illustrates this
for the PNA pattern during SON, which is one of the modes and seasons with the highest incidence of
EOF swapping ®. A few models display non-overlapping markers, indicating disagreement in mode

identification and necessitating manual inspection and mode swapping.

Alternative methods such as CBFs have been developed to address some of the limitations of traditional
EOFs. CBF approaches emphasize dynamical consistency and interpretability, reducing ambiguity in
mode identification by using dominant modes from reference datasets as fixed bases to detect similar

patterns in model output—thereby eliminating the need for post-hoc mode swapping.
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Figure 5. Mode swapping pattern correlation adjustment method illustration. (Upper panel) Pattern

correlation of CMIP6 models' Pacific/North American (PNA) pattern during the

September-October-November (SON) season (upper panel). The PNA pattern for each model was

determined by the leading Empirical Orthogonal Function (EOF 1) of sea level pressure fields. Pattern

correlation was then calculated between each model's EOF 1 spatial pattern and the 20th Century

Reanalysis (20CR) PNA pattern (SON season). For each model, the pattern correlation of the leading

three EOFs (EOF 1-3) was assessed against the 20CR PNA using spatial pattern correlation, Root Mean

Square Error (RMSE), and temporal correlation between the EOF principal component (PC) time series
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and a Common Basis Function PC time series. The highest pattern correlation achieved after potentially
swapping EOF modes based on these criteria is indicated by markers, while the pattern correlation of the
original EOF 1 is shown as a gray bar. The increasing spread between EOF1 and the alternative EOF on
the right demonstrates the difficulty in automated selection of the best-matching EOF mode for models on
the right, which highlights challenges in systematically identifying robust climate patterns across different
models (further details in Lee et al., 2019%). (Lower panel) Spatial pattern of model’s EOF 1 (left), 2
(middle) and reference dataset’s EOF 1 demonstrating an example EOF swap case, obtained from
EC-Earth3-AerChem model (far-most left in the upper panel) and the 20CR for PNA pattern during the

SON season. This figure is a modified and expanded version from Figure 6 in Lee et al., 2019,

Sign Flip

Evaluating the EOF sign is required to ensure consistency when evaluating or intercomparing model
simulations. A common manual approach involves checking the sign of each EOF spatial pattern or PC
time series against a reference and flipping it if necessary—again, a process that becomes impractical
with large datasets or ensemble analyses. To streamline this, automated sign correction techniques have
been applied, which typically rely on pattern correlation: the EOF from a target dataset is compared to a
reference pattern, and if the correlation is positive, the sign is retained; if negative, the sign is flipped.
This approach mirrors the strategy used in automated mode matching and provides a consistent, objective
way to address sign ambiguity. In addition to the correlation-based technique, region-specific sign
corrections provide a practical alternative and/or complementary method for ensuring EOF sign
consistency, particularly for climate modes and their spatial signatures. This method calculates the mean
of the EOF pattern over a targeted geographical region and flips the sign if it deviates from the expected
convention. For example, the PDO often shows negative loading in the central North Pacific, while the

SAM is typically negative over the Southern Ocean. Applying this check across predefined regions allows
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consistent alignment with standard mode definitions and can be especially useful when correlation metrics

yield ambiguous results.

While both mode swapping and sign flipping aim to ensure coherent EOF representation across datasets,
they address distinct issues. Mode swapping corrects for ordering ambiguities when eigenvalues are
close or degenerate, noting that in linear algebra, degeneracy occurs when an eigenvalue (the frequency)
can be associated with more than one eigenvector (the mode). Sign flipping, however, corrects for
orientation ambiguities of individual modes. Both corrections are essential for creating comparable EOF
structures that are physically interpretable across observations, models, ensemble members, or

experimental protocols.

Alternative methods

The limitations and challenges associated with EOF analysis highlighted thus far arise because PCA
imposes several constraints—most notably linearity, orthogonality, and an implicit assumption of
normally distributed fluctuations of the climate system. These limitations can limit PCA effectiveness in
capturing the full complexity of climate processes. Climate datasets frequently exhibit nonlinear
interactions, spatial and temporal dependencies, raising questions about these assumptions. Furthermore,
climate datasets often contain inherent physical constraints such as non-negativity (e.g., precipitation,
concentrations, volumes). Standard EOF analysis does not enforce such constraints: its linear
combinations can easily reconstruct physical fields with negative values of intrinsically non-negative
variables. Working with anomalies does not avoid this issue. Once the climatological mean is added
back, the EOF reconstruction can still violate physical bounds. As a result, EOF-derived modes may
capture mathematically valid variability patterns while nonetheless producing physically impossible

states, complicating interpretation and downstream use.
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Motivated by these limitations, there is a need to explore alternative decomposition methods capable of
addressing more general structures inherent to climate data. This section introduces several powerful
approaches beyond PCA with further details in the Methods Section. We categorize these methods based

on a few criteria and provide examples applied to climate questions:

e EOF Variants: These techniques build off the core idea of EOFs, providing slight tweaks to try
and overcome one or more limitations. Examples include common basis functions, rotated EOFs,
and sparse EOFs.

e Linear Methods: EOFs are a linear technique to define and discover modes, and as such, belong
to a larger class of linear methods. Other examples include factor analysis (FA), independent
component analysis, nonnegative matrix factorization (NMF), and Dynamic Mode
Decomposition (DMD).

e Multilinear Methods: EOFs are discovered by flattening the spatial axis into a single dimension.
Multilinear methods, such as the Canonical Polyadic Decomposition or the Tucker
Decomposition generalize PCA to higher dimensional arrays in order to discover

multidimensional modes.

Table 2 summarizes our categorization. Each approach offers unique strengths in handling interacting
relationships, temporal dynamics, and spatial topology, thus providing climate researchers with versatile
tools better suited for capturing and interpreting complex patterns embedded in climate datasets. Note that
this categorization is far from complete. We have chosen a small, but representative list of mode
extraction methods, many of which have been applied throughout Earth system science. All the methods
described here arise from linear analysis - we have chosen not to include nonlinear methods such as
autoencoders?' to keep the discussion more contained. Moreover, the above methods can be combined
(e.g. nonnegative Tucker Decomposition, Table 2) to add further layers of sophistication. To keep our

discussion concise yet expansive, we have omitted these combination techniques. Here, we directly
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compare EOFs to the methods in Table 2. In Methods, we provide an overview of the techniques and

discuss which issues each method addresses.

Method Addresses Limitation Category Example Uses Packages
EOF Maximizes Modes may EOF Gridded climate | Many
variance with | mix physical data analysis
orthogonal signals software
modes packages
will have an
EOF routine,
but, e.g.
pyEOF,
CVDP, PMP.
or DOL
10.5334/jors.
122
CBF Shared spatial | May obscure | EOF Variant | Multiple models | PMP
basis across dataset-specifi or observations
datasets ¢ structure in a unified
spatial
framework
Rotated EOF | Localized, Rotation is EOF Variant | Avoid the pyEOF
interpretable subjective; unphysical dipole
patterns loses like EOF analysis
orthogonality pattern
Sparse EOF Enhances Requires EOF Variant Fingerprinting scikit-learn
interpretability | tuning;
via sparsity sensitive to
noise
FA Models shared | Identifiability | Linear Latent dynamics | scikit-learn
+ unique - Different Method (e.g., unobserved
variance modes may climate drivers)
(latent factors) | explain data are suspected to
govern the
observed data
ICA Finds Source Linear Investigate sea scikit-learn
statistically signals must | Method level pressure




Submitted to Scientific Reports

independent be and water storage
components non-Gaussian
NMF Nonnegative, Non-unique; Linear Precipitation, scikit-learn
parts-based depends on Method cloud cover,
decomposition | initialization energy fluxes;
characterizing
drought behavior
in river basins
and quantifying
the sources of
atmospheric
particles
DMD Extracts Assumes Linear Traveling waves, | pydmd
coherent linear Method oscillations, and
dynamical dynamics; instabilities in
modes sensitive to geophysical
noise flows and climate
systems; LIMs
CP Multivariate Non-orthogon | Multilinear Application that | tensorly
Decomposition | generalization | al; difficult Method preserves
of EOF optimization multidimensional
and scaling information (e.g.
e.g., spatial
modes, temporal
modes, ensemble
modes)
Tucker Multi-mode Core may Multilinear Application that | tensorly
Decomposition | compression overfit; Method preserves
with core interpretation multidimensional
interactions can be information (e.g.,
nuanced e.g., spatial

modes, temporal
modes, ensemble
modes)




Submitted to Scientific Reports

Table 2. Summary of fixing or alternate techniques for EOF issues, including available software packages
addressing issues, limitations, and example uses. References and detailed descriptions of specific methods

and terms are found in the Methods section.

Alternative Method Comparisons

We now compare and contrast a sample of each method category (EOF variant, linear, multilinear) with
EOF analysis. Examples for other methods can be found in the Appendix. The aim of this section is not
to extract deep insights about the Earth system, but to illustrate how these tools can be applied in practice
and to highlight their key differences. We emphasize that this comparison is not intended to declare any
single method as superior. In fact, such a direct comparison is often inappropriate, as each method is
designed to capture different features of the data. Rather, our goal is to demonstrate the types of additional
information that can be obtained using alternative techniques. Each method serves a distinct purpose and

offers a unique perspective.

We also note that, among the methods considered, only standard EOF analysis provides a clear and
interpretable ordering of modes by importance, with each mode corresponding to a descending eigenvalue
and associated variance explained. The CBF method (see Figure 5) inherits this property through its
shared EOF basis, allowing joint variance-based ranking. Rotated EOFs, however, lose this feature:
although the total variance is preserved, the variance is redistributed among rotated modes, and no
canonical ordering remains. Sparse EOFs may allow modes to be ranked by post hoc variance explained,
but the presence of sparsity-inducing penalties complicates the interpretation of such rankings, and
ordering often depends on external criteria such as cross-validation. In FA, modes can sometimes be
heuristically ranked using loadings or commonalities; however, this ranking is neither unique nor

necessarily stable across model specifications. ICA offers no natural mode ordering, as its objective is
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statistical independence rather than variance maximization. Similarly, NMF yields additive components
without orthogonality or ordering, and the contribution of each mode must be assessed in context. DMD
modes can be ordered by growth or decay rate, oscillation frequency, or modal energy, depending on the
application. CPD lacks a natural ordering entirely, as components are not orthogonal and no scalar
criterion governs their contribution. Tucker decomposition offers a partial analogue of variance-based
ordering within each mode through the singular values of the factor matrices, but the presence of a dense
core tensor, which mixes contributions across modes, precludes a globally interpretable ranking of
importance. Because most alternatives lack a coherent mode ordering, spatial and temporal structures are
not directly comparable. Nonetheless, we highlight representative modes from a sample from each
category (EOF variant, linear method, multilinear method, Table 2) based on the considerations outlined

above. Examples for methods in Table 2 not shown in the main text, are in the Appendix, for reference.

For our baseline, we compare against the PSL EOF modes from a single run of the CESM2 large
ensemble. For this EOF baseline, we have chosen to not remove the seasonal cycle, nor apply any type of
temporal filtering which can drastically change EOF results. We have made this decision so that we have
a consistent baseline against other methods, however, examples of differences due to temporal filtering
can be found in the Methods section under Techniques: Standard EOF Computation. Figure 6 contains

the top four EOF modes sorted by explained variance.
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Figure 6. PSL EOFs 1,2,3,4 (with percent variance explained) and respective PC timeseries for CESM2
model large ensemble, first member. No temporal filtering is done for consistency and comparison across
alternative methods. See the Methods section under EOF': Standard Computation for an illustration on the

potentially large differences due to temporal filtering.

Rotated EOFs (EOF Variant)

The rotated EOFs produce results that are broadly similar to those from standard EOF analysis (Figure 7).
The first three modes largely mirror the original EOFs, aside from sign changes and minor variations in
spatial structure. The most notable deviation occurs in the fourth mode, where the spatial pattern differs
indicating that rotation has reoriented the variance into a distinct structure not present in the unrotated

EOFs.
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Figure 7. As in Figure 6, but an example of rotated EOF.

Factor Analysis (Linear Method)

FA results begin to diverge more noticeably from those of standard EOFs (Figure 8). A mode closely

resembling the leading EOF still emerges, but subsequent FA modes appear as mixtures of multiple EOF
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patterns. For example, FA mode 2 resembles a combination of EOFs 1 through 3, while FA mode 3 aligns
primarily with EOF 1 but includes features of EOF 4. FA mode 4 appears to blend characteristics of EOFs

2 and 3.
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Figure 8. As in Figure 6 but using Factor Analysis.

Tucker Decomposition (Multilinear Method)

The Tucker decomposition is a multivariate generalization of the singular value decomposition (SVD)
that extracts separate sets of modes for latitude, longitude, depth, etc. In practice, it works by finding a
dominant subspace just like SVD but for each dimension individually which gives modes. Tucker also
discovers the linear mixing of these modes in a small “core” tensor. These modes can be weighted and
combined to reconstruct the full spatiotemporal field. Tucker allows independent control over the number
of modes (ranks) in each dimension. For example, with a multirank of (5, 10, 10) - i.e., 5 temporal, 10
latitude, and 10 longitude modes - the core tensor has 5 temporal slices, each describing how to combine
the 10 latitude and 10 longitude modes to form spatial patterns associated with a given temporal mode

(Figure 9).
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Figure 9. Tucker decomposition core tensor of PSL CESM2 large ensemble member in Figure 6, with a
multirank of (5, 10, 10), with temporal modes 0 through 4, 10 latitudes (y-axis) and 10 longitudes

(x-axis).

By identifying the largest weights in the core tensor, we can isolate the most dominant spatial structures
associated with each temporal mode. Using this approach, we construct the leading spatial modes for the

first four temporal components (Figure 10).
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Figure 10. As in Figure 6, but for Tucker decomposition for the first four temporal components using the

largest weights.

Importantly, the core tensor enables flexible linear combinations of spatial and temporal modes, offering
richer analysis. When all core weights are used in combination (Figure 11), the reconstruction recovers
the baseline EOF structure (up to potential sign differences), demonstrating that Tucker generalizes EOFs

while retaining interpretability through its separable and multi-ranked structure.
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Figure 11. As in Figure 9, except using all core weights in combination.

The primary benefit of the Tucker decomposition is that it does not need to flatten data fields into vectors
to perform its analysis. As such, the Tucker decomposition is naturally suited for mulit-way analysis
where coupled structure and interactions are difficult to ascertain through vectorization. Examples
include evolution of 3D variables such as ocean and atmosphere, cross-multivariable interactions, or

multi-model ensemble outputs.

Summary and Discussion

Digesting and interpreting gridded climate data is not always straightforward when computing modes of
variability with statistical methods. Here, we have attempted to summarize common challenges associated
with the application of EOFs leading to misinterpretation, and have provided some examples, best
practices, and alternative methods to consider. It can be tempting to assign physical meaning to a
statistical mode, but intention and understanding of the physical processes must always come into play
when evaluating the mathematics. Does it make physical sense? If not, we caution readers from the
overinterpretation of EOFs themselves. Common challenges that manifest from EOF applications include
mode swapping and sign flipping; however, they are relatively easy to handle by directly operating on the

EOF itself. It is our intent to provide a quick reference guide (e.g., Table 2) detailing EOFs and
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alternative methods that broadly fit into three categories: EOF variants, linear methods, and multilinear
methods. Any method that extracts modes of variability must be fit for purpose, always taking care to

make sure modes are applicable to your science question and avoiding misinterpretation®.

Not yet fully discussed, but equally important is the question of computing modes of variability under
climate change. How does one parse the variability of a system when the base state, by definition, is still
changing? As the Earth system continues to remain out of equilibrium with the influx of anthropogenic
greenhouse gas forcing, a key consideration is how, and if, the forced response should be removed. There
is no right answer, rather, it entirely depends on the purpose and science question being asked. If one
chooses to remove the forced response to elucidate a baseline, natural state, then detrending the data and
using anomalies to compute the EOF, is a common approach. The difference between detrending, or not,
can have significant consequences for interpretation. In our mode swapping example in Figure 2, the
difference between the rate of mode swapping for PSA1 and PSA2 markedly changes depending on
whether or not the forced response is removed. However, even detrending and removing the forced
response will not necessarily remove any feedback that occurs due to the forcing itself. These types of
questions inspired the creation of ForceSMIP, (Forced Component Estimation Statistical Methods
Intercomparison Project*), which we encourage readers to follow for a deeper dive into forced response

23,8,24,25

issues Finally, we acknowledge that this article does not exhaustively cover all interpretation

pitfalls with EOFs or statistical methods, but we hope our overview, and comparison of methods, aid

readers when choosing techniques best suited for their science.

Methods

Datasets
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Two reanalyses, two large ensembles, and the CMIP6 (Coupled Model Intercomparison Project Phase 6)
database are used to demonstrate EOF issues and alternatives. For reanalysis products, we sample sea
level pressure (PSL) at monthly intervals for the period of 1950-2023, from the ECMWF reanalysis,
version 5, (ERA5)%, as well as the 20th Century Reanalysis (20CR)*’ from 1900- 2005. Both analyses
provide pressure level data with ERAS regridded to 0.25° horizontal resolution and 20CR regridded to 2°
horizontal resolution. For large ensemble simulations suites, we utilize four sets of large ensembles from
fully coupled Earth system models and include: E3SMv1 and v2 (the Department of Energy's Energy
Exascale Earth System Model, versions 1 and 2), and CESM1 and CESM2 (the Community Earth System
Model, versions 1 and 2)'. Again, we analyze PSL at monthly intervals from the historical simulations,
where E3SMv1 employs 17 ensemble members, E3SMv2, 21 members, CESM1 (40 members), and
CESM2 (50 members). E3SM employs the E3SM Atmosphere model (EAM) and the Model for
Prediction Across Scales-Ocean: MPAS-Ocean, whereas CESM employs the Community Atmosphere
model (CAM) and the Parallel Ocean Program, version 2 (POP2). Further details on versions 1 and 2 for
both modelling frameworks are found in the respective modelling documentation papers*#**°3!, From the
CMIP6 archive, we utilize PSL at monthly intervals for the historical simulations for the same period as

the 20CR.

Techniques

Here we describe all methodologies discussed including standard EOF computation, EOF alternatives,

and finally techniques applied to directly adjust standard EOFs.

Techniques: Standard EOF Computation

To allow for complete comparison between the different methods, we will briefly recap how standard
EOFs, or principal component analysis (PCA), is computed. Given a data matrix X of dimensions p x n,

where p is the number of spatial locations and # is the number of time steps, the data is typically centered
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by subtracting the temporal mean at each location. The covariance matrix C = (1/n) x X x X! is then
computed, and its eigenvalue decomposition yields orthonormal eigenvectors (the EOFs) and eigenvalues
that indicate the amount of variance explained by each mode. By design, the spatial patterns (the EOFs)
and their corresponding temporal coefficients (the PCs) are orthogonal. The rank of this decomposition
refers to the number of modes retained, i.e., how many spatial-temporal patterns are needed to

approximate the data well.

The explained variance is one of the strongest features of EOFs, allowing one to order the modes by
importance. Further, it is often the case that a few leading modes capture the majority of the total
variance. For this reason, EOF analysis can result in a parsimonious representation of the dynamics. The
orthogonality further helps to isolate uncorrelated modes. However, EOF analysis can also produce
patterns that are complex and challenging to interpret physically, potentially leading to misunderstanding

or confusion °. Challenges with EOF analysis include:

e Assumes data are best described by orthogonal spatial modes, which may not correspond to
physically meaningful structures.

e Mixes physical patterns when eigenvalues are nearly degenerate, leading to spatial modes that
are hard to interpret.

e Captures variance, not structure — modes are ranked by explained variance, even if they do
not align with meaningful dynamical or physical features.

e Sensitive to sampling variability, especially in the presence of noise or short time series (Figure
12).

e Assumes linear correlations — does not capture nonlinear interactions.

e Applies only to two-dimensional (matrix) data — requires flattening multidimensional arrays,

which discards structural information (e.g., separating space and time).
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e Allows negative loadings, which may be difficult to interpret in contexts like precipitation or
energy where signals are inherently nonnegative.
e Lacks uniqueness when eigenvalues are repeated, making modes unstable across realizations

or datasets.
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Figure 12. As in Figure 6, except using a 1-year rolling average to demonstrate the potentially large

differences when temporal filtering is applied.

Despite these challenges, EOFs have cemented themselves as the most ubiquitous tool within Earth

sciences for dimensionality reduction and mode discovery.

Techniques: EQOF Variants

While standard EOF analysis provides an optimal low-rank decomposition in terms of explained variance,
several variants have been developed to address its limitations or to impose additional constraints
motivated by scientific interpretability. These variants often modify the underlying basis functions, adjust
orthogonality constraints, or introduce sparsity-promoting priors. In this section, we briefly discuss three
common approaches: EOF expansions using Common Basis Functions, Rotated EOFs, and Sparse

EOFs.
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Technigues: EQF Variants: Common Basis Functions

The standard EOF analysis is designed for one sample matrix X of data. The Common Basis Function
(CBF) approach is a multivariate generalization of EOF analysis designed to extract shared spatial
patterns across multiple related datasets. Instead of computing EOFs separately for each dataset, the CBF

method identifies a single set of spatial basis functions that best represent the variance across all datasets.

Suppose we have M datasets {X!, X?, ..., XM}, each of size p % n, where p is the number of spatial
locations and # is the number of time steps. The goal is to find a common set of orthonormal spatial basis

vectors B € R (i.e., BTB =1), along with dataset-specific temporal coefficients S™ & R™ such that:

Xm~ BS™ form=1, .. M.

This can be formulated as a maximum likelihood problem****. The CBF method is particularly useful

when comparing multiple models or observations in a unified spatial framework>®**.

Techniques: EQF Variants: Rotated EOFs

While standard EOFs are optimal in terms of explained variance and form an orthogonal basis, their
spatial patterns often suffer from poor, unphysical interpretability, especially when modes have nearly
equal eigenvalues and represent mixtures of physical structures. Rotated EOFs (REQFs) attempt to
address this by applying a rotation—typically orthogonal or oblique—to a subset of the leading EOFs to
produce more localized and physically interpretable patterns®-*¢. Compared to standard EOFs, REOFs
trade orthogonality and variance ordering for better physical localization and interpretability, especially in

the presence of degeneracies among leading modes’.

The procedure begins with standard EOF analysis to obtain the leading » EOF loading vectors, typically

denoted L € Rr’r, where p is the number of spatial points. An invertible matrix R € R™ is then applied

to yield new, ‘rotated’ loadings:
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L'=LR,

where R is chosen to optimize some criterion. Probably the most common method is the Varimax
objective, which maximizes the variance of squared loadings across modes®’. The corresponding rotated
principal components (temporal coefficients) are S' = RT-S, where S contains the original principal
components. This transformation preserves the total variance and subspace spanned by the original EOFs,
but the rotated modes are no longer orthogonal. ROEFs yield regionalized patterns that depend on the
number of retained modes. When only a few modes are used, the patterns can be highly sensitive to
changes in . As r approaches the number of spatial grid points, ROEFs tend to localize into patterns

centered around individual points.

Previous studies have shown that REOF analysis is able to avoid the unphysical dipole-like EOF analysis
pattern that often appears when the known dominant mode has the same sign across the domain and to

simplify spatial structures while retaining the robust patterns®®-,

Techniques: EOF Variants: Sparse EOF

Standard EOF analysis yields spatial patterns that are typically global in extent and difficult to interpret
physically when the dominant modes have broad spatial support. Sparse EOFs aim to improve
interpretability by promoting spatial localization of the modes through sparsity constraints. In this
formulation, spatial patterns are encouraged to have many near-zero entries, highlighting only the most

relevant regions contributing to variability.

Sparse EOFs are typically formulated as a regularized matrix factorization problem, where the goal is

to approximate the data matrix X € Rr" as X = B S, with B € Rr representing spatial modes and
S € R™® the temporal coefficients, just as in standard EOFs. However, instead of requiring that the
columns of B be orthogonal eigenvectors, the optimization adds a sparsity-inducing penalty, often the £

norm:
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minimize I1X — B SI?*_F + A X 0OIbOll; , subjectto IbOllz =1 for each mode £,

where b( is the k-th column of B, and a penalty term A > 0 controls the degree of sparsity™*’. The
penalty term controls the degree of sparsity - larger A results in more sparse EOFs. The result is a set of
EOF-like modes that retain much of the explanatory power of standard EOFs while being easier to
associate with physical mechanisms or localized features. Sparse PCA appears to have had limited
application within the Earth sciences, though it has been applied for instance for more interpretable

fingerprinting*'.

1 1 . Linear M.

While EOFs (PCA) are among the most widely used techniques for identifying dominant patterns of
variability in spatiotemporal datasets, they belong to a broader class of linear dimensionality reduction
methods. Several alternative techniques—including Factor Analysis (FA), Independent Component
Analysis (ICA), Nonnegative Matrix Factorization (NMF), and Dynamic Mode Decomposition
(DMD) —offer different decompositional frameworks based on distinct statistical or structural
assumptions. These methods share the goal of representing high-dimensional data using a low-rank
approximation, but they differ in how the components are derived, constrained, and interpreted. In the
following subsections, we compare each of these methods to EOFs, focusing on their objectives,

assumptions, and implications for interpretability in the context of geophysical data.

Techniques: Linear Methods: Factor Analysis

Factor analysis (FA) is a linear dimensionality reduction technique closely related to EOFs, but with a
distinct modeling philosophy. While EOFs seek orthogonal directions that maximize explained variance,
FA assumes that the observed variables are driven by a smaller number of latent (unobserved) factors,

plus unique noise specific to each observed variable***, The observed data X € R"? is modeled as:
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X=FAT+E,

where:

e F € R™ contains the scores of r unobserved (latent) factors,

e A € Rris the loading matrix linking the latent factors to the observed variables,

e E € R"7is the idiosyncratic Gaussian noise, assumed to be uncorrelated across

variables and with a diagonal covariance matrix.

The assumption of FA is that the high-dimensional data arises from a low-dimensional set of underlying
processes, possibly confounding or not directly observable, such as circulation regimes or hidden drivers
of variability in the climate system. The noise term accounts for individual variability that is not shared
between variables. Unlike EOFs, which assume all variance is shared and seek orthogonal modes, FA
models both shared and unique variance separately. This distinction allows FA to represent more flexible
and realistic relationships among variables by permitting non-orthogonal loadings, which is especially
useful for modeling correlated processes. While EOFs decompose the total variance in the data, FA
focuses specifically on capturing the covariance structure, often through maximum likelihood estimation.
Additionally, FA can more effectively account for measurement noise or unresolved structure, making it
particularly useful in settings where some factors are believed to be hidden or confounded. Factor analysis
is a common data analysis technique used throughout the social sciences, with limited applications in the
Earth sciences®. FA is conceptually appealing in settings where latent dynamics (e.g., unobserved

climate drivers) are suspected to govern the observed data.
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Techniques: Linear Methods: Independent Component Analysis

EOFs have as their primary objective, the successive maximization of variance of the modes. The
orthogonality and uncorrelatedness come as byproducts of this goal. By contrast, Independent
Component Analysis (ICA) has statistical independence as its main aim*. This makes ICA especially
well-suited for extracting physically distinct processes when data are non-Gaussian. For Gaussian
variables, uncorrelatedness and independence coincide, and ICA reduces to EOF/PCA. However, many
climate and geophysical datasets are non-Gaussian, motivating the use of ICA as a generalization of EOFs

in this setting™®.

Conceptually, ICA shares a modeling philosophy with FA: they are both latent variable models, meaning
that they both assume that observed variables are generated by a smaller number of latent (hidden)
components. The difference lies in the objective. FA explains the covariance structure of the observed
variables using fewer latent variables (factors). The emphasis is on modeling correlations and accounting
for noise. ICA seeks to find latent variables that are statistically independent and assumes that the
observed variables are mixtures of these independent sources. The goal is source separation. In linear

ICA, the model is:

x =Af, where fis a vector of statistically independent components,

and A is a full-rank mixing matrix. The observed data vector X is a linear combination of these latent

sources. The goal is to estimate an unmixing matrix W such that:

§$=Wx

recovers the independent components § = f. T. The optimal W is obtained by minimizing a cost function
measuring statistical dependence, typically based on non-Gaussianity, mutual information, or entropy>°.
This objective contrasts with the variance-maximizing goal of EOFs or the likelihood-based objective of

factor analysis. Unlike EOFs, ICA does not impose orthogonality or rank ordering, and the decomposition
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is not unique: the independent components are identifiable only up to permutation and scaling. ICA has

been used to investigate sea level pressure and water storage®°.

Techniques: Linear Methods: Nonnegative Matrix Factorization

Nonnegative Matrix Factorization (NMF) is a linear dimensionality reduction technique that differs
from EOFs in one major fundamental way: it imposes nonnegativity constraints on both spatial and
temporal components. This makes NMF especially useful when the data are naturally nonnegative (e.g.,
precipitation, cloud cover, energy fluxes), and when interpretability is enhanced by additive, parts-based

representations*. Given a nonnegative data matrix X € R*?™", NMF approximates X as the product of

two low-rank nonnegative matrices:

where:

e W € R'r contains the spatial patterns (basis vectors),

e H & R'™® contains the temporal activations or coefficients.

Unlike EOFs, which yield orthogonal modes with both positive and negative loadings, NMF provides
strictly additive components, allowing for a “parts-based” decomposition. This can yield spatial structures
that are localized and physically interpretable, as each field is reconstructed as a nonnegative linear
combination of a few basic building blocks. In contrast to EOFs, which can produce modes with large
canceling positive and negative values, NMF enforces nonnegativity, leading to more interpretable and
parts-based representations. While EOFs offer an optimal decomposition in terms of variance explained,

NMEF prioritizes interpretability and sparsity at the cost of optimality. Unlike EOFs, NMF modes are not



Submitted to Scientific Reports

constrained to be orthogonal or ordered by explained variance, which does bring about ambiguity of
importance for the underlying structures. Further, NMF lacks a unique solution and is sensitive to
initialization and algorithmic choices, in contrast to the closed-form solution of EOFs obtained via SVD.
In Earth Sciences, NMF has been applied to problems such as identifying characterizing drought behavior

in river basins and quantifying the sources of atmospheric particles*.

EOFs identify spatial patterns that capture maximal variance in the data, without directly considering how
those patterns evolve over time, i.e., the PCs are selected to be orthogonal. By contrast, Dynamic Mode
Decomposition (DMD) is a data-driven technique designed to extract spatiotemporal patterns that evolve
according to approximate linear dynamics. DMD is based on the idea that the temporal evolution of the
system can be approximated by a linear operator, which maps each snapshot of the system state to the
next. The resulting decomposition yields spatial patterns, each associated with a fixed temporal frequency
and a corresponding growth or decay rate. This makes DMD particularly well-suited for identifying
coherent structures such as traveling waves, oscillations, and instabilities in geophysical flows and climate

systems™*!

. There are many different algorithms that fall under the DMD category, however we will
describe the most basic form of DMD here**. Mathematically, DMD takes a sequence of state vectors xi,

X2, ..., X_K, and seeks a matrix A such that

for each time slice j. Equivalently, the state vectors are arranged into two data matrices: X = [X1, X2, «esy Xy ]
and X' = [Xz, X3, ..., X;s1]. The matrix A is then estimated by solving the linear system X' = A X, often
using a low-rank approximation via the SVD. The eigenvalues and eigenvectors of the matrix A (or its
projection onto a reduced subspace) reveal the dynamic modes and their temporal behavior. The dynamics

of each mode is controlled by powers of the (complex) eigenvalue. Each mode evolves exponentially in
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time, either oscillating, growing, or decaying, and the full spatiotemporal dynamics of the system are

represented as a linear combination of these modes.

Whereas EOFs prioritize variance maximization and produce orthogonal spatial patterns, DMD focuses
on uncovering temporal dynamics and typically results in non-orthogonal modes. Moreover, DMD does
not rank modes by explained variance, but rather by dynamical significance, such as dominant
frequencies or timescales. In this sense, DMD can be viewed as complementary to EOF analysis. While
EOFs are optimal for compressing information, DMD is better suited for analyzing and predicting
time-evolving structures, especially in systems governed by approximately linear dynamics. Under many
circumstances, DMD is equivalent to the well known method in the climate community known as Linear
Inverse Modeling (LIM) °'. The applications of LIM, and therefore DMD are quite vast across the Earth
sciences, and it would be challenging to succinctly summarize its applications. We also note that DMD
belongs to a broader class of algorithms, each designed to address different limitations of the traditional
DMD framework, and ranging from mode collapse and scalability to improved representation of the
underlying dynamics®. Given the limitations of this manuscript, we will not go into further descriptions

of these techniques.

Technigues: Multi-Linear Methods

EOF analysis is traditionally applied to two-dimensional data matrices, such as a space x time dataset.
However, many modern datasets are multidimensional (or multilinear): For example: latitude x
longitude X time; or: model ensemble x latitude x longitude x time. Flattening these into a 2D matrix for
EOF analysis can destroy important structure — such as the difference between the two spatial

dimensions or between models and physical space.

Multilinear methods generalize the logic of EOFs to tensors — higher-order arrays — in ways that
preserve the multidimensional structure of the data. Rather than vectorizing or slicing the data and losing

directional specificity, multilinear decompositions seek to jointly decompose the full tensor along all its
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modes. This enables mode-specific dimensionality reduction, where distinct sets of latent factors are

extracted along each axis (e.g., spatial modes, temporal modes, ensemble modes).

There are many different types of tensor decompositions, each with their own strengths and weaknesses.
Here we will cover two methods: The Polyadic Decomposition, also called
CANDECOMP/PARAFAC>** which generalizes a rank decomposition of a matrix, and the Tucker

Decomposition®®, which generalizes PCA through a smaller core tensor.

Technigues: Multilinear Methods: Polyvadic Decomposition

Canonical Polyadic Decomposition (CPD) — also called CANDECOMP/PARAFAC —is a
generalization of EOF analysis to higher-dimensional arrays, called tensors. If we combine the singular

values with the PCs from EOFs, we can write

X~duv'=)u®v

Here, the ® symbol represents the outer product — a generalization of multiplication between vectors to

form higher-dimensional arrays. Each term in the above sum has rank-1, and taking R singular vectors is a
rank-R decomposition of X. The outer product can be performed with more vectors to create higher

dimensional arrays (tensors). CP does the same with rank-1 tensors in three or more dimensions.

Just as EOF expresses a 2D matrix as a sum of outer products of spatial and temporal modes, CP
expresses a 3D (or 4D, 5D, etc.) data tensor as a sum of rank-1 tensors, each constructed from one vector

in each dimension:

X"’ zUr®Vr®Wr

This means that the data value at position (7, j, k) — say, (latitude i, longitude j, time k) — is
approximated as a sum of products of values from: a spatial mode along dimension 1 (u; ), a spatial mode

along dimension 2 (vr), and a temporal mode (w;). Each term in the sum is like a triple-mode EOF
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component, one per mode of the data tensor. The number of such terms, R, is called the tensor rank, and it
plays the same role as the number of retained EOFs: higher R captures more structure at the cost of
increased complexity”’. In general, tensors can have as many dimensions as needed, allowing for

complex interactions and large compression.

The CP decomposition expresses a tensor as a sum of R separable components—one for each mode. This
often leads to more parsimonious representations, particularly when the true structure of the data is
separable across dimensions. Unlike EOFs, which discard tensor structure through matricization, CP
preserves the full multidimensional nature of the data. While EOF modes are orthogonal by construction,
CP components are not, yet the CP decomposition can still be unique under mild conditions, up to scaling
and permutation®®. Moreover, CP yields mode-specific components (e.g., one temporal and two spatial),

which can result in better physical interpretability.

Techniques: Multilinear Methods: Tucker Decomposition

The Tucker decomposition generalizes EOF analysis to higher-order data arrays, or tensors, by allowing
a low-rank projection along each dimension of the data simultaneously. Given a three-dimensional data

tensor X € R {I x J x K}, such as latitude x longitude X time, Tucker approximates the data as:

X=Gx1Ax2BxsC

Here, A, B, and C are factor matrices containing the principal components along the first, second, and
third modes, respectively—analogous to the left and right singular matrices U and V matrices in SVD.
The core tensor G & R™{R: x Rz x Rs} captures the interaction strengths between components from each
mode. The mode-n product %[ represents a generalization of matrix multiplication to tensors, allowing us

to project X along each axis independently”’.
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Where EOFs decompose a matrix into rank-one outer products of vectors, Tucker decomposes a tensor
into a multilinear product of basis vectors and a dense core. The EOF decomposition can be viewed as a
special case of Tucker where the core tensor is diagonal and only two modes are present. Tucker relaxes
the orthogonality and diagonal structure, allowing for richer cross-mode interactions. The number of
components can be controlled independently for each axis, enabling anisotropic compression and a more

tailored approximation of the data.

Technigues: Direct Adjustment Methods

Methods that directly adjust sign flipping are automatically applied within Climate Variability Diagnostics
Package, version 6, (CVDPv6)'” and PCMDI Metrics Package (PMP)" packages. In the CVDPvV6, the
sign at a point in the center of action is used to determine whether the sign is consistent or not, whereas
for the PMP, a pattern correlation is used. PMP identifies the need of sign flipping by spatial pattern
correlation to the EOF pattern obtained from the reference dataset and flips the sign of the model's pattern
when the pattern correlation is negative. Additional diagnoses were applied for some variability modes by

assessing sign of area-averaged EOF pattern over certain geographical regions.

Mode swapping, however, is not automatically adjusted within the packages and is incumbent upon the
user to adjust manually. For example, one could use the statistics for determining mode swapping
described in section Challenges with EOFs/Mode Swap, and then manually change the mode numbers
assigned to the modes of interest (i.e. PSA1, PSA2). Table 1 mode swapping statistics were computed as
follows: We determine the absolute value of the pattern correlation between ERAS5 PSA1 and a given
model and member's PSA1 and PSA2. Then, if the absolute value of the pattern correlation between
ERA5 PSA1 and the model's PSA2 is greater than the absolute value of the pattern correlation between
ERAS PSA1 and model PSAT1, we conclude that the modes are swapped. The forced response is

computed as the ensemble mean sea level pressure (SLP), which is removed from the SLP field prior to
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calculation of the PSA1 and 2 modes. For observations, we use the 30-year running mean to define the

forced response, and that is also removed from PSL prior to calculation of the modes.

Appendix

For completeness and to provide illustrations of alternative methods discussed, we provide comparisons
with Figure 6’s standard monthly PSL EOF, but for methods not shown in the Alternative Method

Comparisons section.

Sparse EOF's

Sparse EOFs were implemented using scikit-learn’s MiniBatchSparsePCA algorithm. We present results
for varying values of the sparsity parameter a, with larger values enforcing greater sparsity. Specifically,

we examine o = 1000, 7000, and 10000.

0014 0003 0021 2010 0003 0015 0012 0003 003 0013 0.005 0023

Mode 1 Time Series Mode 2 Time Series Mode 3 Time Series Mode 4 Time Series

100000
50000

04 u‘v A Tt

LA
b

-50000 -

1970 1980 1990 2000 2010 2020 1970 1980 1990 22000 2010 2020 1970 1980 1990 2000 2010 2020 1970 1980 1990 2000 2010 2020
Time

Figure Al. As in Figure 6, but an example of Sparse EOF, where o = 1000.
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Figure A2. As in Figure A1, but an example of Sparse EOF, where a = 7000.
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Figure A3. As in Figure A1, but an example of Sparse EOF, where a = 10000.

For lower a, the spatial patterns closely resemble those from standard EOFs, with notable differences
emerging primarily near regions of high variance, such as over Russia. As o increases, the modes become
increasingly localized, concentrating around the primary centers of activity for each pattern. This spatial
separation is reflected in the associated principal component time series, which begin to exhibit clearer

seasonal structure, similar to that of the leading EOF mode.

Independent Component Analysis
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In ICA, the first mode appears quite similar to the first EOF. This means that the direction of maximal
variance happens to also be the direction chosen to maximize independence. The second ICA mode is a
large southern global teleconnection with nodes of importance in the Pacific and Atlantic. This appears to
be a combination of the second and fourth EOFs. The third and fourth ICA modes grab the Southern and

Northern Hemispheric patterns, analogous with the second and third EOFs.
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Figure A4. As in Figure 6, but for Independent Component Analysis

Nonnegative Matrix Factorization

In NMF, both the spatial and temporal modes are constrained to be nonnegative. The first two modes
resemble those from the leading EOF, capturing the prominent Africa—South Asia signal. Subsequent
modes highlight other localized features, such as activity near Alaska and the North Atlantic. A key
distinction of NMF, relative to other methods, is that the polar regions consistently remain near zero
across all modes. This arises from the additive nature of NMF: unlike EOFs or other linear methods, it
cannot balance large positive contributions with offsetting negative values. As a result, the decomposition

emphasizes localized, purely additive structures, leading to inherently different spatial representations.
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Figure A5. As in Figure 6, but for Nonnegative Matrix Factorization.

Dynamic Mode Decomposition

In the basic DMD algorithm, both spatiotemporal modes and their associated eigenvalues are extracted,
with both quantities generally complex-valued. The temporal evolution of each mode is governed by
powers of its corresponding eigenvalue, enabling fast and interpretable reconstruction of dynamics.

Figure A6 is a plot of the leading eigenvalues, sorted by magnitude.
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Figure A6. Leading eigenvalue with Earth System Cycles (mean state, triennial, biennial, annual,
semiannual, quarterly) sorted by magnitude. Blue circles represent DMD eigenvalues and the black

dashed line is a unit circle for reference.

To visualize the spatial patterns and dynamics, it is common practice to take the real parts of the modes
and time series. Since DMD eigenvalues often come in complex-conjugate pairs, care must be taken to
avoid redundancy by selecting only one representative from each pair. Shown here are the first four

distinct modes in Figure A7.
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Figure A7: As in Figure 6, but for dynamic mode decomposition.

From the structure of the eigenvalues, we identify these modes as corresponding to the mean, annual,
semiannual, and quarterly cycles. The magnitude of each eigenvalue determines its long-term behavior:
eigenvalues with magnitude one produce persistent oscillations; those less than one decay over time; and
those greater than one amplify. In this case, the mean mode has a magnitude greater than one, suggesting
a long-term warming trend. It is typical for most DMD eigenvalues to have magnitudes below one,
leading to attenuation of the associated modes over time. This likely reflects limitations of the linear
DMD model over longer horizons. However, over short time spans, DMD can still recover physically

meaningful and interpretable modes of variability.
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Canonical Polyadic Decomposition

In the CPD, we extract R modes along the latitude, longitude, and temporal dimensions, where R is the
chosen decomposition rank. The spatial modes are formed by the outer product of the corresponding
latitude and longitude factors, which we display below. The resulting spatial and temporal structures are
highly sensitive to the choice of R. For low rank (e.g., R=4), the leading CPD modes resemble those from
EOF analysis, with some notable distinctions. Specifically, the first CPD mode closely matches the
leading EOF, while the others reflect the dataset’s latitudinal structure, analogous to the second and third

EOFs.
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Figure A8. As in Figure 6, but for canonical polyadic decomposition using a low rand of R=4.

When the rank is increased (e.g., R=12), the decomposition reveals more complex structures. These
higher-rank modes tend to exhibit dipole-like or blocky spatial patterns not seen in the lower-rank or EOF
results. As CPD lacks a natural ordering of modes, we present a representative subset of these patterns in

Figure A9.
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Figure A9. As in Figure 6, but for canonical polyadic decomposition using a high rank of R=12.
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Data availability

E3SMv2 Large Ensemble, 1850-2100,

https://portal.nersc.gov/archive/home/c/ccsm/www/E3SMv2/FV 1/atm/proc/tseries/month 1; CESM2

Large Ensemble, 1950-2023, https://www.earthsystemgrid.org/dataset/ucar.cgd.cesm2le.output.html;

E3SMv1 ensemble data, LLNL ESGF node, https://aims2.1lnl.gov/; CESM1 Large ensemble, NSF

NCAR Research Data Archive, https://rda.ucar.edu/datasets/d651027/; ERAS, 1950-2023, PSL
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https://cds.climate.copernicus.eu/datasets/reanalysis-eraS-single-levels-monthly-means?tab=overview;

The Twentieth Century Reanalysis (20CR), https://psl.noaa.gov/data/20thC_Rean/.

Figure legends

Figure 1: East Atlantic pattern (EA, row 1) and Scandinavian pattern (SCA, row 2) shown for ERAS
(first column), CESM2 ScenarioMIP ensemble member rlilp1fl (second column) and CESM?2
ScenarioMIP ensemble member r3ilp1fl (third column). Mode swapping is evident in the third column.
EA and SCA are defined as the 2nd and 3rd EOF patterns of area-weighted PSL computed over 20:80°N,
-90:40°E for JFM 1979-2022. Units are in hPa and variance explained is listed at the top right of each
panel.

Figure 2: Pacific South American (PSA) modes 1 (row 1) and 2 (row 2) shown for ERAS (first column),
CESM2 Large Ensemble member 1181.010 (second column) and CESM2 Large Ensemble member
1161.009 (third column). Mode swapping is evident in the third column. PSA1 and PSA2 are defined as
the 2nd and 3rd EOF patterns of area-weighted PSL computed over 20:90°S, 0:360°E for June-August
1950-2023. Units are in hPa and variance explained is listed at the top right of each panel. The patterns
are created by regressing global PSL anomalies onto normalized PC timeseries.

Figure 3: Pacific North American pattern shown for ERAS (first panel), E3SMv2 member r18ilp1fl
(second panel) and E3SMv2 member r29i1p1£1 (third panel). Sign flipping is evident in the third panel.
Units are in hPa and variance explained for each pattern is listed at the top right. The PNA is defined as
the first EOF pattern of area-weighted PSL computed over 20:85°N, 120°E:120°W for June-August
1950-2022. Units are in hPa and variance explained is listed at the top right of each panel. The patterns
are created by regressing global PSL anomalies onto normalized PC timeseries.

Figure 4: Center of action variability for North Atlantic Oscillation (top), East Atlantic (middle) and

Scandinavian (top) patterns computed for three ensemble members of the E3SMv2 Large Ensemble: 0101


https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels-monthly-means?tab=overview
https://psl.noaa.gov/data/20thC_Rean/
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(left), 0201 (center), and 0301 (right), for a combination of historical and SSP370 simulations. The NAO
is defined as the first EOF, the East Atlantic pattern as the second EOF and the Scandinavian pattern as
the third EOF of area-weighted PSL computed over 20:80°N, 90°W:40°E for January-March over
100-year periods staggered by 10 years. The mean EOFs are shown, as well as the centers of action for
each of the sixteen 100-year periods between 1850 and 2100, marked by white dots.

Figure 5. Mode swapping pattern correlation adjustment method illustration. (Upper panel) Pattern
correlation of CMIP6 models' Pacific/North American (PNA) pattern during the
September-October-November (SON) season (upper panel). The PNA pattern for each model was
determined by the leading Empirical Orthogonal Function (EOF 1) of sea level pressure fields. Pattern
correlation was then calculated between each model's EOF 1 spatial pattern and the 20th Century
Reanalysis (20CR) PNA pattern (SON season). For each model, the pattern correlation of the leading
three EOFs (EOF 1-3) was assessed against the 20CR PNA using spatial pattern correlation, Root Mean
Square Error (RMSE), and temporal correlation between the EOF principal component (PC) time series
and a Common Basis Function PC time series. The highest pattern correlation achieved after potentially
swapping EOF modes based on these criteria is indicated by markers, while the pattern correlation of the
original EOF 1 is shown as a gray bar. The increasing spread between EOF1 and the alternative EOF on
the right demonstrates the difficulty in automated selection of the best-matching EOF mode for models on
the right, which highlights challenges in systematically identifying robust climate patterns across different
models (further details in Lee et al., 2019). (Lower panel) Spatial pattern of model’s EOF 1 (left), 2
(middle) and reference dataset’s EOF 1 demonstrating an example EOF swap case, obtained from
EC-Earth3-AerChem model (far-most left in the upper panel) and the 20CR for PNA pattern during the
SON season.

Figure 6. Figure 6. PSL EOFs 1,2,3,4 (with percent variance explained) and respective PC timeseries for
CESM2 model large ensemble, first member. No temporal filtering is done for consistency and
comparison across alternative methods. See the Methods section under EOF': Standard Computation for

an illustration on the potentially large differences due to temporal filtering.
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Figure 7. As in Figure 6, but an example of rotated EOF.

Figure 8. As in Figure 6 but using Factor Analysis.

Figure 9. Tucker decomposition core tensor of PSL CESM2 large ensemble member in Figure 6, with a
multirank of (5, 10, 10), with temporal modes 0 through 4, 10 latitudes (y-axis) and 10 longitudes
(x-axis).

Figure 10. As in Figure 6, but for Tucker decomposition for the first four temporal components using the
largest weights.

Figure 11. As in Figure 9, except using all core weights in combination.

Figure 12. As in Figure 6, except using a 1 year rolling average to demonstrate the potentially large

differences when temporal filtering is applied.
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